

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202at-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				-			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register bits (write-only)

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.65V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable Power-up Time delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Mon- itor delay	900 μs maximum

TABLE 6-2: OSCILLATOR PARAMETERS

Note:	When the device exits the Reset con-
	dition (begins normal operation), the
	device operating parameters (voltage,
	frequency, temperature, etc.) must be
	within their operating ranges; otherwise,
	the device may not function correctly.
	The user application must ensure that
	the delay between the time power is first
	applied, and the time SYSRST becomes
	inactive, is long enough to get all
	operating parameters within the
	specification.

REGISTER 7-	4: INTCO	N2: INTERR	UPT CONTF	ROL REGIST	ER 2			
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	_		_	—	_	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	_	_	_	_	INT2EP	INT1EP	INTOEP	
bit 7					ļ		bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15 bit 14	ALTIVT: Enable Alternate Interrupt Vector Table bit 1 = Uses alternate vector table 0 = Uses standard (default) vector table DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is active							
bit 13-3	Unimplemen	ted: Read as '	0'					
bit 2	INT2EP: Exter 1 = Interrupt of 0 = Interrupt of	ernal Interrupt 2 on negative edg on positive edg	e Edge Detect ge e	Polarity Selec	t bit			
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit			
	1 = Interrupt o 0 = Interrupt o	on negative edg	ge e					
bit 0	INTOEP: Exte	ernal Interrupt C	Edge Detect	Polarity Selec	t bit			
	1 = Interrupt o 0 = Interrupt o	on negative edg	ge e					

REGISTER 7	-6: IFS1: I	NTERRUPT	FLAG STAT	US REGISTE	ER 1		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	_	INT2IF		_	_	_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		<u> </u>	INT1IF	CNIF	AC1IF ⁽¹	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplement	ted: Read as ')'				
bit 13	INT2IF: Extern	nal Interrupt 2	Flag Status bi	it			
	1 = Interrupt r	equest has occ	curred				
bit 10 E		ted: Deed as '	, occurred				
bit 4		nal Interrunt 1) Elaa Status bi	+			
DIL 4	1 = Interrupt r		riay Status Di	it.			
	0 = Interrupt r	equest has not	occurred				
bit 3	CNIF: Input C	hange Notifica	tion Interrupt	Flag Status bit			
	1 = Interrupt r	equest has occ	curred	•			
	0 = Interrupt r	equest has not	occurred				
bit 2	AC1IF: Analog	g Comparator	1 Interrupt Fla	ag Status bit ⁽¹⁾			
	1 = Interrupt r	equest has occ	curred				
h:4 4		equest has hol		an Chatura bit			
DIT				ag Status bit			
	0 = Interrupt r	equest has not	occurred				
bit 0	SI2C1IF: I2C1	1 Slave Events	Interrupt Flac	o Status bit			
	1 = Interrupt r	equest has occ	curred	,			
	0 = Interrupt r	equest has not	occurred				

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER	7-23: IPC4	4: INTERRUPT	PRIORITY	CONTROL R	EGISTER 4						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		CNIP<2:0>				AC1IP<2:0>(1)					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		MI2C1IP<2:0>		_		SI2C1IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, re	ad as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplem	ented: Read as '	D'								
bit 14-12	CNIP<2:0>	Change Notifica	ation Interrup	t Priority bits							
	⊥⊥⊥ = Inter •	rupt is Priority 7 (nignest prior	ity interrupt)							
	•										
	•										
	001 = Inter	rupt is Priority 1 rupt source is dis	abled								
bit 11	Unimplem	ented: Read as '	0'								
bit 10-8	AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits ⁽¹⁾										
	111 = Inter	rupt is Priority 7 (highest prior	ity interrupt)							
	•										
	•										
	001 = Inter	rupt is Priority 1									
	000 = Inter	rupt source is dis	abled								
bit 7	Unimplem	ented: Read as '	0'								
bit 6-4	MI2C1IP<2	2:0>: I2C1 Master	Events Inter	rrupt Priority bits	S						
	111 = Inter	rupt is Priority 7 (highest prior	ity interrupt)							
	•										
	•										
	001 = Inter 000 = Inter	rupt is Priority 1 rupt source is dis	abled								
bit 3	Unimplem	ented: Read as '	0'								
bit 2-0	SI2C1IP<2	:0>: I2C1 Slave E	Events Interru	upt Priority bits							
	111 = Inter	rupt is Priority 7 (highest prior	ity interrupt)							
	•										
	•										
	001 = Inter	rupt is Priority 1									
	000 = Inte r	rupt source is dis	abled								

Note 1: These bits are not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER /-2	4: IPC5:	INTERRUPT	PRIORITY		EGISTERS		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	_		—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	_	_	_			INT1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit		x = Bit is unkr	nown				
•							

bit 15-3	Unimplemented: Read as '0)'
----------	---------------------------	----

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) ٠ 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-1	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15	bit 15 bit 8								
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
—		INT2IP<2:0>		—	—	—	—		
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—			FLT1	R<5:0>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—		—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl			nown					

REGISTER 10-10: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

bit 15-14 Unimplemented: Read as '0'

bit 13-8

8 FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 • • •

bit 7-0 Unimplemented: Read as '0'

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	2)	PPRE	<1:0> ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPI Maste	er modes only)			
	1 = Internal S	PI clock is disa	bled; pin func	tions as I/O			
	0 = Internal S	PI clock is ena	bled				
bit 11	DISSDO: Disa	able SDOx Pin	Dit Dit		`		
	1 = SDOx pin 0 = SDOx pin	is not used by	moaule; pin ti v the module	unctions as I/C)		
bit 10		rd/Byte Comm	unication Sele	ect hit			
Sit TO	1 = Communi	cation is word-	wide (16 bits)				
	0 = Communi	cation is byte-w	vide (8 bits)				
bit 9	SMP: SPIx Da	ata Input Samp	le Phase bit				
	Master mode:						
	1 = Input data 0 = Input data	is sampled at is sampled at	end of data ou middle of data	utput time a output time			
	Slave mode:						
	SMP must be	cleared when	SPIx is used i	n Slave mode.			
bit 8	CKE: SPIx CI	ock Edge Sele	ct bit ⁽¹⁾				
	1 = Serial out 0 = Serial out	put data chang put data chang	es on transition es on transition	on from active on from Idle clo	clock state to Id	le clock state (/e clock state (see bit 6) see bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mod	de) ⁽³⁾			
	$1 = \overline{SSx}$ pin is	used for Slave	e mode	,			
	$0 = \overline{SSx}$ pin is	not used by m	nodule; pin is c	controlled by p	ort function		
bit 6	CKP: Clock P	olarity Select b	bit				
	1 = Idle state 0 = Idle state	for clock is a h for clock is a lc	igh level; activ w level; active	e state is a lov state is a hig	w level h level		
bit 5	MSTEN: Mas	ter Mode Enab	le bit				
	1 = Master me	ode					
	0 = Slave mod	de					
Note 1: This	s bit is not used	in Framed SP	l modes. Prog	ram this bit to	'0' for the Fram	ed SPI modes	(FRMEN = 1)

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

- bit to '0' for the Framed SPI modes (FRMEN = SPI modes. Pr JYI ⊥).
 - **2:** Do not set both Primary and Secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

REGISTER 19-6: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED) bit 7 IRQEN2: Interrupt Request Enable 2 bit⁽²⁾ 1 = Enables IRQ generation when requested conversion of channels AN5 and AN4 is completed 0 = IRQ is not generated

	0 - In Q is not generated
bit 6	PEND2: Pending Conversion Status 2 bit ⁽²⁾
	 1 = Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted. 0 = Conversion is complete
bit 5	SWTRG2: Software Trigger 2 bit ⁽²⁾
	1 = Starts conversion of AN5 and AN4 (if selected by the TRGSRCx bits) ⁽³⁾ This bit is automatically cleared by hardware when the PEND2 bit is set. 0 = Conversion has not started
bit 4-0	TRGSRC2<4:0>: Trigger 2 Source Selection bits ⁽²⁾
	Selects trigger source for conversion of analog channels AN5 and AN4. 11111 = Timer2 period match
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = Reserved 11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved
	•
	10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected 10000 = Reserved 01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01101 = Reserved 01100 = Timer1 period match
	•
	01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00110 = Reserved 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled

Note 1: This bit is available in dsPIC33FJ06GS001/101A and dsPIC33FJ09GS302 devices only.

- 2: This bit is available in dsPIC33FJ06GS102A/201A and dsPIC33FJ09GS302 devices only.
- **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

							DAMA
	(1)			K/VV-U			
CMPON		CMPSIDL	HISSE	L<1:0>(*)	FLIREN	FULKSEL	DACOE
bit 15							bit 8
DAMA		DAA/ O	DAMA	D 444 0	DANA		DAMA
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INS	SEL<1:0>(")	EXTREP."	HYSPOL	CMPSIAT	HGAIN	CMPPOL ⁽¹⁾	RANGE("
bit 7							bit 0
Legena:	ahla hit		L:4		anted hit read		
R = Reau		vv = vvritable	DIL	0 = 0 minipiem	ented bit, read		
-n = value	atPOR	"I" = Bit is set		0 = Bit is clea	rea	x = Bit is unknown	own
bit 1E		nnaratar Onara	ting Mada bit	(1)			
DIL 15	1 = Comparat	tor module is e	ung woue bit habled				
	0 = Comparat	tor module is di	sabled (reduc	ces power consu	Imption)		
bit 14	Unimplemen	ted: Read as ')'		1 /		
bit 13	CMPSIDL: St	op in Idle Mode	e bit ⁽¹⁾				
	1 = Discontinu	ues module op	eration when	device enters Id	le mode.		
	0 = Continues	s module opera	tion in Idle m	ode			
	If a device has	s multiple comp	parators, any	CMPSIDL bit the	at is set to '1' o	disables <i>all</i> comp	arators while
bit 10 11		>. Comporator	Livetorenia S	alaat hita(1)			
DIL 12-11	11 = 45 mV h		Hysteresis S	elect bits,			
	10 = 30 mV h	vsteresis					
	01 = 15 mV h	ysteresis					
	00 = No hyste	eresis is selecte	ed				
bit 10	FLTREN: Dig	ital Filter Enabl	e bit ⁽¹⁾				
	1 = Digital filte	er is enabled					
hit 0		igital Eiltor and	Pulso Stratek	or Clock Salact	ы ₊ (1)		
DIL 9	1 = Digital filte	ar and nulse str	etcher opera	te with the PM/M			
	0 = Digital filte	er and pulse str	etcher opera	te with the syste	m clock		
bit 8	DACOE: DAC	C Output Enable	e(1)	-			
	1 = DAC anal	og voltage is o	utput to DAC	OUT pin ⁽²⁾			
	0 = DAC anal	og voltage is n	ot connected	to DACOUT pin			
bit 7-6	INSEL<1:0>:	Input Source S	Select for Con	nparator bits ⁽¹⁾			
	11 = Select C	MPxD input pir	ו				
	10 = Select C	MPxC input pir	1				
	01 = Select C 00 = Select C	MPxA input pir	י ו				
		F F					
Note 1:	This bit is not imple	emented in dsF	VIC33FJ06GS	3101A/102A devi	ices.		
2:	DACOUT can be a	ssociated only	with a single	comparator at a	ny given time	The software m	ust ensure
	that multiple compa	arators do not e	enable the DA	AC output by set	ting their resp	ective DACOE bi	it.

REGISTER 20-1: CMPCONX: COMPARATOR CONTROL x REGISTER

3: For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in Section 25.0 "Electrical Characteristics".

21.3 Current Source Control Register

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
ISRCEN			—			OUTSEL<2:0>				
bit 15							bit 8			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
—	—			ISRCC	AL<5:0>					
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable I	oit	U = Unimpler	nented bit, rea	id as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 14-11 bit 10-8	0 = Current s Unimplemer OUTSEL<2:0 111 = Resen 110 = Resen 101 = Resen 100 = Select 011 = Select 010 = Select 000 = No out	<pre>1 = Current source is enabled 0 = Current source is disabled Unimplemented: Read as '0' OUTSEL<2:0>: Output Current Select bits 111 = Reserved 110 = Reserved 101 = Reserved 100 = Select input pin, ISRC4 (AN4) 011 = Select input pin, ISRC3 (AN5) 010 = Select input pin, ISRC2 (AN6) 001 = Select input pin, ISRC1 (AN7) 000 = No output is selected</pre>								
bit 7-6	Unimplemer	nted: Read as '0)'							
bit 5-0	ISRCCAL<5	ISRCCAL<5:0>: Current Source Calibration bits								
	The calibration Constant Cur for more infor	on value must be rrent Source Ca rmation.	e copied from libration Regi	n Flash address ister (Register 2	s, 0x800840, ir 22-1) in Sectic	nto these bits. Ref on 22.0 "Special	fer to the Features"			

REGISTER 21-1: ISRCCON: CONSTANT CURRENT SOURCE CONTROL REGISTER⁽¹⁾

Note 1: This register is available in the dsPIC33FJ09GS302 device only.

22.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Programming and Diagnostics" (DS70207) and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 family of devices includes several features that are included to maximize application flexibility and reliability, and minimize cost through elimination of external components. These features are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

22.1 Configuration Bits

The configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 22-1 and Table 22-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration byte for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note:	Performing a page erase operation on the					
	last page of program memory, clears the					
	Flash Configuration Words, enabling code					
	protection as a result. Therefore, users					
	should avoid performing page erase					
	operations on the last page of program					
	memory					

The Configuration Flash Byte maps are shown in Table 22-1 and Table 22-2.

The Constant Current Source Calibration register is shown in Register 22-1.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd		Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#litl0,Wn	Return with Literal in Wh	1	3 (2)	None
62	RETURN	RETURN	£	Return from Subroutine	1	3 (2)	
63	RLC	RLC	I C MDEC	I = Rolate Left through Carry I	1	1	C,N,Z
		RLC	L, WREG	Wid = Rotate Left through Carry We	1	1	C N 7
64	RINC	RLUC	r f	f = Rotate Left (No Carry) f	1	1	0,N,∠ N 7
		RLNC	f WREG	WREG = Rotate Left (No Carry) f	1	1	N 7
		RLNC	Ws.Wd	Wd = Rotate eff (No Carry) Ws	1	1	N 7
65	BBC	RRC	f	f = Rotate Right through Carry f	1	1	CN7
		RRC	- f,WREG	WREG = Rotate Right through Carry f	1	1	C.N.Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 23-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)	

FIGURE 25-10: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS

TABLE 25-28: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
MP10	TFPWM	PWM Output Fall Time	_	2.5	_	ns	
MP11	TRPWM	PWM Output Rise Time	—	2.5	_	ns	
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—	—	15	ns	
MP30	Тғн	Minimum PWM Fault Pulse Width	8	—	—	ns	DTC<10> = 10
MP31	TPDLY	Tap Delay	1.04	—	—	ns	ACLK = 120 MHz
MP32	ACLK	PWM Input Clock	_	_	120	MHz	See Note 2, Note 3

Note 1: These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWM module.

3: The maximum value for this parameter applies to dsPIC33FJ06GS101A/102A/202A/302 devices only.

AC CHARA	CTERISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 25-30		_	0,1	0,1	0,1	
9 MHz		Table 25-31	—	1	0,1	1	
9 MHz	_	Table 25-32	—	0	0,1	1	
15 MHz	_	—	Table 25-33	1	0	0	
11 MHz		_	Table 25-34	1	1	0	
15 MHz	_	—	Table 25-35	0	1	0	
11 MHz	_	—	Table 25-36	0	0	0	

TABLE 25-29: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		1.27 BSC			
Overall Height	А	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D		17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

Output Compare (OC1)	290
Reset, Watchdog Timer, Oscillator Start-up	
Timer and Power-up Timer	287
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	296
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	295
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	293
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	294
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	303
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	301
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	297
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	299
System Reset	83
Timer1, Timer2 External Clock	288
Timing Specifications	
10-Bit High-Speed ADC	309
10-Bit High-Speed ADC Requirements	310
Auxiliary PLL Clock	284
Capacitive Loading Requirements on	
Output Pins	282
Constant Current Source	313
DAC	311
DAC Gain Stage to Comparator	312
External Clock Requirements	283
High-Speed ADC Comparator	311
High-Speed PWM Requirements	292
I/O Requirements	286
I2C1 Bus Data Requirements (Master Mode)	306
I2C1 Bus Data Requirements (Slave Mode)	308
Input Capture Requirements	290
Output Compare Requirements	290
PLL Clock	284

Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out
Reset Requirements 287
Simple OC/PWM Mode Requirements 291
SPIx Master Mode (Full-Duplex, CKE = 0,
CKP = x, SMP = 1) Requirements
SPIx Master Mode (Full-Duplex, CKE = 1,
CKP = x, SMP = 1) Requirements
SPIx Master Mode (Half-Duplex, Transmit Only)
Requirements 294
SPIx Maximum Data Clock Rate Summary 293
SPIx Slave Mode (Full-Duplex, CKE = 0,
CKP = 0, SMP = 0) Requirements
SPIx Slave Mode (Full-Duplex, CKE = 0,
CKP = 1, SMP = 0) Requirements 302
SPIx Slave Mode (Full-Duplex, CKE = 1,
CKP = 0, SMP = 0) Requirements
SPIx Slave Mode (Full-Duplex, CKE = 1,
CKP = 1, SMP = 0) Requirements
Timer1 External Clock Requirements 288
Timer2 External Clock Requirements

U

0	
Universal Asynchronous Receiver	
Transmitter (UART)	219
Helpful Tips	220
Resources	220
Using the RCON Status Bits	86
V	
Voltage Regulator (On-Chip)	256
w	
Watchdog Timer (WDT)	251, 257
Watchdog Timer Time-out Reset (WDTO)	85
WWW Address	346
WWW, On-Line Support	11