

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

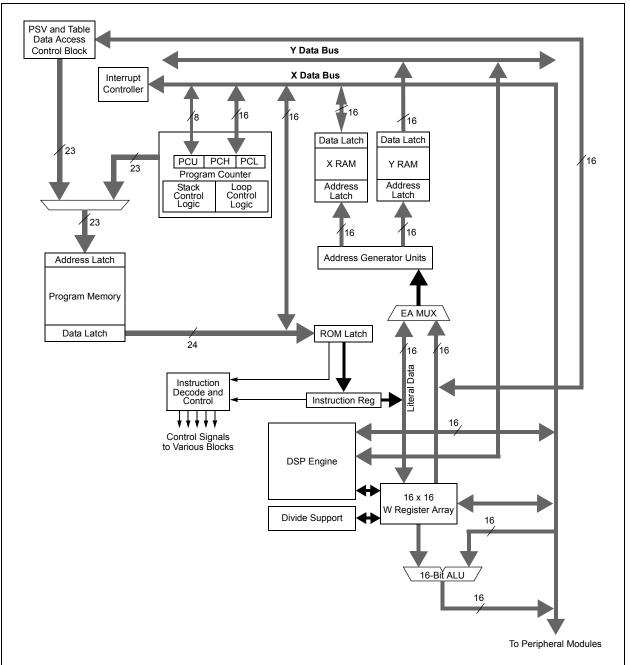
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6КВ (2К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202at-i-tl

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.3 Special MCU Features

A 17-bit by 17-bit single-cycle multiplier is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The 16/16 and 32/16 divide operations are supported, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: CPU CORE BLOCK DIAGRAM

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

IABLE 4-1	1:		LE KEGI															
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000						V	Vorking Regist	er 0									0000
WREG1	0002						V	Vorking Regist	er 1									0000
WREG2	0004						V	Vorking Regist	er 2									0000
WREG3	0006						V	Vorking Regist	er 3									0000
WREG4	0008						V	Vorking Regist	er 4									0000
WREG5	000A						V	Vorking Regist	er 5									0000
WREG6	000C						V	Vorking Regist	er 6									0000
WREG7	000E						V	Vorking Regist	er 7									0000
WREG8	0010						V	Vorking Regist	er 8								,	0000
WREG9	0012						V	Vorking Regist	er 9									0000
WREG10	0014						W	orking Registe	er 10								,	0000
WREG11	0016						W	/orking Registe	er 11								,	0000
WREG12	0018						W	orking Registe	er 12									0000
WREG13	001A						W	orking Registe	er 13								,	0000
WREG14	001C						W	orking Registe	er 14									0000
WREG15	001E						W	orking Registe	er 15								,	0800
SPLIM	0020						Stack	Pointer Limit	Register								,	XXXX
ACCAL	0022							ACCAL										XXXX
ACCAH	0024							ACCAH									,	XXXX
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	Ú				XXXX
ACCBL	0028							ACCBL		•							,	XXXX
ACCBH	002A							ACCBH										XXXX
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCB	U				XXXX
PCL	002E					•	Program C	Counter Low W	ord Register	r								0000
PCH	0030	_	_	_	_	_	_	_	_			Program	Counter Hig	gh Byte I	Register			0000
TBLPAG	0032	_	_	_	_	_	_	_	_			Table Pa	ge Address	Pointer I	Register			0000
PSVPAG	0034	_	_	_	_	_	_	_	_		Program	Memory V	isibility Pag	e Addres	ss Pointe	er Regist	er	0000
RCOUNT	0036						Repea	t Loop Counte	r Register									XXXX
DCOUNT	0038							DCOUNT<15:	0>									XXXX
DOSTARTL	003A						DOST	TARTL<15:1>									0	XXXX
DOSTARTH	003C	—	—	_	_	_	_	_	—	—	—		DC	START	H<5:0>			00xx
DOENDL	003E						DOE	NDL<15:1>									0	XXXX
DOENDH	0040	—	—	_	_	_	_	_	—	—	—			DOEN	DH			00xx
	0042	OA	OB	SA	SB	1		-			IPL<2:0		1	-	-	-		+

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	—	_		—		_	_	_	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	_	_		_	_				CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A, AND dsPIC33FJ09GS302

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: TIMER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 Re	egister								0000
PR1	0102								Period Reg	gister 1								FFFF
T1CON	0104	TON	_	TSIDL	_	—	_	_	—	—	TGATE	TCKPS	6<1:0>	—	TSYNC	TCS	_	0000
TMR2	0106								Timer2 Re	egister								0000
PR2	010C								Period Reg	gister 2								FFFF
T2CON	0110	TON	_	TSIDL	_	—	_	_	—	—	TGATE	TCKPS	6<1:0>	—	—	TCS	_	0000
Legend:	x = unkr	nown value	on Reset. –	- = unimple	mented, rea	d as '0'. Re	set values	are shown i	n hexadecir	nal.								

TABLE 4-10: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140							Inpu	t Capture	1 Register								XXXX
IC1CON	0142	_	—	ICSIDL	—	_		_			ICI<1	:0>	ICOV	ICBNE	10	CM<2:0>		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Con	pare 1 Seco	ondary Reg	gister							XXXX
OC1R	0182							Outpu	t Compare ?	1 Register								XXXX
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	_	0	CM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred

bit 0 POR: Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

6.2 System Reset

There are two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC Configuration register select the device clock source.

A warm Reset is the result of all the other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source, as indicated by the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>).

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is provided in Figure 6-2.

Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	_	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	—	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
HSPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLOCK ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
ECPLL	—	—	ТLOCK ⁽³⁾	ТLОСК ⁽³⁾
LPRC	Toscd ⁽¹⁾		_	Toscd ⁽¹⁾

Note 1: TOSCD = Oscillator start-up delay (1.1 μs max. for FRC, 70 μs max. for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer (OST) delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

TABLE 6-1: OSCILLATOR DELAY

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

© 2011-2012 Microchip Technology Inc.

REGISTER 7	-10: IFS6: I	NTERRUPT	FLAG STAT	US REGISTE	ER 6				
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
ADCP1IF	ADCP0IF	_		_		—	_		
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
AC2IF ⁽¹⁾						PWM4IF ⁽²⁾			
bit 7							bit 0		
							1		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 14	0 = Interrupt r ADCP0IF: AD 1 = Interrupt r	equest has occ equest has not OC Pair 0 Conv equest has occ equest has not	t occurred ersion Done I curred	nterrupt Flag S	itatus bit				
bit 13-8	Unimplemen	ted: Read as '	0'						
bit 7 AC2IF: Analog Comparator 2 Interrupt Flag Status bit ⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred									
bit 6-2	Unimplemen	ted: Read as '	0'						
bit 1	PWM4IF: PW	M4 Interrupt F	lag Status bit ^{(;}	2)					
		equest has oc equest has not							
bit 0	Unimplemen	ted: Read as '	0'						

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

2: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U1RXIP<2:0>(1)				SPI1IP<2:0>(1)	
oit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		SPI1EIP<2:0>(1))	—		—	_
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplem	ented: Read as 'o)'				
bit 14-12	U1RXIP<2:	0>: UART1 Rece	iver Interrupt	Priority bits ⁽¹⁾			
	111 = Inter	rupt is Priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Inter	rupt is Priority 1					
		rupt source is disa	abled				
bit 11	Unimplem	ented: Read as 'o)'				
bit 10-8	SPI1IP<2:0	>: SPI1 Event Int	errupt Priorit	y bits ⁽¹⁾			
	111 = Inter	rupt is Priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Inter	rupt is Priority 1					
		rupt source is disa	abled				
bit 7	Unimplem	ented: Read as 'o)'				
bit 6-4	SPI1EIP<2	:0>: SPI1 Error In	terrupt Priori	ty bits ⁽¹⁾			
	111 = Inter	rupt is Priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		rupt is Priority 1 rupt source is disa	abled				
		•					

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

REGISTER	R 7-26: IPC14:	INTERRUPT			REGISTER 14		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—			—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		PSEMIP<2:0>		—	_		—
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	PSEMIP<2:0	PWM Special	al Event Match	n Interrupt Prio	rity bits		
111 = Interrupt is Priority 7 (highest priority interrupt)							
	•						
	•						
	•						

- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	U1EIP<2:0> ⁽¹⁾			—	—	—	—
bit 7						•	bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	U1EIP<2:0>: UART1 Error Interrupt Priority bits ⁽¹⁾
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

10.9 Peripheral Pin Select Registers

The following registers are implemented for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 19 Output Remappable Peripheral Registers
- Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence.

Not all Output Remappable Peripheral registers are implemented on all devices. See the register description of the specific register for further details.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			INT1	R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

bit 7-0

REGISTER 10-16: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			RP1	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RPO	R<5:0>		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	Unimpleme	ented: Read as '	0'				
bit 13-8	RP1R<5:0>	: Peripheral Out	put Function	is Assigned to F	RP1 Output Pir	n bits	
	(see Table ?	10-2 for periphera	al function nu	umbers)			

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-17: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP3F	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP2F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP3R<5:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 15-2:	PTCON2: PWM CLOCK DIVIDER SELECT REGISTER 2
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—
						bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	_	—	P	CLKDIV<2:0> ⁽¹	1)
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
	U-0 —	U-0 U-0 — — —	U-0 U-0 U-0 wit W = Writable bit	- - - - U-0 U-0 U-0 U-0 - - - - wit W = Writable bit U = Unimpler	U-0 U-0 U-0 U-0 R/W-0 — — — — bit W = Writable bit U = Unimplemented bit, read	U-0 U-0 U-0 U-0 R/W-0 - - - - wit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	२ <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' :		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

REGISTER 15-16: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	Т	RGCMP<7:3>			—	_	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplei	mented bit, read	1 as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unkr	nown	

bit 15-3	TRGCMP<15:3>: Trigger Control Value bits
	When primary PWM functions in local time base, this register contains the compare values that can
	trigger the ADC module.
bit 2-0	Unimplemented: Read as '0'

REGISTER 15-17: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STRGC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	ST	rrgcmp<7:3>			—	—	—
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	it	U = Unimpler	mented bit read	l as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

 bit 15-3
 STRGCMP<15:3>: Secondary Trigger Control Value bits

 When secondary PWM functions in local time base, this register contains the compare values that can trigger the ADC module.

 bit 2-0
 Unimplemented: Read as '0'

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I²C™)" (DS70195) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated CircuitTM (I^2C^{TM}) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCL1 pin is the clock
- The SDA1 pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please see the Microchip web site (www.microchip.com) for the latest *"dsPIC33F/PIC24H Family Reference Manual"* sections.

REGISTER 20-1: CMPCONx: COMPARATOR CONTROL x REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit ⁽¹⁾
	 1 = External source provides reference to DAC (maximum DAC voltage determined by external voltage source)
	 Internal reference sources provide reference to DAC (maximum DAC voltage determined by RANGE bit setting)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit ⁽¹⁾
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit ⁽¹⁾
bit 2	HGAIN: DAC Gain Enable bit ⁽¹⁾
	 1 = Reference DAC output to comparator is scaled at 1.8x 0 = Reference DAC output to comparator is scaled at 1.0x
bit 1	CMPPOL: Comparator Output Polarity Control bit ⁽¹⁾
	1 = Output is inverted0 = Output is non-inverted
bit 0	RANGE: Selects DAC Output Voltage Range bit ⁽¹⁾
	1 = High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD 0 = Low Range: Max DAC Value = INTREF ⁽³⁾
Note 1:	This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

- 2: DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.
- **3:** For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in **Section 25.0 "Electrical Characteristics"**.

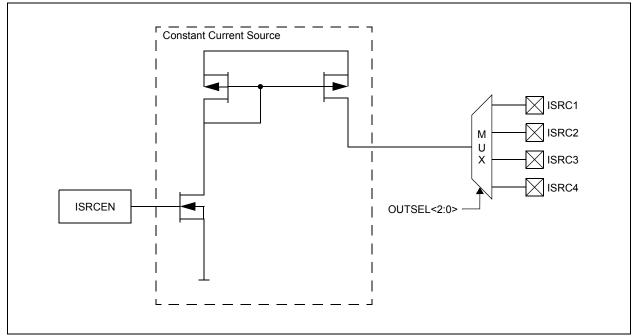
21.0 CONSTANT CURRENT SOURCE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The constant current source module is a precision current generator and is used in conjunction with ADC to measure the resistance of external resistors connected to device pins.

21.1 Features Overview

The constant current source module offers the following major features:


- Constant current generator (10 µA nominal)
- Internal selectable connection to one out of four pins
- Enable/disable bit

21.2 Module Description

Figure 21-1 shows a functional block diagram of the constant current source module. It consists of a precision current generator with a nominal value of 10 μ A. The module can be enabled and disabled using the ISRCEN bit in the ISRCCON register. The output of the current generator is internally connected to one out of up to 4 pins. The OUTSEL<2:0> bits in the ISRCCON register allow selection of the target pin.

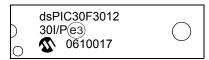
The current source is calibrated during testing.

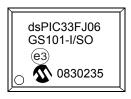
FIGURE 21-1: CONSTANT CURRENT SOURCE MODULE BLOCK DIAGRAM

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

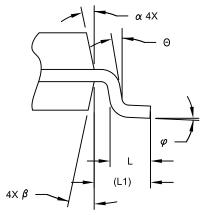
18-Lead PDIP

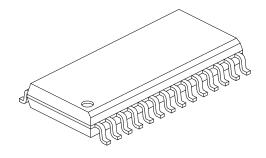

18-Lead SOIC (.300")


20-Lead SSOP

Example

Example


Example



Legend	: XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	e 3	Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))
		can be found on the outer packaging for this package.
Note:		Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		1.27 BSC				
Overall Height	А	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E		10.30 BSC				
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.40 REF				
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2