

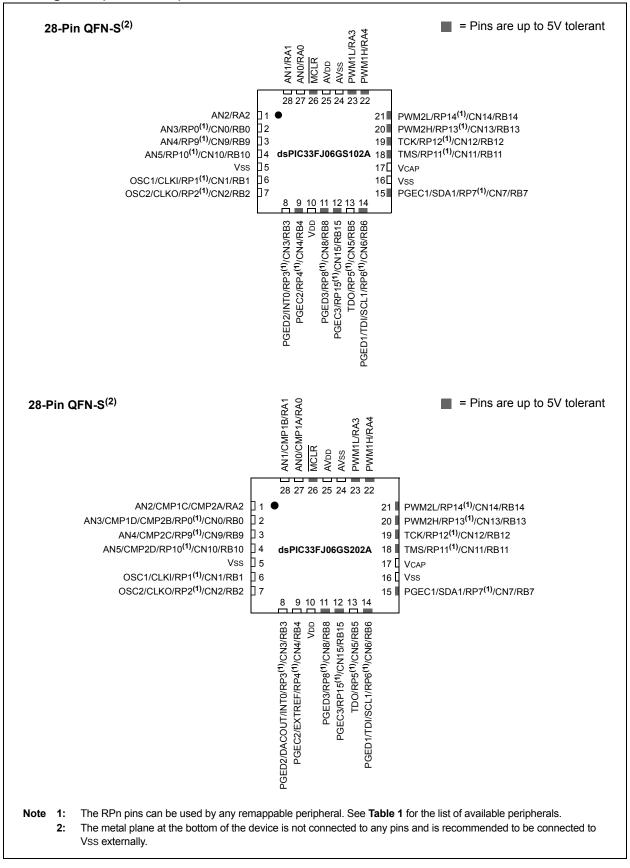
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


•XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9КВ (3К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered the primary reference for the operation of a particular module or device feature.

Note:	To access the documents listed below,								
	visit	the	Microchip	web	site				
	(www.	microc	hip.com).						

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 41. "Interrupts (Part IV)" (DS70300)
- Section 42. "Oscillator (Part IV)" (DS70307)
- Section 43. "High-Speed PWM" (DS70323)
- Section 44. "High-Speed 10-Bit ADC" (DS70321)
- Section 45. "High-Speed Analog Comparator" (DS70296)

Pin Name	Pin Type	Buffer Type	PPS Capable	Description				
CMP1A	I	Analog	No	Comparator 1 Channel A.				
CMP1B	1	Analog	No	Comparator 1 Channel B.				
CMP1C	1	Analog	No	Comparator 1 Channel C.				
CMP1D	1	Analog	No	Comparator 1 Channel D.				
CMP2A	1	Analog	No	Comparator 2 Channel A.				
CMP2B	I	Analog	No	Comparator 2 Channel B.				
CMP2C	I	Analog	No	Comparator 2 Channel C.				
CMP2D	I	Analog	No	Comparator 2 Channel D.				
DACOUT	0	_	No	DAC output voltage.				
ACMP1-ACMP2	0	—	Yes	DAC trigger to PWM module.				
ISRC1 ⁽²⁾	0	_	No	Constant Current Source Output 1.				
ISRC2 ⁽²⁾	0	—	No	Constant Current Source Output 2.				
ISRC3 ⁽²⁾	0	—	No	Constant Current Source Output 3.				
ISRC4 ⁽²⁾	0	_	No	Constant Current Source Output 4.				
EXTREF	I	Analog	No	External voltage reference input for the reference DACs.				
REFCLKO	0	_	Yes	REFCLKO output signal is a postscaled derivative of the system clock.				
FLT1-FLT8	I	ST	Yes	Fault inputs to PWM module.				
SYNCI1-SYNCI2	I	ST	Yes	External synchronization signal to PWM master time base.				
SYNCO1	0	_	Yes	PWM master time base for external device synchronization.				
PWM1L	0	_	No	PWM1 low output.				
PWM1H	0	_	No	PWM1 high output.				
PWM2L	0	_	No	PWM2 low output.				
PWM2H	0	—	No	PWM2 high output.				
PWM4L	0	—	Yes	PWM4 low output.				
PWM4H	0	—	Yes	PWM4 high output.				
PGED1	I/O	ST	No	Data I/O pin for programming/debugging Communication Channel 1				
PGEC1	I	ST	No	Clock input pin for programming/debugging Communication Channel 1.				
PGED2	I/O	ST	No	Data I/O pin for programming/debugging Communication Channel 2				
PGEC2	I	ST	No	Clock input pin for programming/debugging Communication				
				Channel 2.				
PGED3 ⁽¹⁾	I/O	ST	No	Data I/O pin for programming/debugging Communication Channel 3				
PGEC3 ⁽¹⁾	I	ST	No	Clock input pin for programming/debugging Communication Channel 3.				
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times. AVDD is connected to VDD on 18 and 28-pin devices.				
AVSS	Р	Р	No	Ground reference for analog modules. AVss is connected to Vss on 18 and 28-pin devices.				
VDD	Р	_	No	Positive supply for peripheral logic and I/O pins.				
VCAP	Р		No	CPU logic filter capacitor connection.				
Vss	P		No	Ground reference for logic and I/O pins.				
Legend: CMOS		compatible gger input v	input or o	utput Analog = Analog input I = Input				

TABLE 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

TTL = Transistor-Transistor Logic

PPS = Peripheral Pin Select — = Does not apply

Note 1: Not all pins are available on all devices. Refer to the specific device in the "Pin Diagrams" section for availability.

2: This pin is available on dsPIC33FJ09GS302 devices only.

NOTES:

3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0	
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC	
bit 15					•		bit 8	
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С	
bit 7							bit (
Legend:								
C = Clearab	le bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'		
S = Settable	bit	W = Writable	bit	-n = Value at	POR			
'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15	OA: Accumul	lator A Overflow	v Status bit					
		ator A overflowe						
1.1.4.4		ator A has not c						
bit 14		lator B Overflow ator B overflowe						
		ator B has not c						
bit 13	SA: Accumulator A Saturation 'Sticky' Status bit ⁽¹⁾							
	1 = Accumula	ator A is saturat ator A is not sat	ed or has bee		some time			
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾				
		ator B is saturat ator B is not sat		en saturated at	some time			
bit 11	0AB: 0A 0	DB Combined A	ccumulator O	verflow Status	bit			
	1 = Accumula	ators A or B hav	ve overflowed					
bit 10	SAB: SA S	B Combined A	ccumulator 'St	icky' Status bit	(1,4)			
	1 = Accumula		saturated or	have been sat	urated at some t	time in the past	t	
bit 9	DA: DO Loop	Active bit						
	1 = DO loop ir							
	-	ot in progress						
bit 8		U Half Carry/B						
	of the res	sult occurred		-	data) or 8th low-o			
	•	-out from the 4 the result occur		bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-size	
Note 1: ⊤	his bit can be rea	ad or cleared (n	ot set).					
L	he IPL<2:0> bits evel (IPL). The v PL3 = 1.							

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

4: Clearing this bit will clear SA and SB.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

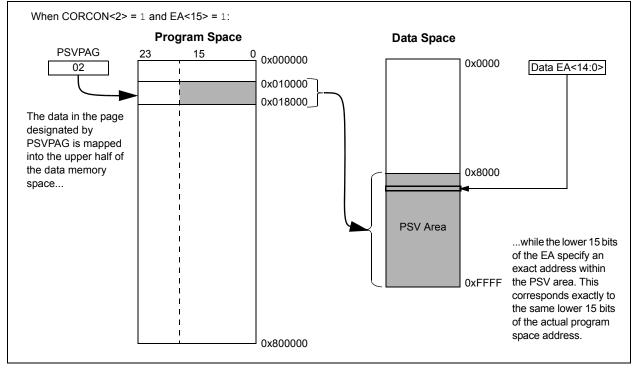
The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 15 for left shifts.

4.7.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL or TBLRDH).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required. Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-10), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


Note: PSV access is temporarily disabled during table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-10: PROGRAM SPACE VISIBILITY OPERATION

6.1 Reset Control Register

REGISTE	R 6-1: RCON	I: RESET COI	NTROL REG	SISTER ⁽¹⁾			
R/W-0		U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR		—			СМ	VREGS
bit 15							bit 8
		DAALO	DANO	DAMO			
R/W-0			R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	•	Reset Flag bit					
		onflict Reset ha onflict Reset ha		d			
bit 14	•	egal Opcode or			et Flag bit		
		al opcode deter			•	lized W registe	er used as ar
		Pointer caused					
1.1.40.40	-	l opcode or unii		leset has not o	ccurred		
bit 13-10	-	ted: Read as '					
bit 9	-	ration Mismatch	-	a a a una d			
	•	uration Mismatc uration Mismatc					
bit 8	•	age Regulator S					
		egulator is activ	•	•			
		egulator goes ir			ер		
bit 7		nal Reset Pin (N	,				
		Clear (pin) Res Clear (pin) Res					
bit 6		are Reset Flag (
DILO		instruction has					
		instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is d						
bit 4		hdog Timer Tim	e-out Flag bi	t			
Dit 4		e-out has occur	-	L			
		e-out has not or					
bit 3	SLEEP: Wak	e-up from Slee	o Flag bit				
		as been in Slee					
		as not been in S	•				
bit 2		up from Idle Fla	-				
		as in Idle mode as not in Idle m					
Note 1:	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not
2:	If the FWDTEN Co		a (1) (

6.10 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note:	The status bits in the RCON register
	should be cleared after they are read so
	that the next RCON register value, after a
	device Reset, will be meaningful.

TABLE 6-3: RESET FLAG BIT OPERATION

Flag Bit Set by: Cleared by: TRAPR (RCON<15>) Trap conflict event POR, BOR IOPWR (RCON<14>) POR, BOR Illegal opcode or uninitialized W register access or Security Reset CM (RCON<9>) **Configuration Mismatch** POR, BOR EXTR (RCON<7>) MCLR Reset POR SWR (RCON<6>) RESET instruction POR, BOR WDTO (RCON<4>) WDT time-out PWRSAV instruction, CLRWDT instruction, POR, BOR SLEEP (RCON<3>) PWRSAV #SLEEP instruction POR, BOR POR, BOR IDLE (RCON<2>) PWRSAV #IDLE instruction BOR (RCON<1>) POR, BOR POR (RCON<0>) POR

Note: All Reset flag bits can be set or cleared by user software.

Table 6-3 provides a summary of the Reset flag bit operation.

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor, 'N1', is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4, or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC', is given by Equation 8-2.

EQUATION 8-2: Fosc CALCULATION

$$FOSC = FIN * \left(\frac{M}{N1 * N2}\right)$$

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 8-3).

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

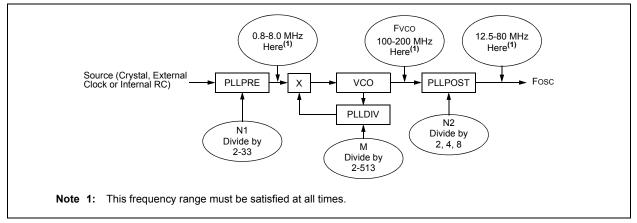
• If PLLPOST<1:0> = 00, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

$$F_{CY} = \frac{F_{OSC}}{2} = \frac{1}{2} \left(\frac{10000000 * 32}{2 * 2} \right) = 40 \text{ MIPS}$$

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock, such as a PWM or ADC.


The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Table 25-18 in Section 25.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less

8.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

FIGURE 8-2: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 PLL BLOCK DIAGRAM

13.1 Input Capture Registers

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	ICSIDL	—	—	_	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR ⁽¹⁾		<1:0>	ICOV	ICBNE	10,00-0	ICM<2:0>	10/00-0
bit 7		\$1.02	1007	IODINE		10101-2.02	bit
Legend:		HC = Hardwar	e Clearable bit				
R = Readat	ole bit	W = Writable b	bit	U = Unimple	mented bit, re	ead as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15-14	Unimplemer	ited: Read as '0	,				
bit 13	-	t Capture Modu		Control bit			
	•	ture module hal	•				
	0 = Input cap	ture module cor	ntinues to opera	ate in CPU Idle	mode		
bit 12-8	Unimplemer	ted: Read as '0	3				
bit 7	ICTMR: Inpu	t Capture Timer	Select bit ⁽¹⁾				
	1 = TMR2 co 0 = Reserved	ntents are captu I	ired on capture	e event			
bit 6-5	ICI<1:0>: Se	lect Number of (Captures per In	terrupt bits			
		t on every fourth		t			
	•	t on every third	•				
		t on every secor t on every captu		nt			
bit 4	-	Capture Overflov		oit (read-only)			
	-	ture overflow oc	-				
		capture overflow					
bit 3	ICBNE: Input	t Capture Buffer	Empty Status	bit (read-only)			
		ture buffer is no		st one more ca	pture value ca	an be read	
		ture buffer is en					
bit 2-0		put Capture Mo					
		apture functions			evice is in Sle	ep or Idle mode	e. Rising edg
		only; all other co d (module disab		iot applicable.			
		re mode, every ?		е			
	100 = Captu	re mode, every 4	4th rising edge				
	•	re mode, every r	•••				
		re mode, every f re mode, every e		d falling) ICI<1	·0> hits do n	ot control interru	int generatio
		mode.	and the second sec		.0- 013 00 10		ipt generatio

REGISTER 13-1: IC1CON: INPUT CAPTURE 1 CONTROL REGISTER

000 = Input capture module is turned off

15.0 HIGH-SPEED PWM

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 43. "High-Speed PWM" (DS70323) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed PWM module supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction (PFC)
- Uninterruptible Power Supply (UPS)
- Inverters
- · Battery Chargers
- · Digital Lighting

15.1 Features Overview

The high-speed PWM module incorporates the following features:

- Two to three PWM generators with four to six outputs
- Individual time base and duty cycle for each of the six PWM outputs
- · Dead time for rising and falling edges:
- Duty cycle resolution of 1.04 ns^(1,2)
- Dead-time resolution of 1.04 ns^(1,2)
- Phase-shift resolution of 1.04 ns^(1,2)
- Frequency resolution of 1.04 ns^(1,2)

Note 1: Resolution is 8.32 ns in Center-Aligned PWM mode.

2: Resolution is 8.32 ns for dsPIC33FJ06GS001 devices.

- Supported PWM modes:
 - Standard Edge-Aligned
 - True Independent Output
 - Complementary
 - Center-Aligned
 - Push-Pull
 - Multiphase
 - Variable Phase
 - Fixed Off Time
 - Current Reset
 - Current Limit
- Independent Fault/Current-Limit inputs for each of the six PWM outputs
- Output override control
- Special Event Trigger
- · PWM capture feature
- Prescaler for input clock
- Dual trigger from PWM to ADC
- PWMxH, PWMxL output pin swapping
- Remappable PWM4H, PWM4L pins
- On-the-fly PWM frequency, duty cycle and phase-shift changes
- Disabling of individual PWM generators to reduce power consumption
- Leading-Edge Blanking (LEB) functionality
- PWM output chopping (see Note 1)
 - **Note 1:** The chopping function performs a logical AND of the PWM outputs with a very high-frequency clock signal. The chopping frequency is typically hundreds or thousands of time higher in frequency, as compared to the PWM frequency. Chopping a PWM signal constrains the use of a pulse transformer to cross the isolation barrier.

Figure 15-1 conceptualizes the PWM module in a simplified block diagram. Figure 15-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode. Each functional unit of the PWM module is discussed in subsequent sections.

The PWM module contains three PWM generators. The module has up to six PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM4H and PWM4L. For complementary outputs, these six I/O pins are grouped into H/L pairs.

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	—	SYNCSF	RC<1:0> ⁽¹⁾		SEV	[PS<3:0> ⁽¹⁾	
bit 7							bit (
Legend:		HC = Hardware	e Clearable bit	HS = Hardv	vare Settable	bit	
R = Readable	bit	W = Writable b	it	U = Unimpl	lemented bit,	read as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is c	cleared	x = Bit is unkr	lown
bit 15	PTFN: PWM	Module Enable	bit				
		dule is enabled					
	0 = PWM mod	dule is disabled					
bit 14		ted: Read as '0					
bit 13		V Time Base Sto	•	bit			
		e base halts in C					
bit 12		e base runs in C cial Event Interr					
DIT 12		/ent interrupt is	•				
	•	/ent interrupt is	•				
bit 11	SEIEN: Speci	al Event Interrup	ot Enable bit				
	•	ent interrupt is					
	-	/ent interrupt is		n			
bit 10		Immediate Peri					
		riod register is u riod register upd			oundaries		
bit 9		ynchronization I			Janaaneo		
		nd SYNCO1 po		•			
		nd SYNCO1 are	-				
bit 8		rimary Time Ba		bit ⁽¹⁾			
		output is enable					
hit 7		output is disable ternal Time Base		n Enchla hit	(1)		
bit 7		synchronization	•				
		synchronization					
bit 6		ted: Read as '0					
bit 5-4		:0>: Synchrono		ction bits ⁽¹⁾			
	11 = Reserve	d					
	10 = Reserve						
	01 = SYNCI2 00 = SYNCI1						
bit 3-0		>: PWM Special	Event Trigger (Jutnut Posts	caler Select I	_{Dits} (1)	
		Postscaler genera					atch event
	•	3	-1	55 0	. ,		
	•						
	• 0001 = 1·2 Pr	ostscaler genera	ites a Special F	vent Trigger (nn everv sec	ond compare m	atch event
		ostscaler genera					
		-	-				
		be changed only					
		ogram the Peric			signuy large	er man me expe	scied period of

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

the external synchronization input signal.

REGISTER 20-1: CMPCONx: COMPARATOR CONTROL x REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit ⁽¹⁾
	 1 = External source provides reference to DAC (maximum DAC voltage determined by external voltage source)
	 Internal reference sources provide reference to DAC (maximum DAC voltage determined by RANGE bit setting)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit ⁽¹⁾
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit ⁽¹⁾
bit 2	HGAIN: DAC Gain Enable bit ⁽¹⁾
	 1 = Reference DAC output to comparator is scaled at 1.8x 0 = Reference DAC output to comparator is scaled at 1.0x
bit 1	CMPPOL: Comparator Output Polarity Control bit ⁽¹⁾
	1 = Output is inverted0 = Output is non-inverted
bit 0	RANGE: Selects DAC Output Voltage Range bit ⁽¹⁾
	1 = High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD 0 = Low Range: Max DAC Value = INTREF ⁽³⁾
Note 1:	This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

- 2: DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.
- **3:** For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in **Section 25.0 "Electrical Characteristics"**.

21.3 Current Source Control Register

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
ISRCEN	—	_	_	—		OUTSEL<2:0>				
bit 15							bit			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
	—			ISRCC	AL<5:0>					
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 14-11 bit 10-8	OUTSEL<2:0	ted: Read as ' >: Output Curr		S						
		ource is disabl								
DIL TU-0	111 = Reserv	•	ent Select bit	.5						
	110 = Reserv									
	101 = Reserved 100 = Select input pin, ISRC4 (AN4)									
		input pin, ISR0	. ,							
		input pin, ISRO								
		input pin, ISR0 put is selected	21 (AN7)							
bit 7-6		nted: Read as '	0'							
bit 5-0	-	:0>: Current Sc		ion bits						
		rent Source Ca				to these bits. Re n 22.0 "Specia				

REGISTER 21-1: ISRCCON: CONSTANT CURRENT SOURCE CONTROL REGISTER⁽¹⁾

Note 1: This register is available in the dsPIC33FJ09GS302 device only.

DC CHARAC	TERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param.	Typical ⁽¹⁾	Max.	Units		Conditions				
Idle Current (IIDLE): Core Of	f Clock On I	Base Current ⁽	2)					
DC40d	13	21	mA	-40°C					
DC40a	13	21	mA	+25°C	3.3∨	10 MIPS			
DC40b	13	21	mA	+85°C	3.3V	10 101195			
DC40c	13	21	mA	+125°C					
DC41d	16	24	mA	-40°C					
DC41a	16	24	mA	+25°C	3.3∨	16 MIPS ⁽³⁾			
DC41b	16	24	mA	+85°C	3.3V	TO IVITES (*)			
DC41c	16	24	mA	+125°C					
DC42d	17	27	mA	-40°C					
DC42a	17	27	mA	+25°C		20 MIPS ⁽³⁾			
DC42b	17	27	mA	+85°C	3.3V	20 MIPS**			
DC42c	17	27	mA	+125°C					
DC43d	20	32	mA	-40°C					
DC43a	20	32	mA	+25°C		30 MIPS ⁽³⁾			
DC43b	20	32	mA	+85°C	3.3V	30 MIP 347			
DC43c	20	32	mA	+125°C	7				
DC44d	23	37	mA	-40°C					
DC44a	23	37	mA	+25°C	2.21/				
DC44b	23	37	mA	+85°C	- 3.3V	40 MIPS			
DC44c	23	37	mA	+125°C	7				

TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base Idle current is measured as follows:

CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD; WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- **3:** These parameters are characterized but not tested in manufacturing.

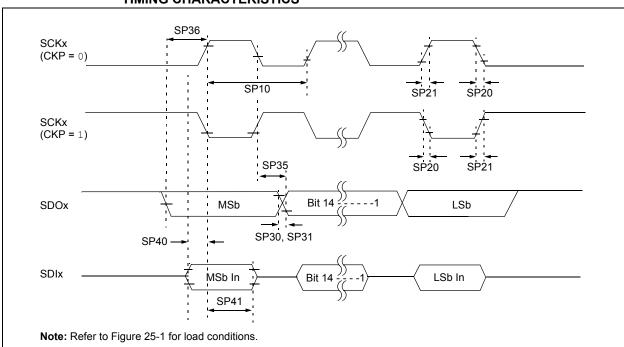

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	_5 ^(5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP and RB5	
DI60b	ІІСН	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins excep <u>t VDD</u> , VSS, AVDD, AVSS, MCLR, VCAP, RB5 and digital 5V tolerant designated pins	
DI60c	ΣΙΙCT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

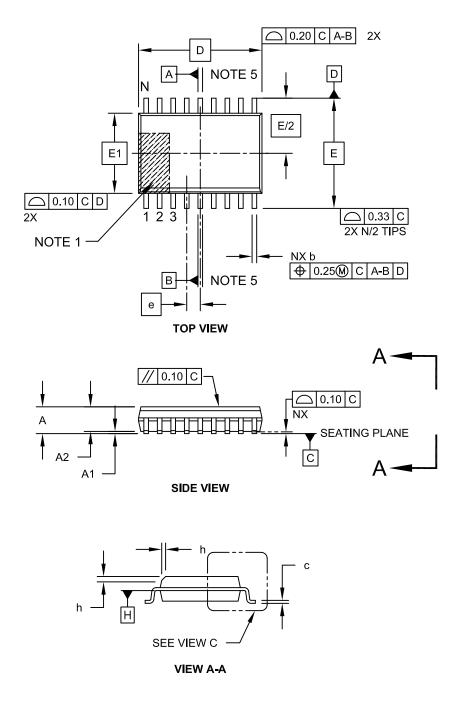
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3); characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V; characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit; characterized but not tested.

FIGURE 25-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 25-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	—	—	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	-	—	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-051C Sheet 1 of 2