

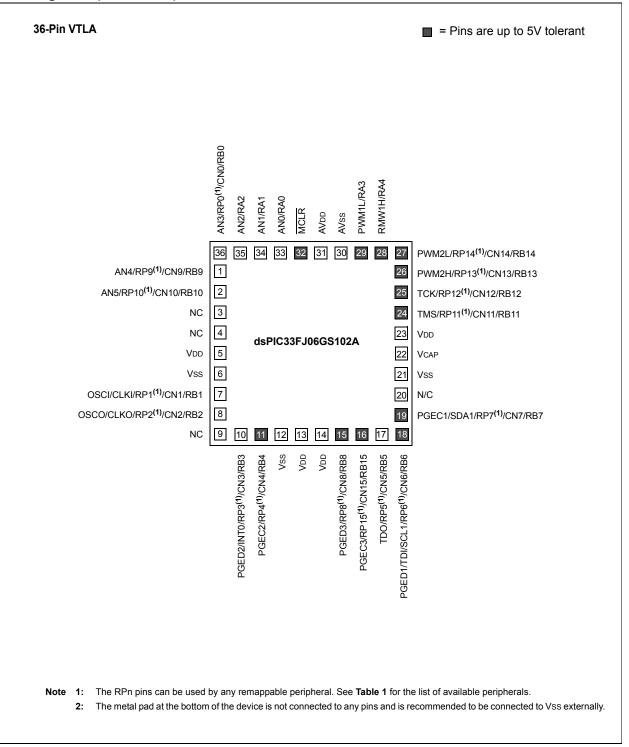
Welcome to E-XFL.COM

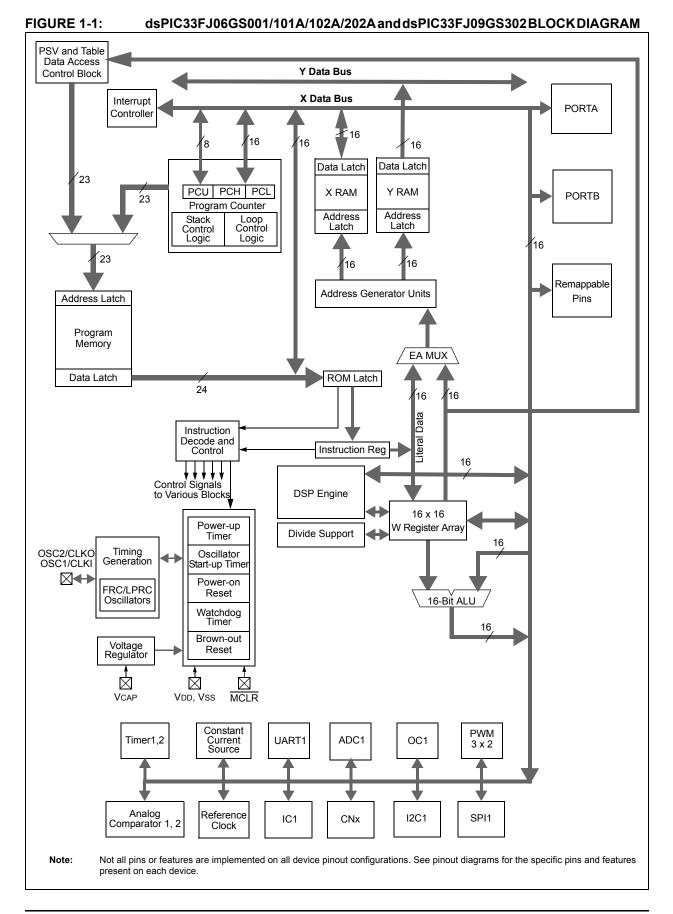
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9KB (3K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.5 Arithmetic Logic Unit (ALU)

The ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices feature a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- Signed or Unsigned DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

SUMMARY											
Instruction	Algebraic Operation	ACC Write Back									
CLR	A = 0	Yes									
ED	$A = (x - y)^2$	No									
EDAC	$A = A + (x - y)^2$	No									
MAC	A = A + (x * y)	Yes									
MAC	$A = A + x^2$	No									
MOVSAC	No change in A	Yes									
MPY	A = x * y	No									
MPY	$A = x^2$	No									
MPY.N	A = -x * y	No									
MSC	A = A - x * y	Yes									

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

NOTES:

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, included in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

IABLE	E 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR 05PIC33FJ06G5102A DEVICES ONLY																	
File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_		_		—		_	_	I	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF		T2IF		I	_	T1IF	OC1IF	_	INT0IF	0000
IFS1	0086	_	_	INT2IF	_	—	_	—	_	_	_	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	_	_	_	—	_	PSEMIF	_	_	_	_	_	_	_	_	—	0000
IFS4	008C	_	_	_	_	_	_	—	_	_	_	_	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	—	_	_	_	_	_	_	_	_	JTAGIF	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	—	_	_	_	_	_	_	_	_	_	0000
IFS7	0092	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	_	T2IE	_	_	_	T1IE	OC1IE	_	INT0IE	0000
IEC1	0096	_	_	INT2IE	_	_	_	—	_	_	_	_	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	_	_	_	_	_	PSEMIE	_	_	_	_	_	_	_	_	_	0000
IEC4	009C	_	_	_	_	_	_	—	_	_	_	_	_	_	_	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	_	_	_	_	—	_	_	_	_	_	_	_	_	JTAGIE	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	—	_	_	_	_	_	_	_	_	_	0000
IEC7	00A2	—	—	—		—		—		—	_		—	—			ADCP2IE	0000
IPC0	00A4	—		T1IP<2:0>		—	C	OC1IP<2:0	>	—			—	INT0IP<2:0>			4404	
IPC1	00A6	—		T2IP<2:0>		—		—		—	_		—	—				4000
IPC2	00A8	—		U1RXIP<2:0	>	—	u ,	SPI1IP<2:0	>	—	SI	PI1EIP<2	:0>	—				4440
IPC3	00AA	—	—	—		—		—				ADIP<2:0	>	—	ι	J1TXIP<2:0>		0044
IPC4	00AC	—		CNIP<2:0>		—		—		—	М	I2C1IP<2	:0>	—	S	SI2C1IP<2:0>	•	4044
IPC5	00AE	—	—	—		—		—		—	_		—	—	l	NT1IP<2:0>		0004
IPC7	00B2	—	—	—	-	—	-	—	_	—	II	NT2IP<2:	0>	—	—	-	_	0040
IPC14	00C0	—	—	—	-	—	-	—	_	—	P	SEMIP<2	:0>	—	—	-	_	0040
IPC16	00C4	_	_	—		—		—		—	ι	J1EIP<2:()>	—	_			0040
IPC20	00CC	_	_	—		—		—		—	_	I	—	—	L.	ITAGIP<2:0>		0004
IPC23	00D2	-		PWM2IP<2:0)>	—	P	WM1IP<2:	0>	_	_		—	—	_	_		4400
IPC27	00DA	-	A	ADCP1IP<2:	0>	—	A	DCP0IP<2:	0>	_	_		—	—	_	_	—	4400
IPC28	00DC	-	_	—	_	—	_	—	—	—	_	_	—	—	A	DCP2IP<2:0	>	0004
INTTREG	00E0	—	—	—			ILR<	3:0>		—				VECNUM<6:	0>			0000

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS102A DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4	-21.	nion	SFEEL			GISTEI		OK US	FICJJI	30003	IUZA A	UD USFIC	33210002	ZUZA				
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	_	A	DCS<2:0	>	0003
ADPCFG	0302	_	—	_	—	_	—	_	_	—		PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	—	_	—	_	—		_	—	P6RDY	_	—	_	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308		ADBASE<15:1> —												0000			
ADCPC0	030A	IRQEN1 PEND1 SWTRG1 TRGSRC1<4:0> IRQEN0 PEND0 SWTRG0 TRGSRC0<4:0>								0000								
ADCPC1	030C	_	—	_	_	_	—		_	IRQEN2	PEND2	SWTRG2	TRGSRC2<4:0>				0000	
ADCPC3	0310	_	_	_	_	_	_	_	_	IRQEN6	PEND6	SWTRG6	TRGSRC6<4:0>				0000	
ADCBUF0	0320								ADC D	ata Buffer 0)							XXXX
ADCBUF1	0322								ADC D	ata Buffer 1								XXXX
ADCBUF2	0324								ADC D	ata Buffer 2	2							XXXX
ADCBUF3	0326								ADC D	ata Buffer 3	3							XXXX
ADCBUF4	0328								ADC D	ata Buffer 4	ļ							XXXX
ADCBUF5	032A								ADC D	ata Buffer 5	5							XXXX
ADCBUF12	0338								ADC Da	ata Buffer 12	2							XXXX
ADCBUF13	033A								ADC Da	ata Buffer 1	3							XXXX

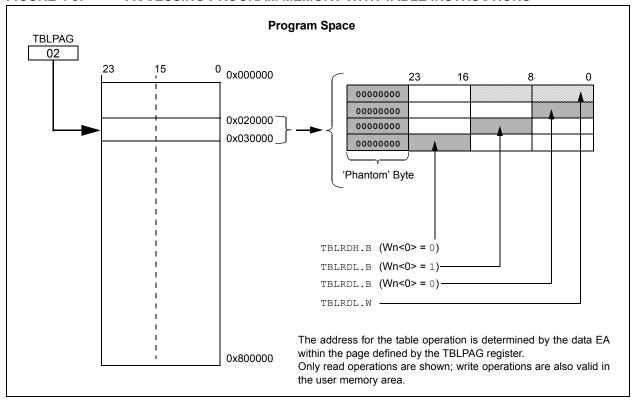
TABLE 4-21: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS102A AND dsPIC33FJ06GS202A

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.7.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14												
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
	—	—	—	—			—					
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
—		PSEMIP<2:0>		—	_		—					
bit 7							bit 0					
Legend:												
R = Readat	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	nown							
bit 15-7	Unimplemen	ted: Read as '	0'									
bit 6-4	PSEMIP<2:0	-: PWM Specia	al Event Match	n Interrupt Prio	rity bits							
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)								
	•											
	•											
	•											

- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		U1EIP<2:0> ⁽¹⁾		—	—	—	—
bit 7						•	bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	U1EIP<2:0>: UART1 Error Interrupt Priority bits ⁽¹⁾
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

REGISTER 7	-30: IPC24:				REGISTER 24			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	_	—	—	—	_	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
_		PWM4IP ⁽¹⁾			—	—		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-7	-	ted: Read as '						
bit 6-4	PWM4IP<2:0	>: PWM4 Inter	rupt Priority b	oits ⁽¹⁾				
	111 = Interrup	ot is Priority 7 (highest priori	ty)				
	•							
	•							
	•							
	001 = Interrup	ot is Priority 1						
		ot source is dis	abled					

Note 1: These bits are not implemented in dsPIC33FJ06GS102A/202A devices.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
- Note 1: This bit is not used in Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1(2)	UTXINV ⁽²⁾	UTXISEL0 ⁽²⁾	—	UTXBRK ⁽²⁾	UTXEN ^(1,2)	UTXBF ⁽²⁾	TRMT ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL	_<1:0> ⁽²⁾	ADDEN ⁽²⁾	RIDLE ⁽²⁾	PERR ⁽²⁾	FERR ⁽²⁾	OERR ⁽²⁾	URXDA ⁽²⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

UTXISEL<1:0>: Transmission Interrupt Mode Selection bits⁽²⁾ bit 15,13 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies that there is at least one character open in the transmit buffer) bit 14 UTXINV: Transmit Polarity Inversion bit⁽²⁾ If IREN = 0: 1 = U1TX Idle state is '0' 0 = U1TX Idle state is '1' If IREN = 1: 1 = IrDA[®] encoded U1TX Idle state is '1' 0 = IrDA encoded U1TX Idle state is '0' bit 12 Unimplemented: Read as '0' UTXBRK: Transmit Break bit⁽²⁾ bit 11 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission is disabled or completed UTXEN: Transmit Enable bit^(1,2) bit 10 1 = Transmit is enabled, U1TX pin is controlled by UART1 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; U1TX pin is controlled by port bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)⁽²⁾ 1 = Transmit buffer is full 0 = Transmit buffer is not full; at least one more character can be written TRMT: Transmit Shift Register Empty bit (read-only)(2) bit 8 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued

- **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.
 - 2: This bit is not available in the dsPIC33FJ06GS001 device.

REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 ⁽¹⁾							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN6	PEND6	SWTRG6			TRGSRC6<4	:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-8	Unimplemen	ted: Read as '0	,				
bit 7	IRQEN6: Inte	rrupt Request E	nable 6 bit				
	1 = Enable IR	Q generation w	hen requeste	ed conversion o	of channels AN	N13 and AN12 i	s completed

ADADAA ADA AANNEDT DAID AANTDAL DEGIATED A(1)

	0 = IRQ is not generated
bit 6	PEND6: Pending Conversion Status 6 bit 1 = Conversion of channels AN13 and AN 12 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG6: Software Trigger 6 bit
	 1 = Starts conversion of AN13 (INTREF) and AN12 (EXTREF) if selected by TRGSRC bits⁽²⁾ This bit is automatically cleared by hardware when the PEND6 bit is set. 0 = Conversion has not started

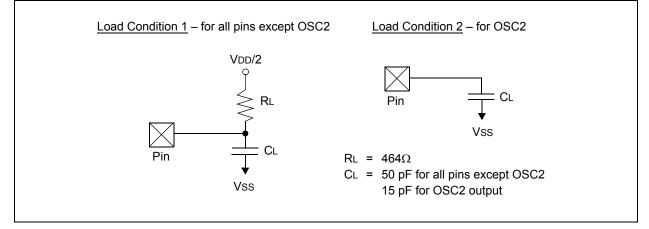
Note 1: If other conversions are in progress, conversion will be performed when the conversion resources are available.

2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPON ⁽¹⁾	_	CMPSIDL ⁽¹⁾	HYSSE	L<1:0> ⁽¹⁾	FLTREN ⁽¹⁾	FCLKSEL ⁽¹⁾	DACOE ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INSEL	<1:0> ⁽¹⁾	EXTREF ⁽¹⁾	HYSPOL ⁽¹⁾	CMPSTAT ⁽¹⁾	HGAIN ⁽¹⁾	CMPPOL ⁽¹⁾	RANGE ⁽¹⁾
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
hit 1E		mparator Opera	ting Mada bit	(1)			
bit 15		itor module is e	-				
	•	tor module is d		es power cons	umption)		
bit 14	Unimplemer	nted: Read as '	0'				
bit 13	CMPSIDL: S	top in Idle Mode	e bit ⁽¹⁾				
	1 = Discontin	ues module op	eration when	device enters lo	dle mode.		
	0 = Continue	s module opera	ition in Idle mo	ode			
			parators, any	CMPSIDL bit th	at is set to '1' c	lisables <i>all</i> com	parators whi
	in Idle mode.			(4)			
bit 12-11		0>: Comparator	Hysteresis S	elect bits(")			
	11 = 45 mV ł	•					
	10 = 30 mV h 01 = 15 mV h						
		eresis is selecte	ed				
bit 10	-	gital Filter Enabl					
		ter is enabled					
	•	ter is disabled					
bit 9	FCLKSEL: D	Digital Filter and	Pulse Stretch	er Clock Selec	t bit ⁽¹⁾		
	1 = Digital filt	ter and pulse st	retcher operat	e with the PWN	/I clock		
	0 = Digital filt	ter and pulse st	retcher operat	e with the syste	em clock		
bit 8	DACOE: DA	C Output Enabl	e ⁽¹⁾				
		log voltage is o			_		
hit 7 G		llog voltage is n			1		
bit 7-6		: Input Source S		iparator bits ??			
		CMPxD input pi CMPxC input pi					
		CMPxB input pi					
		CMPxA input pi					
Note 1: Thi	s bit is not impl	lemented in dsF	21C33F.106G.S	101A/102A dev	vices.		
	•					The software m	nust ensure
						ective DACOE b	
• -					- '		

REGISTER 20-1: CMPCONX: COMPARATOR CONTROL x REGISTER

3: For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in Section 25.0 "Electrical Characteristics".


25.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 AC characteristics and timing parameters.

TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
	Operating voltage VDD range as described in Table 25-1.			

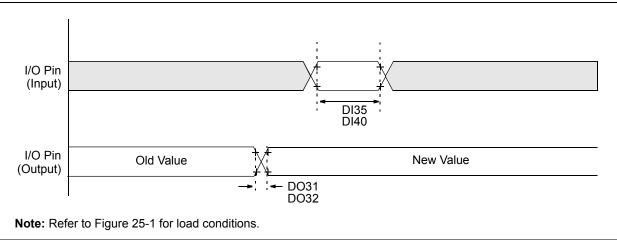

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	_	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCL1, SDA1		_	400	pF	In I ² C™ mode

TABLE 25-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless	rd Operat otherwis	e statec ature -	i) -40°C ≤ T	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	I/O Pins: 4x Sink Driver Pins RA0-RA2, RB0-RB2, RB5-RB10, RB15	_	10	25	ns	Refer to Figure 25-1 for test conditions
		I/O Pins: 16x Sink Driver Pins RA3, RA4, RB3, RB4, RB11-RB14	—	6	15	ns	
DO32	TioF	I/O Pins: 4x Sink Driver Pins RA0-RA2, RB0-RB2, RB5-RB10, RB15	_	10	25	ns	Refer to Figure 25-1 for test conditions
		I/O Pins: 16x Sink Driver Pins RA3, RA4, RB3, RB4, RB11-RB14	—	6	15	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	Trbp	CNx High or Low Time (input)	2		_	TCY	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

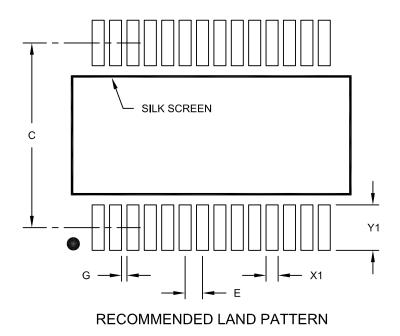

AC CHA	RACTERI	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Indus} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extra} \end{array}$			
Param.	Symbol	Charac	teristic	Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽²⁾	0.5		μS	
IS20	TF:SCL	SDA1 and SCL1	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF
			1 MHz mode ⁽²⁾	—	100	ns	
IS21	TR:SCL	SDA1 and SCL1	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF
			1 MHz mode ⁽²⁾	—	300	ns	
IS25		Data Input	100 kHz mode	250		ns	
	Setup Time	400 kHz mode	100		ns		
		1 MHz mode ⁽²⁾	100		ns		
IS26	26 THD:DAT	Data Input	100 kHz mode	0		μs	
	Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽²⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated
			1 MHz mode ⁽²⁾	0.25		μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS	
		Setup Time	400 kHz mode	0.6		μS	
			1 MHz mode ⁽²⁾	0.6		μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns	
		Hold Time	400 kHz mode	600		ns	
			1 MHz mode ⁽²⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽²⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission
			1 MHz mode ⁽²⁾	0.5		μS	can start
IS50	Св	Bus Capacitive Lo	ading		400	pF	

TABLE 25-38: I2C1 BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

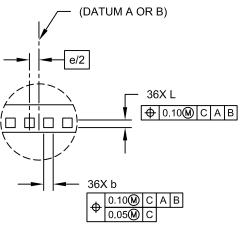
Note 1: Maximum pin capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

				-
	Units		MILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	Units	Ν		S	
Dimens	sion Limits	MIN	NOM	MAX	
Number of Pins	N	36			
Number of Pins per Side	ND	10			
Number of Pins per Side	NE		8		
Pitch	е		0.50 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60	3.75	3.90	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.75	3.90	
Contact Width	b	0.20	0.25	0.30	

0.20

0.20

L

κ

0.25

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

Contact Length

Contact-to-Exposed Pad

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

0.30

DC Specifications	
DAC Output (DACOUT Pin)	
Development Support	
Doze Mode	138
DSC Guidelines	17
Basic Connection Requirements	17
Decoupling Capacitors	17
DSP Engine	31
Multiplier	

Е

Electrical Characteristics	
Absolute Maximum Ratings	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Page Erase Time	76
Minimum Page Erase Time	
XT with PLL Mode Example	
Errata	

F

Fail-Safe Clock Monitor (FSCM)	135
Flash Program Memory	75
Control Registers	
Operations	76
Table Instructions	75
Flexible Configuration	

Н

High-Speed 10-Bit ADC	
Description	
Features	
Functionality	
High-Speed Analog Comparator	
Applications	
Control Registers	
DAC	
Digital Logic	
Hysteresis	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	183
Control Registers	186

I

I/O Ports	
Helpful Tips	152
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
I ² C	
Operating Modes	211
Registers	
In-Circuit Debugger	
In-Circuit Emulation	251
In-Circuit Serial Programming (ICSP)	
Analog, Digital Pins Configuration	
Pins	
Input Capture	
Input Change Notification	

Instruction Addressing Modes	66
File Register Instructions	66
Fundamental Modes Supported	67
MAC Instructions	
MCU Instructions	66
Move and Accumulator Instructions	67
Other Instructions	67
Instruction Set	
Overview	262
Summary	259
Instruction-Based Power-Saving Modes	137
ldle	138
Sleep	137
Interfacing Program and Data Memory Spaces	71
Internal RC Oscillator	
Use with WDT	257
Internet Address	346
Interrupt Control and Status Registers	90
IECx	90
IFSx	90
INTCON1	90
INTCON2	90
INTTREG	90
IPCx	90
Interrupt Setup Procedures	122
Initialization	122
Interrupt Disable	122
Interrupt Service Routine	122
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	
•	

J

JTAG Boundary Scan Interface	251
JTAG Interface	258

L

```
LEBCONx (PWMx Leading-Edge Blanking Control) ...... 202
```

Μ

Master Clear (MCLR)	18
Memory Organization	37
Microchip Internet Web Site	346
Modulo Addressing	68
Applicability	
Operation Example	68
Start and End Address	
W Address Register Selection	68
MPLAB ASM30 Assembler, Linker, Librarian	268
MPLAB Integrated Development	
Environment Software	267
MPLAB PM3 Device Programmer	270
MPLAB REAL ICE In-Circuit Emulator System	269
MPLINK Object Linker/MPLIB Object Librarian	268

0

Open-Drain Configuration	147
Oscillator	
External Pins	19
Value Conditions on Start-up	20
Oscillator Configuration	123
Output Compare	179