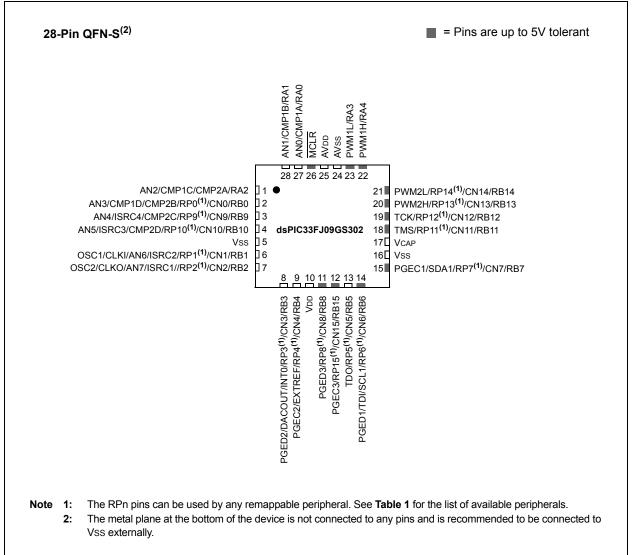


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9KB (3K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.

This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ06GS001
- dsPIC33FJ06GS101A
- dsPIC33FJ06GS102A
- dsPIC33FJ06GS202A
- dsPIC33FJ09GS302

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

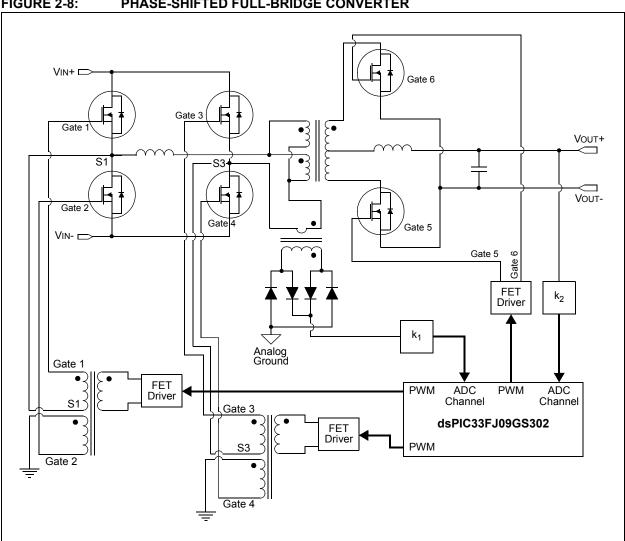
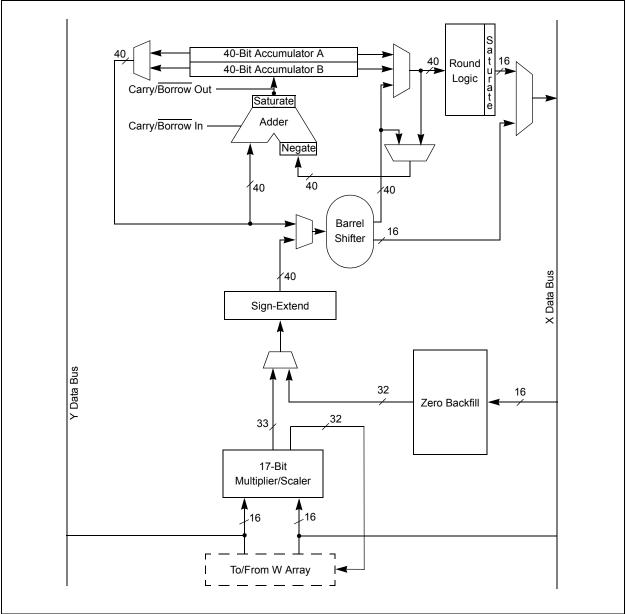



FIGURE 2-8: PHASE-SHIFTED FULL-BRIDGE CONVERTER

4.2 Data Address Space

The CPU has a separate, 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15>=1) is reserved for the Program Space Visibility area (see Section 4.7.3 "Reading Data from Program Memory Using Program Space Visibility").

All devices implement up to 1 Kbyte of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes Post-Modified Register Indirect Addressing mode [Ws++], which results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

IADLE	4-1.		LINIOF		NOLLEN				IN USFI	COOLING	002027							
File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	—	—	—	_	—	_	-	—	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084		—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	_	T2IF	—	_	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	_	_	INT2IF	_	_	_	_	-	_	_		INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	_	_	_	_	—	_	PSEMIF	-		_		_	_		_		0000
IFS4	008C	_	_	_	_	_	_	_	_	_	_	_	_	—	_	U1EIF		0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_		_	_	_	_	_	_	_		_	JTAGIF	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	_	_	AC2IF	_	_	_	—	_	_		0000
IFS7	0092	_	_	_	_	_	_	_	_	_	_	_	ADCP6IF	—	_	_	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	_	T2IE	_	_	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	_	_	INT2IE	_	_	_	_	_	_	_	_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	_	_	_	_	_	PSEMIE	_	_	_	_	_	_	_	_	_	0000
IEC4	009C		—	—	—	—		—			—		_	—	-	U1EIE		0000
IEC5	009E	PWM2IE	PWM1IE	_	_	_	_	_	_	_	_	_	_	_	_	_	JTAGIE	0000
IEC6	00A0	ADCP1IE	ADCP0IE	—	—	—		—		AC2IE	—		_	—	-	—	_	0000
IEC7	00A2		—	—	—	—		—			—		ADCP6IE	—		—	ADCP2IE	0000
IPC0	00A4			T1IP<2:0>		—	U	OC1IP<2:0)>			IC1IP<2:0>	•	—		INT0IP<2:0>		4444
IPC1	00A6			T2IP<2:0>		—		—			—		—	—		—		4000
IPC2	00A8			U1RXIP<2:0)>	—		SPI1IP<2:0)>		5	SPI1EIP<2:0)>	—		—		4440
IPC3	00AA		—	—	—	—		—				ADIP<2:0>		—	ι	J1TXIP<2:0>	•	0044
IPC4	00AC			CNIP<2:0>		—		AC1IP<2:0	>		Ν	/II2C1IP<2:0)>	—	9	SI2C1IP<2:0	>	4444
IPC5	00AE		—	—	—	—		—			—		—	—		INT1IP<2:0>		0004
IPC7	00B2		—	—	—	—		—				INT2IP<2:0	>	—		—		0040
IPC14	00C0		—	—	—	—		—			F	PSEMIP<2:0)>	—		—		0040
IPC16	00C4		—	—	—	—		—				U1EIP<2:0	>	—		—		0040
IPC20	00CC		—	—	—	—		—			—		—	—	,	JTAGIP<2:0>	•	0004
IPC23	00D2		F	PWM2IP<2:()>	—	Р	WM1IP<2:	0>		—		—	—		—		4400
IPC25	00D6	-		AC2IP<2:0	>	_		_	_	_	_	_	_	—	-	_	_	4000
IPC27	00DA		A	ADCP1IP<2:	0>	—	A	DCP0IP<2	:0>	-	-	-	_	—	-	—	_	4400
IPC28	00DC	-	_	_	_	_		_	_	_	_	_	_	—	A	DCP2IP<2:0	>	0004
IPC29	00DE	-	_	_	_	_	_	_	-	_	_	_	_	_	A	DCP6IP<2:0	>	0004
INTTREG	00E0	_	_	_	—		ILR<	3:0>		_			١	/ECNUM<6:0)>			0000

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS202A DEVICES ONLY

TABLE 4-37: PMD REGISTER MAP FOR dsPIC33FJ06GS202A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	_	T2MD	T1MD	—	PWMMD	—	I2C1MD		U1MD	—	SPI1MD	_	_	ADCMD	0000
PMD2	0772		_	_	_	_	_	_	IC1MD	_	_	_	_	_	_	_	OC1MD	0000
PMD3	0774	_					CMPMD	_	—			—	—	—			—	0000
PMD4	0776	_					_	_	—			—	—	REFOMD			—	0000
PMD6	077A	_					_	PWM2MD	PWM1MD			—	—	—			—	0000
PMD7	077C	_	_	_	_		_	CMP2MD	CMP1MD			_	_	_		_	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	-	_	_	T2MD	T1MD	_	PWMMD	—	I2C1MD	_	U1MD	-	SPI1MD	—	-	ADCMD	0000
PMD2	0772		_	_	_	_	_	_	IC1MD	_	_	—	_	_	_	_	OC1MD	0000
PMD3	0774		_	_	_	_	CMPMD	_	_	_	_	—	_	_	_	_	_	0000
PMD4	0776		_	_	_	_	_	_	_	_	_	—	_	REFOMD	_	_	_	0000
PMD6	077A		_	_	_	PWM4MD	_	PWM2MD	PWM1MD	_	_	—	_	_	_	_	_	0000
PMD7	077C		_	_	_	_	_	CMP2MD	CMP1MD	_	_	—	_	_	_	_	_	0000
PMD8	077E	_		_		—	_	—	—	—		—		—		CCSMD	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—		—	—
bit 15							bit 8
W-0	W-0	VV-0	W-0	W-0	W-0	W-0	W-0
			NVMK	(EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register bits (write-only)

REGISTER 7-1	14: IEC3:	INTERRUPT	ENABLE C	ONTROL RE	GISTER 3				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
—	—	—	_	—	—	PSEMIE	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable b	it	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'			
-n = Value at PC	DR	'1' = Bit is set	:	'0' = Bit is cleared x = Bit is unknown					

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIE: PWM Special Event Match Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_	_	—	U1EIE ⁽¹⁾	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2	Unimplemented: Read as '0'
bit 1	U1EIE: UART1 Error Interrupt Enable bit ⁽¹⁾
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	Unimplemented: Read as '0'

Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.

8.1 CPU Clocking System

The devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 32 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The LPRC internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Lock Loop (PLL) to provide a wide range of

output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 25-20) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 22.1 "Configuration Bits" for further details.) The initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits. POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the device architecture.

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Reserved	Reserved	XX	100	—
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	—
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

10.6.2.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 10-16 through Register 10-25). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF **REMAPPABLE OUTPUT** FOR RPn RPORn<5:0> Default 0 U1TX Output Enable 3 **U1RTS** Output Enable 4 **Output Enable** • • • OC1 Output Enable 18 PWM4L Output Enable 45 Default 0 U1TX Output 3 **U1RTS** Output 4 RPn Output Data • Х • • OC1 Output 18 PWM4L Output 45

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPORn<5:0>	Output Name
NULL	000000	RPn tied to default port pin
U1TX	000011	RPn tied to UART1 transmit
U1RTS	000100	RPn tied to UART1 Ready-to-Send
SDO1	000111	RPn tied to SPI1 data output
SCK1	001000	RPn tied to SPI1 clock output
SS1	001001	RPn tied to SPI1 slave select output
OC1	010010	RPn tied to Output Compare 1
SYNCO1	100101	RPn tied to external device synchronization signal via PWM master time base
REFCLKO	100110	REFCLK output signal
ACMP1	100111	RPn tied to Analog Comparator 1 output
ACMP2	101000	RPn tied to Analog Comparator 2 output
PWM4H	101100	RPn tied to PWM output pins associated with PWM Generator 4
PWM4L	101101	RPn tied to PWM output pins associated with PWM Generator 4

						-	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_		—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_				SYNC	l2R<5:0>		
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable bit U = Unimplemented bit, read as '0'			d as '0'		
-n = Value at P	OR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown

REGISTER 10-15: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34

bit 15-6 Unimplemented: Read as '0'

bit 5-0

SYNCI2R<5:0>: Assign PWM Master Time Base External Synchronization Signal to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 •

00000 = Input tied to RP0

© 2011-2012 Microchip Technology Inc.

REGISTER 10-16: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—			RP1	R<5:0>			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP0R<5:0>					
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	Unimpleme	ented: Read as '	0'					
bit 13-8	RP1R<5:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits							
	(see Table 10-2 for peripheral function numbers)							

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-17: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP3F	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP2F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP3R<5:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP2R<5:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	the	first	fr	ame
	transmission		after	initializ	ation	is	not
	shifted or corrupted.						

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI Shift register and is empty once the data transmission begins.

16.2 SPI Resources

Many useful resources related to SPI are provided on the Microchip web site (www.microchip.com).

16.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33F/PIC24H Family Reference Manual"* Sections
- · Development Tools

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—		—	—	_	FRMDLY	_
bit 7							bit C
_egend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15	FRMEN: Fran	med SPIx Supp	ort bit				
				in used as Frar	ne Sync pulse i	nput/output)	
		Plx support dis					
bit 14		me Sync Pulse		ntrol bit			
	•	nc pulse input nc pulse outpu	• •				
bit 13	,	• •	()				
DIL 15		ame Sync Puls nc pulse is act	•				
	,	inc pulse is act	•				
bit 12-2	-	ted: Read as '					
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit						
		nc pulse coinc	•				
		nc pulse prece					
bit 0	Unimplemented: This bit must not be set to '1' by the user application						
	•						

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

24.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

24.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

24.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Typical ⁽¹⁾	Max.	Units			Conditions	
Power-Down	Current (IPD)	2,4)					
DC60d	125	500	μA	-40°C			
DC60a	135	500	μA	+25°C	3.3V	Base Power-Down Current	
DC60b	235	500	μA	+85°C	3.3V		
DC60c	565	950	μA	+125°C			
DC61d	40	50	μA	-40°C			
DC61a	40	50	μA	+25°C	2 21/	Watchdog Timer Current: ∆IwDT ⁽³⁾	
DC61b	40	50	μA	+85°C	3.3V		
DC61c	80	90	μΑ	+125°C			

TABLE 25-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

- 2: IPD current is measured as follows:
 - CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
 - CLKO is configured as an I/O input pin in the Configuration Word
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD, WDT and FSCM are disabled
 - All peripheral modules are disabled (PMDx bits are all '1's)
 - VREGS bit (RCON<8>) = 1 (i.e., core regulator is set to standby while the device is in Sleep mode)
 - **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
 - 4: These currents are measured on the device containing the most memory in this family.

DC Specifications	
DAC Output (DACOUT Pin)	
Development Support	
Doze Mode	138
DSC Guidelines	17
Basic Connection Requirements	17
Decoupling Capacitors	17
DSP Engine	31
Multiplier	

Е

Electrical Characteristics	
Absolute Maximum Ratings	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Page Erase Time	76
Minimum Page Erase Time	
XT with PLL Mode Example	
Errata	

F

Fail-Safe Clock Monitor (FSCM)	135
Flash Program Memory	75
Control Registers	
Operations	76
Table Instructions	75
Flexible Configuration	

Н

High-Speed 10-Bit ADC	
Description	
Features	
Functionality	
High-Speed Analog Comparator	
Applications	
Control Registers	
DAC	
Digital Logic	
Hysteresis	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	183
Control Registers	186

I

I/O Ports	
Helpful Tips	152
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
I ² C	
Operating Modes	211
Registers	
In-Circuit Debugger	
In-Circuit Emulation	251
In-Circuit Serial Programming (ICSP)	
Analog, Digital Pins Configuration	
Pins	
Input Capture	
Input Change Notification	

Instruction Addressing Modes	66
File Register Instructions	66
Fundamental Modes Supported	67
MAC Instructions	
MCU Instructions	66
Move and Accumulator Instructions	67
Other Instructions	67
Instruction Set	
Overview	262
Summary	259
Instruction-Based Power-Saving Modes	137
ldle	138
Sleep	137
Interfacing Program and Data Memory Spaces	71
Internal RC Oscillator	
Use with WDT	257
Internet Address	346
Interrupt Control and Status Registers	90
IECx	90
IFSx	90
INTCON1	90
INTCON2	90
INTTREG	90
IPCx	90
Interrupt Setup Procedures	122
Initialization	122
Interrupt Disable	122
Interrupt Service Routine	122
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	
•	

J

JTAG Boundary Scan Interface	251
JTAG Interface	258

L

```
LEBCONx (PWMx Leading-Edge Blanking Control) ...... 202
```

Μ

Master Clear (MCLR)	18
Memory Organization	37
Microchip Internet Web Site	346
Modulo Addressing	68
Applicability	
Operation Example	68
Start and End Address	
W Address Register Selection	68
MPLAB ASM30 Assembler, Linker, Librarian	268
MPLAB Integrated Development	
Environment Software	267
MPLAB PM3 Device Programmer	270
MPLAB REAL ICE In-Circuit Emulator System	269
MPLINK Object Linker/MPLIB Object Librarian	268

0

Open-Drain Configuration	147
Oscillator	
External Pins	19
Value Conditions on Start-up	20
Oscillator Configuration	123
Output Compare	179

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62076-494-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.