

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9КВ (3К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a Data, Address or Address Offset register. The sixteenth working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

© 2011-2012 Microchip Technology Inc.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—		INT2IF					_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	INT1IF	CNIF	AC1IF ⁽¹	MI2C1IF	SI2C1IF
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	าดพท
							-
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	INT2IF: Exter	rnal Interrupt 2	Flag Status bi	t			
	1 = Interrupt request has occurred						
	•	request has no					
bit 12-5	-	ited: Read as '					
bit 4		rnal Interrupt 1	•	t			
		request has oc request has no					
bit 3	-	Change Notifica		Flag Status hit			
bit 0		request has oc		r lag Olalas bit			
		request has no					
bit 2	AC1IF: Analo	og Comparator	1 Interrupt Fla	ig Status bit ⁽¹⁾			
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 1		C1 Master Even	•	ag Status bit			
	 I = Interrupt request has occurred Interrupt request has not occurred 						
	-	1 Slave Events		. Statua hit			
hit 0							
bit 0		request has oc					

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

8.4 Oscillator Control Registers

REGISTER	、8-1: OSCC	ON: OSCILL	ATOR CON	TROL REGIS	STER				
U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
		COSC<2:0>				NOSC<2:0>(2)			
bit 15	·						bit		
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0		
CLKLOC		LOCK		CF			OSWEN		
bit 7		LOOK		01			bit		
Legend:		•	•	ration bits on P					
R = Reada		W = Writable		•	mented bit, rea				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl€	eared	x = Bit is unkr	nown		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	()				
	101 = Low-Po 100 = Reserv 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (Fl ower RC Oscill yed y Oscillator (XT y Oscillator (XT C Oscillator (Fl C Oscillator (Fl	ator (LPRC) , HS, EC) wit , HS, EC) RC) with PLL	-					
oit 11	Unimplemen	Unimplemented: Read as '0'							
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bit	S ⁽²⁾					
	110 = Fast R 101 = Low-Po 100 = Reserv 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (FI C Oscillator (FI ower RC Oscilla red y Oscillator (XT y Oscillator (XT C Oscillator (FI C Oscillator (FI	RC) with divid ator (LPRC) , HS, EC) wit , HS, EC) RC) with PLL	le-by-16					
oit 7		Clock Lock Ena							
	1 = Clock sw	itching is disab	led, system c	lock source is	locked	SC<7:6>) bits =			
oit 6	1 = Peripheri		locked, write			sters is not allow registers is allow			
oit 5	LOCK: PLL L	ock Status bit (read-only)						
		that PLL is in I that PLL is ou				L is disabled			
	Writes to this regis in the <i>"dsPIC33F/</i> F					cillator (Part IV)" (DS70307		
2:	Direct clock switch ted. This applies to FRC mode as a tra	es between an clock switche	y Primary Os s in either dire	cillator mode w ection. In these	vith PLL and Fl instances, the				
	This register is res								

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

3: This register is reset only on a Power-on Reset (POR).

8.5 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.5.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC<2:0> control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.5.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If desired, read the COSC<2:0> bits to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC<2:0> control bits for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSC<2:0> status bits with the new value of the NOSC<2:0> control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC<2:0> bit values are transferred to the COSC<2:0> status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled).

Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

- 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
- 3: Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				OCFA	R<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	nted: Read as ')'				
bit 5-0	OCFAR<5:0>	Assign Output	t Compare A	(OCFA) to the	Corresponding	RPn Pin bits ⁽¹⁾)
		out tied to Vss					
		out tied to RP35					
		out tied to RP34					
		out tied to RP33 out tied to RP32					
	•						
	•						
	•						
	00000 = Inn i	ut tied to RP0					
	00000 mpc						

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT1	R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—		—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unknown		

REGISTER 10-10: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

bit 15-14 Unimplemented: Read as '0'

bit 13-8

8 FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 • • •

bit 7-0 Unimplemented: Read as '0'

15.2 Feature Description

The PWM module is designed for applications that require:

- High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- · The ability to create multiphase PWM outputs

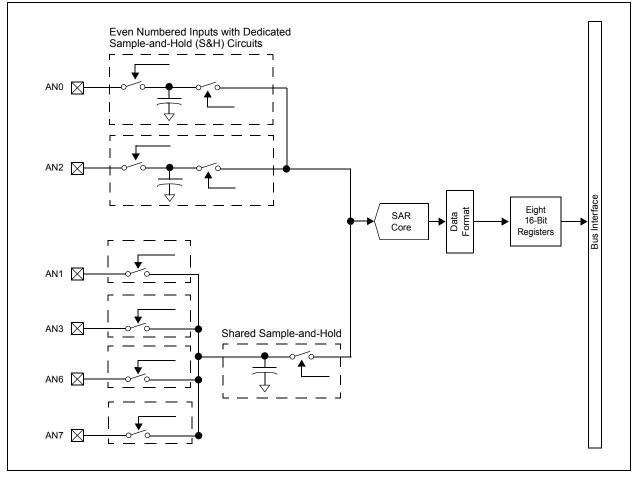
For Center-Aligned mode, the duty cycle, period, phase and dead-time resolutions will be 8.32 ns.

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

A phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable. A multiphase PWM is often used to improve DC/DC Converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC Converters are often operated in parallel, but phase-shifted in time. A single PWM output, operating at 250 kHz, has a period of 4 μ s, but an array of four PWM channels staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

A variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50%, and the power flow is controlled by varying the relative phase-shift between the two PWM generators.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	UW-0			
HRPDIS	HRDDIS	_		_	_	_	_			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CHOPSEL<3:0> CHOPHEN CHOPLEN									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown			
bit 15	1 = High-reso	h-Resolution PV Ilution PWMx pe Ilution PWMx pe	eriod is enabl	led						
bit 14	 HRDDIS: High-Resolution PWMx Duty Cycle Disable bit 1 = High-resolution PWMx duty cycle is enabled 0 = High-resolution PWMx duty cycle is disabled 									
bit 13-6	Unimplemen	ted: Read as '0	,							
bit 5-2	The selected 1001 = Reset 0111 = Reset 0110 = Reset 0101 = Reset 0100 = PWM 0011 = Reset 0010 = PWM 0001 = PWM	rved rved rved rved 4H is selected a	as CHOP clo as CHOP clo as CHOP clo as CHOP clo	e (CHOP) the s ck source ck source ck source	selected PWM>	coutputs.				
bit 1	1 = PWMxH c	PWMxH Output chopping functio	n is enabled							
bit 0	CHOPLEN: F 1 = PWMxL c	WMxL Output (hopping function hopping function	Chopping En n is enabled	able bit						


REGISTER 15-21: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

REGISTER 18-1: U1MODE: UART1 MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit ⁽³⁾ 1 = U1RX Idle state is '0' 0 = U1RX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit⁽³⁾ 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
	0 = BRG generates 16 clocks per bit period (16 baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits ⁽³⁾
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit ⁽³⁾ 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).
 - 3: This bit is not available in the dsPIC33FJ06GS001 device.

REGISTER 19-6: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN3 ⁽¹	^{I)} PEND3 ⁽¹⁾	SWTRG3 ⁽¹⁾			TRGSRC3<4:()>(1)	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN2(2		SWTRG2 ⁽²⁾	-		TRGSRC2<4:(
bit 7							bit (
<u> </u>							
Legend: R = Readat	ala h:t			II — Ileinen le	mented bit was		
-n = Value a		W = Writable I '1' = Bit is set	DIL	0' = Onimple	mented bit, rea	x = Bit is unkr	
			(4)		ealeu		IOWIT
bit 15		errupt Request E					
	1 = Enables 0 = IRQ is no		wnen reques	ted conversio	n of channels A	N7 and AN6 is o	completed
bit 14		ding Conversior	n Status 3 bit ⁽	1)			
					et when select	ed trigger is asse	erted
		on is complete	(4)				
bit 13		oftware Trigger				(J)	
		nversion of AN7 tomatically clear					
		on has not start			ENDO DIL 13 SC		
bit 12-8	TRGSRC3<4	I:0>: Trigger 3 S	Source Select	ion bits ⁽¹⁾			
		er source for cor		nalog channels	s AN7 and AN6	ð.	
	11111 = Im •	er2 period matc	n				
	•						
	• 11011 = Res	anvad					
		M Generator 4 (current-limit A	DC trigger			
	11001 = Res	served					
		M Generator 2 of M Generator 1 of					
	10111 – P W						
	•						
	•						
	10010 = Res	served					
		M Generator 4	secondary trig	gger is selecte	d		
	10000 = Res	erved M Generator 2 s	secondary tri	naer is selecte	h		
		M Generator 1					
	01101 = Res	served					
	01100 = lim	er1 period matc	h				
	•						
	•						
	01000 = Res	M Generator 4	orimary trigge	r is selected			
	00110 = Res	served					
		M Generator 2 M Generator 1					
		M Special Even					
	00010 = Glo	bal software trig	ger is selecte	ed			
		vidual software conversion is er		ected			
•• • • =							
	This bit is availabl						
2: 7	This bit is availabl		0003102A/2		-22L108G230	z devices only.	

3: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3⁽¹⁾ (CONTINUED)

```
bit 4-0
              TRGSRC6<4:0>: Trigger 6 Source Selection bits
              Selects trigger source for conversion of analog channels AN13 and AN12.
               11111 = Timer2 period match
              11011 = Reserved
              11010 = PWM Generator 4 current-limit ADC trigger
              11001 = Reserved
              11000 = PWM Generator 2 current-limit ADC trigger
              10111 = PWM Generator 1 current-limit ADC trigger
              10110 = Reserved
              10010 = Reserved
              10001 = PWM Generator 4 secondary trigger is selected
              10000 = Reserved
              01111 = PWM Generator 2 secondary trigger is selected
              01110 = PWM Generator 1 secondary trigger is selected
              01101 = Reserved
```

01101 = Timer1 period match 01100 = Timer1 period match 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00011 = Global software trigger is selected 00001 = Individual software trigger is selected

00000 = No conversion is enabled

- **Note 1:** If other conversions are in progress, conversion will be performed when the conversion resources are available.
 - 2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	_	—	_	—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—		—
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			CCSC	AL<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	bit U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 22-1: CONSTANT CURRENT SOURCE CALIBRATION REGISTER

bit 23-6 Unimplemented: Read as '0'

bit 5-0 CCSCAL<5:0>: Constant Current Source Calibration bits

The value of these bits must be copied into the ISRCCAL<5:0> bits (ISRCCON<5:0>). Refer to the Current Source Control register (Register 21-1) in **Section 21.0** "**Constant Current Source**".

22.4 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

22.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit (FWDT<4>). With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

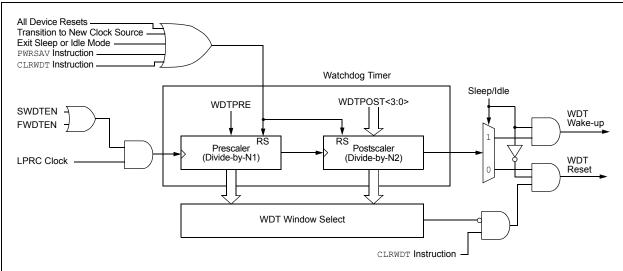
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

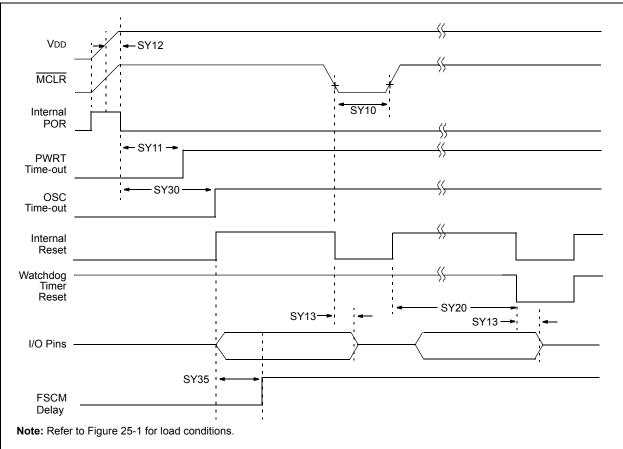
Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

22.4.2 SLEEP AND IDLE MODES


If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

22.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register (FWDT<7>). When the FWDTEN Configuration bit is set, the WDT is always enabled.


The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

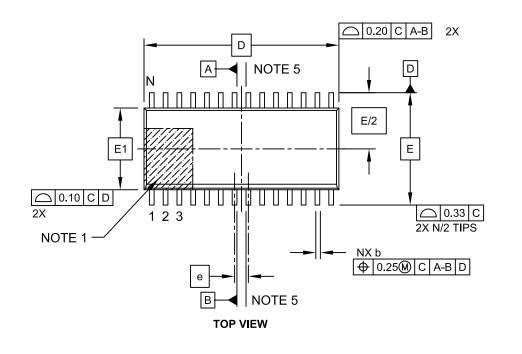
The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

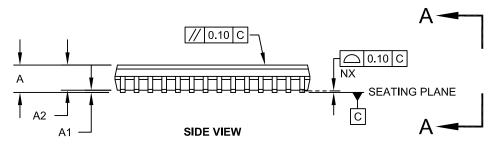
FIGURE 22-2: WDT BLOCK DIAGRAM

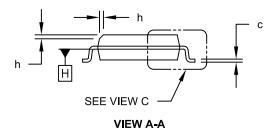
TABLE 25-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μS	-40°C to +125°C	
SY11	TPWRT	Power-up Timer Period	—	64	_	ms	-40°C to +125°C	
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +125°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS		
SY30	Tost	Oscillator Start-up Time	—	1024 Tosc	_	_	Tosc = OSC1 period	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.


АС СНА	RACTERIST	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$						
Param.	Symbol	Characte	eristic	Min.	Тур.	Max.	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchronous	Greater of: 20 ns or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15 N = prescale value (1, 8, 64, 256)
TB11	ΤτxL	TxCK Low Time	Synchronous	Greater of: 20 ns or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15 N = prescale value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler	Tcy + 40	-	—	ns	N = prescale value (1, 8, 64, 256)
			Synchronous, with prescaler	Greater of: 20 ns or (Tcy + 40)/N				
TB20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		0.5 TCY	_	1.5 TCY	_	


TABLE 25-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

RPINR7 (Peripheral Pin Select Input 7)	157
RPOR0 (Peripheral Pin Select Output 0)	168
RPOR1 (Peripheral Pin Select Output 1)	168
RPOR16 (Peripheral Pin Select Output 16)	
RPOR17 (Peripheral Pin Select Output 17)	
RPOR2 (Peripheral Pin Select Output 2)	169
RPOR3 (Peripheral Pin Select Output 3)	
RPOR4 (Peripheral Pin Select Output 4)	
RPOR5 (Peripheral Pin Select Output 5)	
RPOR6 (Peripheral Pin Select Output 6)	
RPOR7 (Peripheral Pin Select Output 7)	171
SDCx (PWMx Secondary Duty Cycle)	
SEVTCMP (PWM Special Event Compare)	
SPHASEx (PWMx Secondary Phase Shift)	194
SPIxCON1 (SPIx Control 1)	208
SPIxCON2 (SPIx Control 2)	210
SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	
SR (CPU Status)	
STRIGx (PWMx Secondary Trigger	
Compare Value)	
T1CON (Timer1 Control)	174
T2CON (Timer2 Control)	
TRGCONx (PWMx Trigger Control)	196
TPICy (DM/My Drimony Triggor Compare Value)	
TRIGx (PWMx Primary Trigger Compare Value).	
U1MODE (UART1 Mode)	221
U1MODE (UART1 Mode) U1STA (UART1 Status and Control)	221
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset	221 223
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR)	221 223 79, 84
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM)	221 223 79, 84 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR)	221 223 79, 84 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode	221 223 79, 84 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security	221 223 79, 84 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset	
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode	
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR)	221 223 79, 84 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR)	
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT)	221 223 79, 84 79 79 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction	221 223 79, 84 79 79 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset	221 223 79, 84 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset	221 223 79, 84 79 79 79 79 79 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset	221 223 79, 84 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR)	221 223 79, 84 79 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register Watchdog Timer Out Reset (WDTO)	221 223 79, 84 79 79 79 79 79 79 79
U1MODE (UART1 Mode) U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register	221 223 79, 84 79 79 79 79 79 79 79

S

Serial Peripheral Interface (SPI) SFR Maps	205
Change Notification for	
dsPIC33FJ06GS001, dsPIC33FJ06GS101A	45
Change Notification for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A, dsPIC33FJ09GS302	45
Constant Current Source	56
CPU Core	43
High-Speed 10-Bit ADC for dsPIC33FJ06GS001,	
dsPIC33FJ06GS101A	56
High-Speed 10-Bit ADC for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A	57
High-Speed 10-Bit ADC for dsPIC33FJ09GS302	58
High-Speed PWM	52
High-Speed PWM Generator 1	52

High-Speed PWM Generator 2 for
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS30253
High-Speed PWM Generator 4 for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A, dsPIC33FJ09GS30254 I2C1
Input Capture for dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Interrupt Controller for dsPIC33FJ06GS00146
Interrupt Controller for dsPIC33FJ06GS002A48
Interrupt Controller for dsPIC33FJ06GS101A47
Interrupt Controller for dsPIC33FJ06GS202A
NVM
Output Compare for dsPIC33FJ06GS101A,
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS30251
Peripheral Pin Select Input for dsPIC33FJ06GS001 59
Peripheral Pin Select Input for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A
Peripheral Pin Select Input for dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Peripheral Pin Select Output for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A60
Peripheral Pin Select Output for dsPIC33FJ06GS102A,
dsPIC33FJ06GS202A, dsPIC33FJ09GS30261 PMD for dsPIC33FJ06GS00164
PMD for dsPIC33FJ06GS101A
PMD for dsPIC33FJ06GS102A
PMD for dsPIC33FJ06GS202A
PMD for dsPIC33FJ09GS30265
PORTA
PORTB for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A62 PORTB for dsPIC33FJ06GS102A,
dsPIC33FJ06GS202A, dsPIC33FJ09GS30262
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A,
dsPIC33FJ09GS202A, dsPIC33FJ09GS30255
System Control63
Timers51
UART1 for dsPIC33FJ06GS101A,
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Software Simulator (MPLAB SIM)
Software Stack Pointer, Frame Pointer
CALL Stack Frame 66
Symbols Used in Opcode Descriptions
т
Thermal Packaging Characteristics
Timer1
Timer2
Timing Diagrams
Analog-to-Digital Conversion per Input
Brown-out Situations
External Clock
High-Speed PWM
I/O
I2C1 Bus Data (Master Mode)
I2C1 Bus Data (Slave Mode) 307
I2C1 Bus Start/Stop Bits (Master Mode) 305
I2C1 Bus Start/Stop Bits (Master Mode)
I2C1 Bus Start/Stop Bits (Master Mode) 305