

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9KB (3K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302t-e-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered the primary reference for the operation of a particular module or device feature.

Note:	To ace	listed b	elow,				
	visit	the	Microchip	web	site		
	(www.microchip.com).						

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 41. "Interrupts (Part IV)" (DS70300)
- Section 42. "Oscillator (Part IV)" (DS70307)
- Section 43. "High-Speed PWM" (DS70323)
- Section 44. "High-Speed 10-Bit ADC" (DS70321)
- Section 45. "High-Speed Analog Comparator" (DS70296)

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

3.3 Special MCU Features

A 17-bit by 17-bit single-cycle multiplier is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The 16/16 and 32/16 divide operations are supported, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: CPU CORE BLOCK DIAGRAM

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ06GS001/101A/102A DEVICES WITH 256 BYTES OF RAM

FIGURE 4-8: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- alignment of data in the program and data spaces.
 - 2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/ 102A/202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

These devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write a single program memory word at a time, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

REGISTER 7	-3: INTCO	N1: INTERR		ROL REGISTE	ER 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_			
bit 7			I				bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown			
bit 15	NSTDIS: Inte	rrupt Nesting E	isable bit							
		nesting is disat								
L:+ 4 4		nesting is enab		1						
bit 14		cumulator A O caused by ove		•						
		not caused by								
bit 13	•	cumulator B O								
		caused by ove		0						
	0 = Trap was	not caused by	overflow of A	ccumulator B						
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit									
				flow of Accumu						
bit 11	COVBERR: A	0 = Trap was not caused by catastrophic overflow of Accumulator A COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit								
				flow of Accumu						
bit 10	-	 Trap was not caused by catastrophic overflow of Accumulator B OVATE: Accumulator A Overflow Trap Enable bit 								
	1 = Trap over 0 = Trap is dis	flow of Accum sabled	ulator A							
bit 9	•	umulator B Ove	erflow Trap En	able bit						
		flow of Accum	-							
bit 8	•	astrophic Overf	low Trap Enat	ole bit						
		atastrophic ove	•	mulator A or B i	s enabled					
bit 7	SFTACERR: Shift Accumulator Error Status bit									
				alid accumulator invalid accumul						
bit 6		vide-by-Zero E	-							
		or trap was cau	-							
		or trap was not	•	ivide-by-zero						
bit 5	Unimplemen	ted: Read as '	0'							
bit 4		Math Error Trap								
		or trap has occu								
hit 2		or trap has not (
bit 3		Address Error T	-							
		error trap has c error trap has r								

INTCOMA, INTERDURT CONTROL DECISTER A

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor, 'N1', is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4, or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC', is given by Equation 8-2.

EQUATION 8-2: Fosc CALCULATION

$$FOSC = FIN * \left(\frac{M}{N1 * N2}\right)$$

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 8-3).

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

• If PLLPOST<1:0> = 00, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

$$F_{CY} = \frac{F_{OSC}}{2} = \frac{1}{2} \left(\frac{10000000 * 32}{2 * 2} \right) = 40 \text{ MIPS}$$

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock, such as a PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Table 25-18 in Section 25.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less

8.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

FIGURE 8-2: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 PLL BLOCK DIAGRAM

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	_	_	_	—	—	—	PLLDIV8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLDI	V<7:0>				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	
				'0' = Bit is cle	ared	x = Bit is unk	nown	
-n = Value a bit 15-9		'1' = Bit is setted: Read as '		'0' = Bit is cle	ared	x = Bit is unk	nown	
	Unimplemen	ted: Read as '	0'		ared as 'M', PLL mu		nown	
bit 15-9	Unimplemen	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedba	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0>	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as ' •: PLL Feedbac = 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • •	ted: Read as f PLL Feedbac 513	0'				nown	
bit 15-9	Unimplemen PLLDIV<8:0> 111111111 = • • • • • • • • • • • • • • • • • • •	ted: Read as f PLL Feedbac 513 50 (default)	0'				nown	

Note 1: This register is reset only on a Power-on Reset (POR).

9.5 PMD Control Registers

U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_			T2MD	T1MD	_	PWMMD ⁽¹⁾	
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	_	U1MD ⁽²⁾	_	SPI1MD ⁽²⁾	_	—	ADCMD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	T2MD: Timer2 Module Disable bit
	1 = Timer2 module is disabled
	0 = Timer2 module is enabled
bit 11	T1MD: Timer1 Module Disable bit
	1 = Timer1 module is disabled
	0 = Timer1 module is enabled
bit 10	Unimplemented: Read as '0'
bit 9	PWMMD: PWM Module Disable bit ⁽¹⁾
	1 = PWM module is disabled
	0 = PWM module is enabled
bit 8	Unimplemented: Read as '0'
bit 7	I2C1MD: I2C1 Module Disable bit
	1 = I2C1 module is disabled
1.11.0	0 = I2C1 module is enabled
bit 6	Unimplemented: Read as '0'
bit 5	U1MD: UART1 Module Disable bit ⁽²⁾
	1 = UART1 module is disabled 0 = UART1 module is enabled
h:t 4	
bit 4	Unimplemented: Read as '0'
bit 3	SPI1MD: SPI1 Module Disable bit ⁽²⁾
	1 = SPI1 module is disabled 0 = SPI1 module is enabled
bit 2-1	Unimplemented: Read as '0'
	ADCMD: ADC Module Disable bit
bit 0	
	1 = ADC module is disabled 0 = ADC module is enabled
Note 1:	Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be
11010 11	

- **Note 1:** Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.
 - 2: This bit is not implemented in the dsPIC33FJ06GS001 device.

10.6.2.3 Virtual Pins

Four virtual RPn pins (RP32, RP33, RP34 and RP35) are supported, which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared, after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

REGISTER 10-22: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP13R	<<5:0>(1)		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP12F	R<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 10-23: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			RP15R<5:0> ⁽¹⁾						
bit 15							bit 8		
11.0	11.0								

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP14F	<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

NOTES:

REGISTER	19-5: ADCP	CU: ADC CO	NVERT PA	IR CONTROL	REGISTER 0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IRQEN1	PEND1	SWTRG1			TRGSRC1<4:0	>				
oit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IRQEN0	PEND0	SWTRG0			TRGSRC0<4:0	>				
oit 7			1				bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
	-		-				-			
pit 15				sted conversion	of channels AN	13 and AN2 is o	completed			
oit 14		ding Conversio	on Status 1 bi	t						
	1 = Conversi	-		2 is pending; se	et when selected	d trigger is asse	erted			
oit 13	SWTRG1: Software Trigger 1 bit									
	1 = Starts co This bit is au	onversion of AN	l3 and AN2 (i ared by hardw	f selected by the vare when the P						
oit 12-8				tion hits						
JIL 12-0	TRGSRC1<4:0>: Trigger 1 Source Selection bits Selects trigger source for conversion of analog channels AN3 and AN2. 11111 = Timer2 period match									
	•	period	•••							
	•									
	• 11011 = Res 11010 = PW		current-limit	ADC trigger						
	11010 = PWM Generator 4 current-limit ADC trigger 11001 = Reserved									
	11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger									
	10111 = PW 10110 = Res		current-limit	ADC trigger						
	•									
	• 10010 = Re s	served								
			secondary tr	igger is selected	b					
	10000 = Res									
				igger is selected						
	01101 = Res		Scoolidary i							
	01100 = Tim	er1 period mat	ch							
	•									
	•									
	01000 = Res	served /M Generator 4	primary triag	er is selected						
	00110 = Re s		printially ungg							
		M Generator 2								
		M Generator 1 M Special Eve								
		bal software tri								
		ividual software	trigger is sel							

REGISTER 19-5: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then conversion will be performed when the conversion resources are available.

22.4 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

22.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit (FWDT<4>). With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

22.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

22.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register (FWDT<7>). When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 22-2: WDT BLOCK DIAGRAM

.,	E 23-2:		JCTION SET OVERVIE		T		1
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
			Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
	0210	CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT	Acc, wa, wau, wy, wyu, Awb	Clear Watchdog Timer	1	1	WDTO,Sleep
			<i>c</i>	$f = \overline{f}$			
17	COM	COM	f	-	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	Wd = Ws	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws – 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
					1 .		· , · , · , - · , -

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)							
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK				1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

NOTES: