

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9КВ (3К × 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF)

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed-sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented)
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: This is a catastrophic overflow in which the sign of the accumulator is destroyed
- Overflow into guard bits, 32 through 39: This is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

SB: ACCB saturated (bit 31 overflow and saturation)

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- · OAB: Logical OR of OA and OB
- · SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

TABLE 4-24: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS001

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	—			INT1R<	5:0>			—		—	—		—	—	—	3F00
RPINR1	0682	—	—	_	—	—	_	_	_	—				INT2R	<5:0>			003F
RPINR2	0684	—	—			T1CKR<	5:0>			—		—	—		—	_	—	3F00
RPINR3	0686	—	_		_	—		—	_	—				T2CKR	<5:0>			003F
RPINR29	06BA	—	_			FLT1R<	5:0>			—		—	—		—	_		3F00
RPINR30	06BC	—	_			FLT3R<	5:0>			—				FLT2R	<5:0>			3F3F
RPINR31	06BE	—	_			FLT5R<	5:0>			—				FLT4R	<5:0>			3F3F
RPINR32	06C0	—	_			FLT7R<	5:0>			—				FLT6R	<5:0>			3F3F
RPINR33	06C2	—	_			SYNCI1R	<5:0>			—				FLT8R	<5:0>			3F3F
RPINR34	06C4	_	_						_	-	SYNCI2R<5:0>			003F				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS101A AND dsPIC33FJ06GS102A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_			INT1R<	5:0>			_	_	_	_	_	_	_	_	3F00
RPINR1	0682	—	_	_			_	_	_	_	_		•	INT2R	<5:0>	•	•	003F
RPINR2	0684	—	—			T1CKR<	5:0>		•			_		_	_	_		3F00
RPINR3	0686	—	—	_	_	_	—	_	_	—				T2CKR	<5:0>			003F
RPINR11	0696	—	—	_	_	_	—	_	_	—				OCFAF	<5:0>			003F
RPINR18	06A4	—	—			U1CTSR-	<5:0>							U1RXF	<5:0>			3F3F
RPINR20	06A8	—	—			SCK1R<	5:0>							SDI1R	<5:0>			3F3F
RPINR21	06AA	—	_	_	_	_	_	_	_	_	_			SS1R·	<5:0>			003F
RPINR29	06BA	—	_			FLT1R<	5:0>			_	_	_	—	_	_	_	_	3F00
RPINR30	06BC	—	_			FLT3R<	5:0>			_	_			FLT2R	<5:0>			3F3F
RPINR31	06BE	—	_			FLT5R<	5:0>			_	_			FLT4R	<5:0>			3F3F
RPINR32	06C0	—	_			FLT7R<	5:0>			_	_			FLT6R	<5:0>			3F3F
RPINR33	06C2	—	_		SYNCI1R<5:0>					_	_	FLT8R<5:0>			3F3F			
RPINR34	06C4	_	_	_						_				SYNCI2	R<5:0>			003F
Legend:	egend: x = unknown value on Reset. — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

4.5 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y	space	Modulo	Addressing	EA		
	cal	culations	assume	word-sized	data		
	(LSb of every EA is always clear).						

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-6: MODULO ADDRESSING OPERATION EXAMPLE

FIGURE 7-1: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000002	
	Oscillator Fail Tran Vector	0,000004	
	Address Error Tran Vector		
	Stack Error Trap Vector	_	
	Math Error Trap Voctor	_	
	Recorved	_	
	Besorved	_	
	Reserved	_	
		0,000014	1
	Interrupt Vector 1	0000014	
		_	
	~	_	
	~	_	
	~	0,000,70	
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
~	Interrupt Vector 53	0x00007E	
orit		0x000080	
L L	~	_	
e	~	_	
Drd	Interrupt Vector 116		
a	Interrupt Vector 117		1
tura		0x0000FE	
Na	Reserved	0x000100	
b	Reserved	0x000102	
asir	Reserved	_	
crea	Oscillator Fall Trap Vector	_	
Dec	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Enor Trap vector	_	
	Reserved		7
	Reserved	_	
	Reserved	0.000444	
		0x000114	
	Interrupt vector 1	_	
	~	_	
	~	_	
	~	0,000170	Alternate interrupt vector Table (AIVI)
	Interrupt Vector 52	0x00017C	
		0x00017E	
	Interrupt vector 54	0x000180	
	~	_	
	~	-	
	~		Ţ
	Interrupt Vector 117		
. ↓	Start of Code		

REGISTER 7	-22: IPC3:	INTERRUPT	PRIORITY (EGISTER 3		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—		—	—	—	_
bit 15							bit 8
	-	D 444 A	D 444 A		-	5444.6	D 444 A
0-0	R/W-1	R/W-0	R/W-0	0-0	R/W-1	R/W-0	R/W-0
		ADIP<2:0>		—		U11XIP<2:0>(*	,
Dit 7							DIt U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	ADIP<2:0>: A	ADC1 Conversi	on Complete	Interrupt Priori	ty bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup 000 = Interrup	pt is Priority 1 pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	UART1 Trans	smitter Interru	pt Priority bits ⁽	1)		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

KEOISTEK /-											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	_	—	_	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
—	—	—	-	—		ADCP6IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readable I	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							

REGISTER 7-34: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ADCP6IP<2:0>: ADC Pair 6 Conversion Done Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)

- •
- •

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 8 -	2: CLKD	IV: CLOCK D	IVISOR RE	GISTER ⁽²⁾			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	ST<1:0>	_			PLLPRE<4:0>		
bit 7			•				bit 0
Legend:			L *1			(O)	
R = Readable	DIT	vv = vvritable	DIT		iented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		"0" = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15	ROI: Recover	r on Interrupt bi	t				
	1 = Interrupts	s will clear the I	DOZEN bit a	nd the processor	clock/peripher	al clock ratio is	set to 1:1
	0 = Interrupts	s have no effec	t on the DOZ	EN bit			
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction	Select bits			
	111 = Fcy/12	8					
	110 = FCY/64	- -					
	101 = FCY/32 100 = FCY/16						
	011 = FCY/8 ((default)					
	010 = Fcy/4						
	001 = FCY/2						
	000 = FCY/1		(1)				
bit 11	DOZEN: Doz		bit''				
	1 = DOZE < 2 0 = Processo	:0> field specifi or clock/periphe	es the ratio t ral clock rati	o is forced to 1.1	pneral clocks a	nd the process	OF CIOCKS
bit 10-8	FRCDIV<2.0	 Internal Fast 	RC Oscillate	or Postscaler hits	2		
	111 = FRC di	ivide-by-256					
	110 = FRC d i	ivide-by-64					
	101 = FRC d i	ivide-by-32					
	100 = FRC d i	ivide-by-16					
	011 = FRC di	ivide-by-8					
	010 = FRC di	ivide-by-4 ivide-by-2					
	000 = FRC di	ivide-by-1 (defa	ault)				
bit 7-6	PLLPOST<1:	:0>: PLL VCO	Jutput Divide	er Select bits (als	so denoted as '	N2', PLL posts	caler)
	11 = Output/8	3	•	Υ.		<i>,</i> ,	,
	10 = Reserve	ed					
	01 = Output/4	(default)					
	00 = Output/2	2					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4-0	PLLPRE<4:0	>: PLL Phase	Detector Inpu	ut Divider bits (al	so denoted as	'N1', PLL preso	caler)
	11111 = Inpu	ıt/33					
	•						
	•						
	•						
	00001 = Inpu	it/3					
	00000 – mpu						

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

These devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. Devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

These devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

The devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device will wake-up from Sleep mode on any of these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — — — — bit 15	REGISTER 9	EGISTER 5-7. PMD6. PERIPHERAL MODULE DISABLE CONTROL REGISTER 6									
Image: matrix of the set of the se	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
bit 15 bit U-0 U-0 U-0 U-0 R/W-0 U-0 — — — — CCSMD ⁽¹⁾ — bit 7 bit bit bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	—	—	—	—	—	—	—	_			
U-0U-0U-0U-0U-0R/W-0U-0 $ -$ CCSMD ⁽¹⁾ $-$ bit 7 $ -$ Legend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'· · · · · · · · · · · · · · · · · · ·	bit 15							bit 8			
U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 - - - - - CCSMD ⁽¹⁾ - bit 7 - - - CCSMD ⁽¹⁾ - Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											
Image: matrix display="bit style="text-align: center;">	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
bit 7 bit Legend: Image: Comparison of the second	—	—	—	—	—	—	CCSMD ⁽¹⁾	_			
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' $-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown$	bit 7							bit 0			
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' $-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown$											
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' $-n = Value at POR$ '1' = Bit is set'0' = Bit is clearedx = Bit is unknown	Legend:										
-n = Value at POR (1) = Bit is set (0) = Bit is cleared x = Bit is unknown	R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
	-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

REGISTER 9-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

bit 15-2 Unimplemented: Read as '0'

bit 1 CCSMD: Constant Current Source Module Disable bit⁽¹⁾

1 = Constant current source module is disabled

0 = Constant current source module is enabled

bit 0 Unimplemented: Read as '0'

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A/202A devices.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_			FLT3	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—			FLT2	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 11	Unimplomen	ted. Deed es 'o'					
DIL 15-14							
hit 7.6	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 tied to RP32					
DIT 7-6	Unimplemen	ted: Read as 0					
DIT 5-U	<pre>FLI2R<5:0>: 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp</pre>	Assign PWM Fa out tied to Vss out tied to RP35 out tied to RP34 out tied to RP33 out tied to RP32	uit input 2	(FL12) to the Co	orresponding F	kµn µin dits	

REGISTER 10-11: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

NOTES:

REGISTER 15-9: PHASEX: PWMx PRIMARY PHASE SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASEx•	<15:8> ^(1,2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASEx	<7:0> ^(1,2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PHASEx<15:0>:** PWMx Phase Shift Value or Independent Time Base Period for PWM Generator bits^(1,2)

Note 1: If the ITB (PWMCONx<9>) bit = 0, the following applies based on the mode of operation:

- Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs.
- True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Phase shift value for PWMxL only.

2: If the ITB (PWMCONx<9>) bit = 1, the following applies based on the mode of operation:

• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL.

- True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Independent time base period value for PWMxL only.
- The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period-0x0008.

18.3 UART Registers

REGISTER 18-1: U1MODE: UART1 MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ^(1,3)	—	USIDL ⁽³⁾	IREN ^(2,3)	RTSMD ⁽³⁾	—	UEN<1:0> ⁽³⁾	
bit 15							bit 8

R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE ⁽³⁾	LPBACK ⁽³⁾	ABAUD ⁽³⁾	URXINV ⁽³⁾	BRGH ⁽³⁾	PDSEL<1:0> ⁽³⁾		STSEL ⁽³⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	UARTEN: UART1 Enable bit ^(1,3)
	 1 = UART1 is enabled; all UART1 pins are controlled by UART1, as defined by UEN<1:0> 0 = UART1 is disabled; all UART1 pins are controlled by port latches; UART1 power consumption is minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: Stop in Idle Mode bit ⁽³⁾
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ^(2,3)
	 1 = IrDA[®] encoder and decoder are enabled 0 = IrDA[®] encoder and decoder are disabled
bit 11	RTSMD: Mode Selection for U1RTS Pin bit ⁽³⁾
	$1 = \overline{\text{U1RTS}} \text{ pin is in Simplex mode}$ 0 = U1RTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UART1 Pin Enable bits ⁽³⁾
	 11 = U1TX, U1RX and BCLK pins are enabled and used; U1CTS pin is controlled by port latches 10 = U1TX, U1RX, U1CTS and U1RTS pins are enabled and used 01 = U1TX, U1RX and U1RTS pins are enabled and used; U1CTS pin is controlled by port latches 00 = U1TX and U1RX pins are enabled and used; U1CTS and U1RTS/BCLK pins are controlled by port latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit ⁽³⁾
	 1 = UART1 will continue to sample the U1RX pin; interrupt is generated on falling edge; bit is cleared in hardware on following rising edge 0 = No wake-up is enabled
bit 6	LPBACK: UART1 Loopback Mode Select bit ⁽³⁾
	1 = Enable Loopback mode
	0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit ⁽³⁾
	1 = Enable baud rate measurement on the next character – requires reception of a Sync field (0x55)
	0 = Baud rate measurement is disabled or completed
Note 1:	Refer to Section 17. "UART " (DS70188) in the <i>"dsPIC33F/PIC24H Family Reference Manual"</i> for information on enabling the UART module for receive or transmit operation
2:	This feature is only available for the 16x BRG mode (BRGH = 0).

3: This bit is not available in the dsPIC33FJ06GS001 device.

21.3 Current Source Control Register

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
ISRCEN			—			OUTSEL<2:0>					
bit 15							bit 8				
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
—	—			ISRCC	CAL<5:0>						
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	id as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 14-11 bit 10-8	0 = Current s Unimplemer OUTSEL<2:0 111 = Resen 110 = Resen 101 = Resen 100 = Select 011 = Select 010 = Select 001 = Select 000 = No out	<pre>1 = Current source is enabled 0 = Current source is disabled Unimplemented: Read as '0' OUTSEL<2:0>: Output Current Select bits 111 = Reserved 110 = Reserved 101 = Reserved 100 = Select input pin, ISRC4 (AN4) 011 = Select input pin, ISRC3 (AN5) 010 = Select input pin, ISRC2 (AN6) 001 = Select input pin, ISRC1 (AN7) 000 = No output is selected</pre>									
bit 7-6	Unimplemer	nted: Read as '0)'								
bit 5-0	ISRCCAL<5	ISRCCAL<5:0>: Current Source Calibration bits									
The calibration value must be copied from Flash address, 0x800840, into these bits. Refer Constant Current Source Calibration Register (Register 22-1) in Section 22.0 "Special Fer for more information.							fer to the Features"				

REGISTER 21-1: ISRCCON: CONSTANT CURRENT SOURCE CONTROL REGISTER⁽¹⁾

Note 1: This register is available in the dsPIC33FJ09GS302 device only.

Base Instr #	Assembly Mnemonic	Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected	
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR	No Operation		1	1	None
54	POP	POP	f Pop f from Top-of-Stack (TOS)		1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#litl0,Wn	Return with Literal in Wh	1	3 (2)	None
62	RETURN	RETURN	£	Return from Subroutine	1	3 (2)	
63	RLC	RLC	I C MDEC	I = Rolate Left through Carry I	1	1	C,N,Z
		RLC	L, WREG	Wid = Rotate Left through Carry We	1	1	C N 7
64	PINC	RLUC	r f	f = Rotate Left (No Carry) f	1	1	0,N,∠ N 7
		RLNC	f WREG	WREG = Rotate Left (No Carry) f	1	1	N 7
		RLNC	Ws.Wd	Wd = Rotate eff (No Carry) Ws	1	1	N 7
65	BBC	RRC	f	f = Rotate Right through Carry f	1	1	CN7
		RRC	- f,WREG	WREG = Rotate Right through Carry f	1	1	C.N.Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 23-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)	

TABLE 25-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH	ARACTE	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. Symbol Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions			
Operat	Operating Voltage								
DC10	Vdd	Supply Voltage ⁽⁴⁾	VBOR	_	3.6	V	Industrial and Extended		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8			V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	—	Vss	V			
DC17	Svdd	VDD Rise Rate⁽³⁾ to Ensure Internal Power-on Reset Signal	0.03	_	_	V/ms	0-3.0V in 0.1s		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characte	eristic	Min.	Тур.	Max.	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchronous	Greater of: 20 ns or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15 N = prescale value (1, 8, 64, 256)
TB11	ΤτxL	TxCK Low Time	Synchronous	Greater of: 20 ns or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TB15 N = prescale value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler	Tcy + 40	_	_	ns	N = prescale value (1, 8, 64, 256)
			Synchronous, with prescaler	Greater of: 20 ns or (Tcy + 40)/N				
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.5 Tcy	_	1.5 TCY	_	

TABLE 25-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

26.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	S	
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width	X			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A