

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9KB (3K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302t-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Diagrams (Continued)

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, included in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

IABLE 4-1	1:		LE KEGI															
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000						V	Vorking Regist	er 0									0000
WREG1	0002						V	Vorking Regist	er 1									0000
WREG2	0004						V	Vorking Regist	er 2									0000
WREG3	0006						V	Vorking Regist	er 3									0000
WREG4	0008						V	Vorking Regist	er 4									0000
WREG5	000A						V	Vorking Regist	er 5									0000
WREG6	000C						V	Vorking Regist	er 6									0000
WREG7	000E						V	Vorking Regist	er 7									0000
WREG8	0010						V	Vorking Regist	er 8								,	0000
WREG9	0012						V	Vorking Regist	er 9									0000
WREG10	0014						W	orking Registe	er 10								,	0000
WREG11	0016						W	/orking Registe	er 11									0000
WREG12	0018						W	orking Registe	er 12									0000
WREG13	001A						W	orking Registe	er 13								,	0000
WREG14	001C						W	orking Registe	er 14									0000
WREG15	001E						W	orking Registe	er 15								,	0800
SPLIM	0020						Stack	Pointer Limit	Register									XXXX
ACCAL	0022							ACCAL										XXXX
ACCAH	0024							ACCAH									,	XXXX
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	Ú				XXXX
ACCBL	0028							ACCBL		•							,	XXXX
ACCBH	002A							ACCBH										XXXX
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCB	U				XXXX
PCL	002E					•	Program C	Counter Low W	ord Register	r								0000
PCH	0030	_	_	_	_	_	_	_	_			Program	Counter Hig	gh Byte I	Register			0000
TBLPAG	0032	_	_	_	_	_	_	_	_			Table Pa	ge Address	Pointer I	Register			0000
PSVPAG	0034	_	_	_	_	_	_	_	_		Program	Memory V	isibility Pag	e Addres	ss Pointe	er Regist	er	0000
RCOUNT	0036						Repea	t Loop Counte	r Register									XXXX
DCOUNT	0038							DCOUNT<15:	0>									XXXX
DOSTARTL	003A						DOST	TARTL<15:1>									0	XXXX
DOSTARTH	003C	—	—	_	_	_	_	_	—	—	—		DC	START	H<5:0>			00xx
DOENDL	003E						DOE	NDL<15:1>									0	XXXX
DOENDH	0040	—	—	_	_	_	_	_	—	—	—			DOEN	DH			00xx
	0042	OA	OB	SA	SB	1		-			IPL<2:0		1		-	-		+

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	—	_		—		_	_	_	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	_	_		_	_				CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A, AND dsPIC33FJ09GS302

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_		—	—	—	—	_				Receive	Register				0000
I2C1TRN	0202	_		_	_	-	_	_	_				Transmit	Register				OOFF
I2C1BRG	0204	_		_	_	-	_	_				Baud Rate	e Generator	Register				0000
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_		_	_	-	_					Address I	Register					0000
I2C1MSK	020C	—	_		—	_	_					AMSK	<9:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: UART1 REGISTER MAP FOR dsPiC33FJ06GS101A, dsPiC33FJ06GS102A, dsPiC33FJ06GS202A AND dsPiC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	-	_	_	_					UART	Transmit Re	egister				XXXX
U1RXREG	0226	_	_	-	_	_	_					UART	Receive Re	egister				0000
U1BRG	0228		-			•		B	aud Rate Ge	enerator Pre	escaler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18:SPI1 REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL					_		SPIROV	_	_	_	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL		_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Tran	smit and Re	ceive Buffe	er Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the File register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-39: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.4.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (register offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- · Register Indirect Post-modified by 2
- · Register Indirect Post-modified by 4
- Register Indirect Post-modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_		_		—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADCP3IP<2:0>	1)			DCP2IP<2:0>(2)
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-7	Unimplemer	nted: Read as '	0'				
bit 6-4	ADCP3IP<2:	: 0>: ADC Pair 3	B Conversion	Done Interrupt I	Priority bits ⁽¹⁾		
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
		ipt is Priority 1 ipt source is dis	abled				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2-0	ADCP2IP<2:	: 0>: ADC Pair 2	2 Conversion	Done Interrupt I	Priority bits ⁽²⁾		
	111 = Interru	pt is Priority 7	(highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					

- **Note 1:** These bits are not implemented in dsPIC33FJ06GS102A/202A devices.
 - **2**: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	_		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				SS1R	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-6	Unimplemen	ted: Read as '	כי				
bit 5-0	SS1R<5:0>: /	Assign SPI1 Sla	ave Select In	put (SS1) to the	e Corresponding	g RPn Pin bits ⁽¹	1)
	111111 = Inp						
		out tied to RP35					
		out tied to RP34					
		out tied to RP33 out tied to RP32					
	•		-				
	•						
	•						
	00000 = Inpu	t tied to RP0					
	•						

REGISTER 10-9: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

12.0 TIMER2 FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11. "Timers"** (DS70205) in the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2 is a Type B timer with an external clock input (TxCK) that is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

The Timer2 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The Timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

The Timer control bit settings for different operating modes are given in Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS	ABLE 12-1:	TIMER MODE SETTINGS
---------------------------------	------------	---------------------

Mode	TCS	TGATE	
Timer	0	0	
Gated Timer	0	1	
Synchronous Counter	1	х	

12.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 2. Set the Clock and Gating modes using the TCS and TGATE bits.
- 3. Load the Timer Period value into the PRx register.
- 4. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 5. Set the TON bit.

FIGURE 12-1: TYPE B TIMER BLOCK DIAGRAM (x = 2)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—		—	—	AMSK	<9:8>
bit 15	·	·			- -	-	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			AMS	K<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	nown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSK<9:0>: Mask for Address bit x Select bits

1 = Enables masking for bit x of incoming message address; bit match not required in this position

0 = Disables masking for bit x; bit match required in this position

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 45. "High-Speed Analog Comparator" (DS70296) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed analog comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module offers the following major features:

- · Eight selectable comparator inputs
- · Up to two analog comparators
- · 10-bit DAC for each analog comparator
- · Programmable output polarity
- Interrupt generation capability

- DACOUT pin to provide DAC output
- DACOUT amplifier (1x, 1.8x)
- Selectable hysteresis
- · DAC has three ranges of operation:
 - AVDD/2
 - Internal Reference (INTREF)
 - External Reference (EXTREF)
- · ADC sample and convert trigger capability
- · Disable capability reduces power consumption
- · Functional support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ± 5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

FIGURE 20-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

REGISTER 20-1: CMPCONx: COMPARATOR CONTROL x REGISTER (CONTINUED)

bit 5	EXTREF: Enable External Reference bit ⁽¹⁾
	 1 = External source provides reference to DAC (maximum DAC voltage determined by external voltage source)
	 Internal reference sources provide reference to DAC (maximum DAC voltage determined by RANGE bit setting)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit ⁽¹⁾
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit ⁽¹⁾
bit 2	HGAIN: DAC Gain Enable bit ⁽¹⁾
	 1 = Reference DAC output to comparator is scaled at 1.8x 0 = Reference DAC output to comparator is scaled at 1.0x
bit 1	CMPPOL: Comparator Output Polarity Control bit ⁽¹⁾
	1 = Output is inverted0 = Output is non-inverted
bit 0	RANGE: Selects DAC Output Voltage Range bit ⁽¹⁾
	1 = High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD 0 = Low Range: Max DAC Value = INTREF ⁽³⁾
Note 1:	This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

- 2: DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.
- **3:** For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in **Section 25.0 "Electrical Characteristics"**.

21.0 CONSTANT CURRENT SOURCE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The constant current source module is a precision current generator and is used in conjunction with ADC to measure the resistance of external resistors connected to device pins.

21.1 Features Overview

The constant current source module offers the following major features:

- Constant current generator (10 µA nominal)
- Internal selectable connection to one out of four pins
- Enable/disable bit

21.2 Module Description

Figure 21-1 shows a functional block diagram of the constant current source module. It consists of a precision current generator with a nominal value of 10 μ A. The module can be enabled and disabled using the ISRCEN bit in the ISRCCON register. The output of the current generator is internally connected to one out of up to 4 pins. The OUTSEL<2:0> bits in the ISRCCON register allow selection of the target pin.

The current source is calibrated during testing.

FIGURE 21-1: CONSTANT CURRENT SOURCE MODULE BLOCK DIAGRAM

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

24.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

DC CHARA	ACTERISTICS	8	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param.	Typical ⁽¹⁾	Max.	Units		Conditions				
Operating	Current (IDD)	(2)							
DC20d	15	23	mA	-40°C					
DC20a	15	23	mA	+25°C	- 3.3V	10 MIPS			
DC20b	15	23	mA	+85°C	- 3.3V	TO MIPS			
DC20c	15	23	mA	+125°C					
DC21d	23	34	mA	-40°C					
DC21a	23	34	mA	+25°C	2.21/	16 MIPS ⁽³⁾			
DC21b	23	34	mA	+85°C	- 3.3V	TO MIPS(*)			
DC21c	23	34	mA	+125°C					
DC22d	25	38	mA	-40°C					
DC22a	25	38	mA	+25°C	3.3V	20 MIPS ⁽³⁾			
DC22b	25	38	mA	+85°C	- 3.3V	20 MIPS*7			
DC22c	25	38	mA	+125°C					
DC23d	34	51	mA	-40°C					
DC23a	34	51	mA	+25°C	3.3V	30 MIPS ⁽³⁾			
DC23b	34	51	mA	+85°C	3.3V	30 MIF 307			
DC23c	34	51	mA	+125°C					
DC24d	43	64	mA	-40°C					
DC24a	43	64	mA	+25°C	3.3V	40 MIPS ⁽³⁾			
DC24b	43	64	mA	+85°C	3.3V	40 MIF 5 7			
DC24c	43	64	mA	+125°C					
DC25d	83	125	mA	-40°C		40 MIPS			
DC25a	83	125	mA	+25°C	3.3V	See Note 2, except PWM and ADC			
DC25b	83	125	mA	+85°C	5.3V	are operating at maximum speed			
DC25c	83	125	mA	+125°C		(PTCON2 = 0x0000)			

TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD; WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU is executing while (1) statement
- **3:** These parameters are characterized but not tested in manufacturing.

DC CHA	RACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic	Min.	Min. Typ. ⁽¹⁾ Max.		Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins	Vss		0.2 VDD	V		
DI15		MCLR	Vss		0.2 VDD	V		
DI16		I/O Pins with OSC1	Vss		0.2 VDD	V		
DI18		SDA1, SCL1	Vss		0.3 VDD	V	SMBus disabled	
DI19		SDA1, SCL1	Vss		0.8	V	SMBus enabled	
	Vih	Input High Voltage						
DI20 DI21		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD 0.7 VDD		Vdd 5.5	V V		
DI28 DI29		SDA1, SCL1 SDA1, SCL1	0.7 VDD 2.1	_	5.5 5.5	V V	SMBus disabled SMBus enabled	
DI30	ICNPU	CNx Pull-up Current	_	250	_	μA	VDD = 3.3V, VPIN = VSS	
DI50	lır.	Input Leakage Current ^(2,3,4) I/O Pins: 4x Sink Driver Pins RA0-RA2, RB0-RB2, RB5-RB10, RB15 16x Sink Driver Pins	_		±2	μΑ	Vss ≤ VPIN ≤ VDD, Pin at high-impedance	
		RA3, RA4, RB3, RB4, RB11-RB14	-	_	±8	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI55		MCLR	_	—	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	—	_	±2	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } H{\sf S} \text{ modes} \end{split}$	

TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the list of 5V tolerant I/O pins.
- **5**: VIL source < (VSS 0.3); characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V; characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit; characterized but not tested.

AC CHARACTERISTICS ⁽²⁾				$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Param.	Symbol	ool Characteristic Min. Typ. Max. Units C					Conditions	
	Dynamic Performance							
AD30	THD	Total Harmonic Distortion	_	-73	_	dB		
AD31	SINAD	Signal to Noise and Distortion	—	58	_	dB		
AD32	SFDR	Spurious Free Dynamic Range	—	-73	_	dB		
AD33	Fnyq	Input Signal Bandwidth	—		1	MHz		
AD34	ENOB	Effective Number of Bits		9.4		bits		

TABLE 25-39: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no missing codes.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function, but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 25-11 for BOR values.

3: These parameters are characterized by similarity, but are not tested in manufacturing.

TABLE 25-40: 10-BIT HIGH-SPEED ADC MODULE TIMING REQUIREMENTS

АС СН	ARACTEF	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
	Clock Parameters								
AD50b	Tad	ADC Clock Period	35.8	—	_	ns			
		Con	version F	late					
AD55b	tCONV	Conversion Time	—	14 Tad	—	—			
AD56b	FCNV	Throughput Rate							
		Devices with Single SAR	_	—	2.0	Msps			
	Timing Parameters								
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On	1.0	—	10	μS			

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 25-23: ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		1.27 BSC		
Overall Height	А	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1		7.50 BSC		
Overall Length	D		17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5° - 15°			
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2