

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9КВ (3К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.2 Data Address Space

The CPU has a separate, 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15>=1) is reserved for the Program Space Visibility area (see Section 4.7.3 "Reading Data from Program Memory Using Program Space Visibility").

All devices implement up to 1 Kbyte of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes Post-Modified Register Indirect Addressing mode [Ws++], which results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

TABLE 4-29: PORTA REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0		—		_		—	—	—	—			TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2		—		_	_	—	—	—	—	_	_	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	_	_	_	_	_	_	_	_	_	_	_	LATA4	LATA3	LATA2	LATA1	LATA0	0000
ODCA	02C6	_	_	_	_	_	_	_	_	_	_	_	ODCA4	ODCA3	_	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTB REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	_	—	—	—	—	-	—	_	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	OOFF
PORTB	02CA	_	_	_	-	_	_	_	_	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	_	_	_	-	_	_	_	_	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	_	_		—		_	_	_	ODCB7	ODCB6	—	—		_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	_	_	ODCB8	ODCB7	ODCB6	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PMD REGISTER MAP FOR dsPIC33FJ06GS001

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	—	T2MD	T1MD	—	PWMMD	—	I2C1MD	_	_	_	_	_	_	ADCMD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	_	_	0000
PMD4	0776	_	—	—			—	—	—	—			-	REFOMD	_		_	0000
PMD6	077A	_	_	_	_	PWM4MD	_	_	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	077C	_	_	_	_	_	_	CMPMD2	CMPMD1	—	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PMD REGISTER MAP FOR dsPIC33FJ06GS101A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	—	—	T2MD	T1MD	—	PWMMD	—	I2C1MD	—	U1MD	_	SPI1MD		—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	OC1MD	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	077A	_	_	_	_	PWM4MD	_	_	PWM1MD	—	_	_	_	_	_	_		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: PMD REGISTER MAP FOR dsPIC33FJ06GS102A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	-	_	_	T2MD	T1MD	—	PWMMD	—	I2C1MD	_	U1MD		SPI1MD	—		ADCMD	0000
PMD2	0772	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	OC1MD	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	077A	_	-	_	_	_	_	PWM2MD	PWM1MD	_	_	_	_	-	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	7-13: IEC1: I	INTERRUPT	ENABLE C	ONTROL RE	GISTER 1		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	_	INT2IE	_	—	—	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		_	INT1IE	CNIE	AC1IE ⁽¹⁾	MI2C1IE	SI2C1IE
bit 7							bit 0
-							
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	INT2IE: Exter	mal Interrupt 2	Enable bit				
	1 = Interrupt r	request is enab	bled				
h: 40 F	0 = Interrupt r	request is not e					
DIT 12-5	Unimplemen	ted: Read as					
DIT 4	INITIE: Exter	nai interrupt i	Enable bit				
	1 = Interrupt r 0 = Interrupt r	request is enal	enabled				
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit			
	1 = Interrupt r	request is enab	bled				
	0 = Interrupt r	request is not e	enabled				
bit 2	AC1IE: Analo	og Comparator	1 Interrupt En	able bit ⁽¹⁾			
	1 = Interrupt r	request is enab	bled				
	0 = Interrupt r	request is not e	enabled				
bit 1	MI2C1IE: I2C	1 Master Ever	its Interrupt Er	hable bit			
	\perp = Interrupt r	request is enar	nabled				
bit 0	SI2C1IE: 12C	1 Slave Events	Interrunt Ens	able hit			
Sit U	1 = Interrupt r	request is enal	bled				
	0 = Interrupt r	request is not e	enabled				

Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.

REGISTER /-	18: IEC7: I	NIERRUPI	ENABLE CO	JNIROL RE	GISTER /					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
		<u> </u>	ADCP6IE		<u> </u>	ADCP3IE ⁽¹⁾	ADCP2IE ⁽²⁾			
bit 7							bit 0			
Legend:										
R = Readable b	oit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	read as '0' x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as '	0'							
bit 4	ADCP6IE: AD	DC Pair 6 Conv	ersion Done I	nterrupt Enabl	e bit					
	1 = Interrupt r	equest is enab	led							
	0 = Interrupt r	equest is not e	nabled							
bit 3-2	Unimplemen	ted: Read as '	0'							
bit 1	ADCP3IE: AD	DC Pair 3 Conv	ersion Done I	nterrupt Enabl	e bit ⁽¹⁾					
	1 = Interrupt r	equest is enab	led							
	0 = Interrupt r	equest is not e	nabled							
bit 0	ADCP2IE: AD	DC Pair 2 Conv	ersion Done I	nterrupt Enabl	e bit ⁽²⁾					
	1 = Interrupt r	equest is enab	led							
	0 = Interrupt r	equest is not e	nabled							

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER /-2	4: IPC5:	INTERRUPT	PRIORITY		EGISTERS					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	_	—	_		—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
—	_	_	_			INT1IP<2:0>				
bit 7							bit 0			
Legend:										
R = Readable bi	it	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
•										

bit 15-3	Unimplemented: Read as '0)'
----------	---------------------------	----

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) ٠ 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-1	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		INT2IP<2:0>		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0' bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0'

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor, 'N1', is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4, or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC', is given by Equation 8-2.

EQUATION 8-2: Fosc CALCULATION

$$FOSC = FIN * \left(\frac{M}{N1 * N2}\right)$$

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 8-3).

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

• If PLLPOST<1:0> = 00, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

$$F_{CY} = \frac{F_{OSC}}{2} = \frac{1}{2} \left(\frac{10000000 * 32}{2 * 2} \right) = 40 \text{ MIPS}$$

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock, such as a PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Table 25-18 in Section 25.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less

8.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

FIGURE 8-2: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 PLL BLOCK DIAGRAM

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—				T1Cł	<r<5:0></r<5:0>		
bit 15	•						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—		—	_
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	T1CKR<5:0>	: Assign Timer	1 External Cl	ock (T1CK) to t	he Correspondi	ng RPn Pin bits	6
	111111 = Ing	out tied to Vss					
	100011 = Inp	out tied to RP3	5				
	100010 = Inp	out tied to RP34	1				
	100001 = Inp	out tied to RP33	3				
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inp u	it tied to RP0					

11.1 Timer1 Control Register

R/\/_0	11-0	R/\/\/_0	11-0	11-0	_0	11-0	11-0
	<u> </u>					<u> </u>	<u> </u>
bit 15		TODE					bit 8
bit 10							bit 0
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS	S<1:0>		TSYNC	TCS	
bit 7					I	1	bit 0
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	TON: Timer1	On bit					
	1 = Starts 16-	bit Timer1					
bit 14		tod: Pead as '	۰,				
bit 13		n Idlo Modo bit)				
DIL 13	1 = Discontinu	in fale Mode bit les module one	eration when	device enters l	dle mode		
	0 = Continues	module opera	tion in Idle m	ode			
bit 12-7	Unimplement	ted: Read as ')'				
bit 6	TGATE: Time	r1 Gated Time	Accumulation	n Enable bit			
	When TCS =	<u>1:</u> pred					
	When TCS =	0:					
	1 = Gated tim	e accumulatior	is enabled				
	0 = Gated tim	e accumulatior	is disabled				
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Presca	le Select bits			
	11 = 1:256						
	01 = 1:8						
	00 = 1:1						
bit 3	Unimplement	ted: Read as ')'				
bit 2	TSYNC: Time	r1 External Clo	ock Input Syn	chronization Se	elect bit		
	<u>When TCS =</u> $1 = 0$	<u>1:</u>	a al ciana ut				
	1 = Synchronin0 = Does not :	svnchronize ex	ternal clock i	nput			
	When TCS =	0:		ipat			
	This bit is igno	ored.					
bit 1	TCS: Timer1	Clock Source S	Select bit				
	1 = External c 0 = Internal cl	lock from T1Cl ock (FCY)	K pin (on the	rising edge)			
bit 0	Unimplement	ted: Read as ')'				

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- · SDOx (serial data output)
- · SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCKx is a clock output; in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

19.0 HIGH-SPEED 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 44. "High-Speed 10-Bit ADC" (DS70321) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 family of devices provides high-speed successive approximation, Analog-to-Digital conversions to support applications such as AC-to-DC and DC-to-DC Power Converters.

19.1 Features Overview

The ADC module comprises the following features:

- 10-bit resolution
- Unipolar inputs
- One Successive Approximation Register (SAR)
- · Up to eight external input channels
- · Up to two internal analog inputs
- Dedicated result register for each analog input
- ±1 LSB accuracy at 3.3V
- Single supply operation
- 2 Msps conversion rate at 3.3V
- Low-power CMOS technology

19.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC Power Supplies
- DC/DC Converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This small conversion delay reduces the "phase lag" between measurement and control system response. Up to three inputs may be sampled at a time (two inputs from the dedicated Sample-and-Hold circuits and one from the shared Sample-and-Hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1, AN0), (AN3, AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application:

- Result alignment options
- · Automated sampling
- External conversion start control
- Two internal inputs to monitor INTREF and EXTREF input signals (not available in dsPIC33FJ06GS101A/102A devices)

Block diagrams of the ADC module are shown in Figure 19-1 through Figure 19-5.

19.3 Module Functionality

The high-speed, 10-bit ADC module is designed to support power conversion applications when used with the high-speed PWM module. The ADC has one SAR and only one conversion can be processed at a time, yielding a conversion rate of 2 Msps or the equivalent of one 10-bit conversion, in half a microsecond ($0.5 \ \mu s$).

The ADC module supports up to eight external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN12 and AN13, are connected to the EXTREF and INTREF voltages, respectively.

Note: The dsPIC33FJ06GS101A/102A devices do not have the internal connection to EXTREF.

The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).

19.4 ADC Control Registers

The ADC module uses the following control and status registers:

- ADCON: ADC Control Register
- ADSTAT: ADC Status Register
- ADBASE: ADC Base Register(1)
- ADPCFG: ADC Port Configuration Register
- ADCPC0: ADC Convert Pair Control Register 0
- ADCPC1: ADC Convert Pair Control Register 1
- ADCPC3: ADC Convert Pair Control Register 3(1)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG register configures the port pins as analog inputs or as digital I/Os. The ADCPCx registers control the triggering of the ADC conversions. See Register 19-1 through Register 19-7 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual Sample-and-Hold circuits can be triggered independently of each other.

REGISTER 19-1: ADCON: ADC CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	-	GSWTRG	—	FORM ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ⁽¹⁾	SEQSAMP ⁽¹⁾	ASYNCSAMP ⁽¹⁾			ADCS<2:0> ⁽¹⁾	
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	ADON: ADC	Operating Mode bit		
	1 = ADC mo 0 = ADC mo	dule is operating dule is off		
bit 14	Unimpleme	nted: Read as '0'		
bit 13	ADSIDL: Sto	op in Idle Mode bit		
	1 = Discontir 0 = Continue	nues module operation wher es module operation in Idle r	n device enters Idle mode node	
bit 12	SLOWCLK:	Enable Slow Clock Divider I	pit ⁽¹⁾	
	1 = ADC is 0 0 = ADC is 0	clocked by the auxiliary PLL clocked by the primary PLL	(ACLK) (Fvco)	
bit 11	Unimpleme	nted: Read as '0'		
bit 10	GSWTRG: G	Global Software Trigger bit		
	When this bi ADCPCx reg bit is not auto	t is set by the user, it will trig jisters. This bit must be clear p-clearing).	ger conversions if selected by ed by the user prior to initiating a	the TRGSRC<4:0> bits in the another global trigger (i.e., this
bit 9	Unimpleme	nted: Read as '0'		

Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—		—	—	—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_	_	_	_	_	
bit 15	-					-	bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	—			CCSC	AL<5:0>		
bit 7	-						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 22-1: CONSTANT CURRENT SOURCE CALIBRATION REGISTER

bit 23-6 Unimplemented: Read as '0'

bit 5-0 CCSCAL<5:0>: Constant Current Source Calibration bits

The value of these bits must be copied into the ISRCCAL<5:0> bits (ISRCCON<5:0>). Refer to the Current Source Control register (Register 21-1) in **Section 21.0** "**Constant Current Source**".

DC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
	VIL	Input Low Voltage							
DI10		I/O Pins	Vss		0.2 VDD	V			
DI15		MCLR	Vss		0.2 VDD	V			
DI16		I/O Pins with OSC1	Vss		0.2 VDD	V			
DI18		SDA1, SCL1	Vss		0.3 VDD	V	SMBus disabled		
DI19		SDA1, SCL1	Vss		0.8	V	SMBus enabled		
	VIH	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd		Vdd	V			
DI21		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd		5.5	V			
DI28		SDA1, SCL1	0.7 Vdd		5.5	V	SMBus disabled		
DI29		SDA1, SCL1	2.1		5.5	V	SMBus enabled		
	ICNPU	CNx Pull-up Current							
DI30			—	250		μA	VDD = 3.3V, VPIN = VSS		
D150	lı∟	Input Leakage Current ^(2,3,4) I/O Pins: 4x Sink Driver Pins							
		RA0-RA2, RB0-RB2, RB5-RB10, RB15	_	_	±2	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance		
		RA3, RA4, RB3, RB4, RB11-RB14	_	_	±8	μA	$\label{eq:VSS} \begin{split} &V \\ &V \\ &V \\ &P \\ in \ at \ high-impedance \end{split}$		
DI55		MCLR	—	—	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
DI56		OSC1	-	-	±2	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } H{\sf S} \text{ modes} \end{split}$		

TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the list of 5V tolerant I/O pins.
- **5**: VIL source < (VSS 0.3); characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V; characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit; characterized but not tested.

TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Ope (unless other Operating terr	erating C wise stan perature	Conditions: 3.0 Ited) -40°C ≤ TA ≤ -40°C ≤ TA ≤	V to 3.6 +85°C fo +125°C	V or Industrial for Extended
Param.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC
		Oscillator Crystal Frequency	3.0 10		10 32	MHz MHz	XT HS
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	
OS25	TCY	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	_	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

^{2:} Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	MILLIMETER	S	
Dimensio	Dimension Limits			MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width	X			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	N	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		1.27 BSC		
Overall Height	А	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E		10.30 BSC		
Molded Package Width	E1		7.50 BSC		
Overall Length	D		17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	K	0.20	_	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

Output Compare (OC1)	290
Reset, Watchdog Timer, Oscillator Start-up	
Timer and Power-up Timer	287
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	296
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	295
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	293
SPIx Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	294
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	303
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	301
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	297
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	299
System Reset	83
Timer1, Timer2 External Clock	288
Timing Specifications	
10-Bit High-Speed ADC	309
10-Bit High-Speed ADC Requirements	310
Auxiliary PLL Clock	284
Capacitive Loading Requirements on	
Output Pins	282
Constant Current Source	313
DAC	311
DAC Gain Stage to Comparator	312
External Clock Requirements	283
High-Speed ADC Comparator	311
High-Speed PWM Requirements	292
I/O Requirements	286
I2C1 Bus Data Requirements (Master Mode)	306
I2C1 Bus Data Requirements (Slave Mode)	308
Input Capture Requirements	290
Output Compare Requirements	290
PLL Clock	284

Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer and Brown-out
Reset Requirements 287
Simple OC/PWM Mode Requirements 291
SPIx Master Mode (Full-Duplex, CKE = 0,
CKP = x, SMP = 1) Requirements
SPIx Master Mode (Full-Duplex, CKE = 1,
CKP = x, SMP = 1) Requirements
SPIx Master Mode (Half-Duplex, Transmit Only)
Requirements 294
SPIx Maximum Data Clock Rate Summary 293
SPIx Slave Mode (Full-Duplex, CKE = 0,
CKP = 0, SMP = 0) Requirements
SPIx Slave Mode (Full-Duplex, CKE = 0,
CKP = 1, SMP = 0) Requirements 302
SPIx Slave Mode (Full-Duplex, CKE = 1,
CKP = 0, SMP = 0) Requirements
SPIx Slave Mode (Full-Duplex, CKE = 1,
CKP = 1, SMP = 0) Requirements
Timer1 External Clock Requirements 288
Timer2 External Clock Requirements 289

U

0	
Universal Asynchronous Receiver	
Transmitter (UART)	219
Helpful Tips	220
Resources	220
Using the RCON Status Bits	86
V	
Voltage Regulator (On-Chip)	256
W	
Watchdog Timer (WDT)	251, 257
Watchdog Timer Time-out Reset (WDTO)	85
WWW Address	346
WWW, On-Line Support	11