

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9КВ (3К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

		#0 DE00	RIPTION	
Pin Name	Pin NamePin TypeBuffer TypePPS CapableDescription			
AN0-AN7	I	Analog	No	Analog input channels.
CLKI	I	ST/CMOS	No	External clock source input. Always associated with OSC1 pin
CLKO	0	_	No	function. Oscillator crystal output. Connects to crystal or resonator in Crysta Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode;
OSC2	I/O	_	No	CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
CN0-CN15	I	ST	No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
IC1	I	ST	Yes	Capture Input 1.
OCFA OC1	I O	ST —	Yes Yes	Compare Fault A input (for Compare Channel 1). Compare Output 1.
INT0 INT1 INT2		ST ST ST	No Yes Yes	External Interrupt 0. External Interrupt 1. External Interrupt 2.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15 ⁽¹⁾	I/O	ST	No	PORTB is a bidirectional I/O port.
RP0-RP15 ⁽¹⁾	I/O	ST	No	Remappable I/O pins.
T1CK T2CK		ST ST	Yes Yes	Timer1 external clock input. Timer2 external clock input.
U1CTS U1RTS U1RX U1TX	 0 0	ST — ST —	Yes Yes Yes Yes	UART1 Clear-to-Send. UART1 Ready-to-Send. UART1 receive. UART1 transmit.
SCK1 SDI1 SDO1 SS1	I/O I O I/O	ST ST — ST	Yes Yes Yes Yes	Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O.
SCL1 SDA1	I/O I/O	ST ST	No No	Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1.
TMS TCK TDI TDO	 0	TTL TTL TTL	No No No No	JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin.

TABLE 1-1:PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels
TTL = Transistor-Transistor LogicP = PowerO = OutputPPS = Peripheral Pin Select— = Does not applyNote 1:Not all pins are available on all devices. Refer to the specific device in the "Pin Diagrams" section for

availability.2: This pin is available on dsPIC33FJ09GS302 devices only.

NOTES:

4.7 Interfacing Program and Data Memory Spaces

The device architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the device architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. The application can only access the least significant word of the program word.

4.7.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

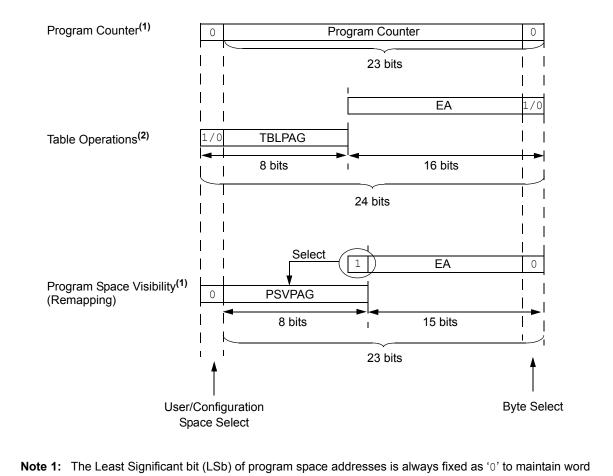

For remapping operations, the 8-bit Program Space Visibility Register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-41 and Figure 4-8 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	struction Access User 0 PC<22:1>			0			
(Code Execution)			0xx xxxx x		x xxxx xxx0		
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>			
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>			
		1xxx xxxx xxxx xxxx xxxx xxxx					
Program Space Visibility	User	0	PSVPAG<7	<7:0> Data EA<14:0> ⁽¹⁾		0>(1)	
(Block Remap/Read)		0	XXXX XXXX		XXX XXXX XXXX XXXX		

TABLE 4-41: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

FIGURE 4-8: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- alignment of data in the program and data spaces.
 - 2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	U1RXIP<2:0> ⁽¹⁾ — SPI1IP<2				SPI1IP<2:0>(1)						
oit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
		SPI1EIP<2:0>(1))	—		—	_				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	Unimplem	ented: Read as 'o)'								
bit 14-12	U1RXIP<2:	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits ⁽¹⁾									
	111 = Inter	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•										
	• 001 = Interrupt is Priority 1										
		rupt source is disa	abled								
bit 11	Unimplem	ented: Read as 'o)'								
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits ⁽¹⁾										
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•	•									
	•	•									
	001 = Inter	• 001 = Interrupt is Priority 1									
		rupt source is disa	abled								
bit 7	Unimplem	ented: Read as 'o)'								
bit 6-4	SPI1EIP<2	:0>: SPI1 Error In	terrupt Priori	ty bits ⁽¹⁾							
	111 = Inter	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•										
	•										
		rupt is Priority 1 rupt source is disa	abled								
		•									

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

REGISTER	9-5: PMD6	: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 6	
U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
_	_	—		PWM4MD ⁽¹⁾	—	PWM2MD ⁽²⁾	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
				<u> </u>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own
bit 15-12	Unimplomon	ted: Read as '	۰,				
bit 11	•	NM Generator		able bit(1)			
	1 = PWM Ger	nerator 4 modu nerator 4 modu	le is disabled				
bit 10	Unimplement	ted: Read as ')'				
bit 9	PWM2MD: PV	WM Generator	2 Module Disa	able bit ⁽²⁾			
	 1 = PWM Generator 2 module is disabled 0 = PWM Generator 2 module is enabled 						
bit 8	PWM1MD: PV	WM Generator	1 Module Disa	able bit			
		nerator 1 modu nerator 1 modu					
bit 7-0	Unimplement	ted: Read as ')'				

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_		RP9R<5:0> ⁽¹⁾					
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_		RP8R<5:0> ⁽¹⁾					
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

REGISTER 10-20: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP9R<5:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP8R<5:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

REGISTER 10-21: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP11R<5:0> ⁽¹⁾					
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RP10R<5:0> ⁽¹⁾				
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits⁽¹⁾ bit 13-8 (see Table 10-2 for peripheral function numbers) bit 7-6 Unimplemented: Read as '0'
- RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits⁽¹⁾ bit 5-0 (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.

12.0 TIMER2 FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11. "Timers"** (DS70205) in the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2 is a Type B timer with an external clock input (TxCK) that is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

The Timer2 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

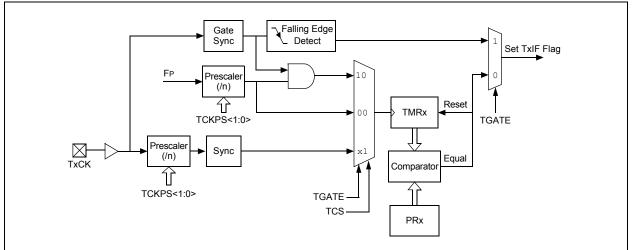
In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The Timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

The Timer control bit settings for different operating modes are given in Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS	TABLE 12-1:	TIMER MODE SETTINGS
---------------------------------	-------------	---------------------


Mode	TCS	TGATE
Timer	0	0
Gated Timer	0	1
Synchronous Counter	1	х

12.1 16-Bit Operation

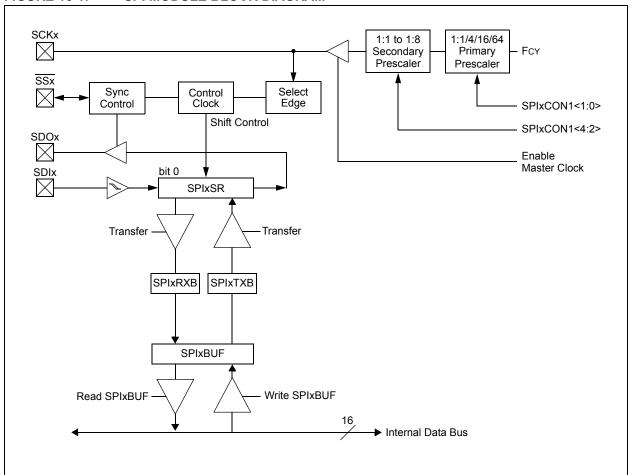
To configure any of the timers for individual 16-bit operation:

- 1. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 2. Set the Clock and Gating modes using the TCS and TGATE bits.
- 3. Load the Timer Period value into the PRx register.
- 4. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 5. Set the TON bit.

FIGURE 12-1: TYPE B TIMER BLOCK DIAGRAM (x = 2)

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS001/101A/102A/ 202A and dsPIC33FJ09GS302 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- · SDOx (serial data output)
- · SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCKx is a clock output; in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	_		DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
pit 15							bit			
	DAMO	DAMA	DAMA	DAALO	DAMA	DAMA	D 444 0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0> ⁽²	-)	PPRE<	:1:0> (2)			
pit 7							bit			
_egend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
n = Value at l	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	iown			
oit 15-13	Unimplemen	ted: Read as '	0'							
oit 12	DISSCK: Dis	able SCKx Pin	bit (SPI Maste	er modes only)						
	1 = Internal S	SPI clock is disa	abled; pin func	tions as I/O						
	0 = Internal SPI clock is enabled									
pit 11		DISSDO: Disable SDOx Pin bit								
	 1 = SDOx pin is not used by module; pin functions as I/O 0 = SDOx pin is controlled by the module 									
	•		•							
oit 10	MODE16: Word/Byte Communication Select bit									
	 Communication is word-wide (16 bits) Communication is byte-wide (8 bits) 									
oit 9		SMP: SPIx Data Input Sample Phase bit								
	Master mode									
		<u>.</u> a is sampled at	end of data o	utput time						
	0 = Input data is sampled at middle of data output time									
	Slave mode:									
	SMP must be cleared when SPIx is used in Slave mode.									
oit 8		lock Edge Sele		, ,,			1.11.02			
	 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) 									
oit 7										
	SSEN: Slave Select Enable bit (Slave mode) ⁽³⁾ 1 = SSx pin is used for Slave mode									
	1 = SSX pin is used for Slave mode 0 = SSx pin is not used by module; pin is controlled by port function									
oit 6	CKP: Clock Polarity Select bit									
	1 = Idle state for clock is a high level; active state is a low level									
	0 = Idle state	for clock is a lo	ow level; active	e state is a higł	n level					
oit 5	MSTEN: Mas	ster Mode Enat	ole bit							
	1 = Master m	ode								
	0 = Slave mo									

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

- bit to '0' for the Framed SPI modes (FRMEN = SPI modes. Pr JYI ⊥).
 - **2:** Do not set both Primary and Secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

22.4 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

22.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit (FWDT<4>). With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

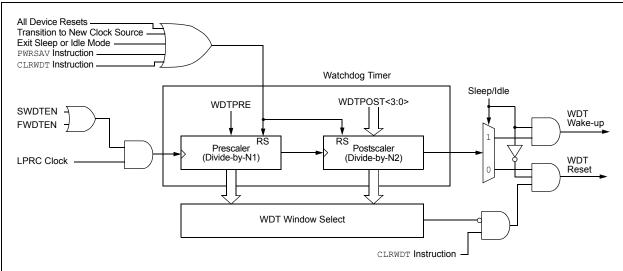
A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

22.4.2 SLEEP AND IDLE MODES


If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

22.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register (FWDT<7>). When the FWDTEN Configuration bit is set, the WDT is always enabled.

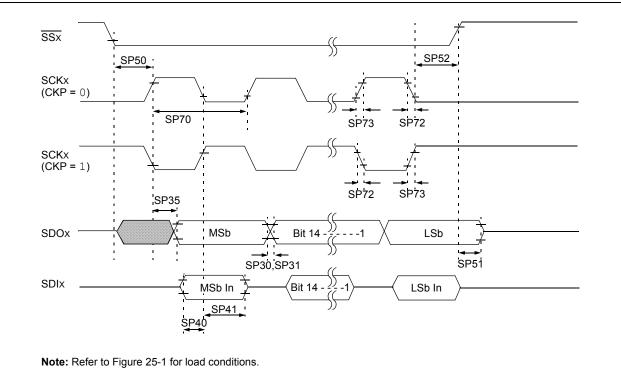
The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

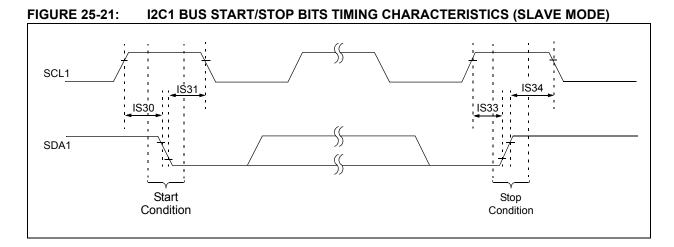
The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 22-2: WDT BLOCK DIAGRAM

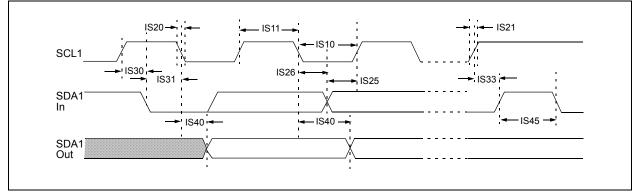
TABLE 25-33:SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

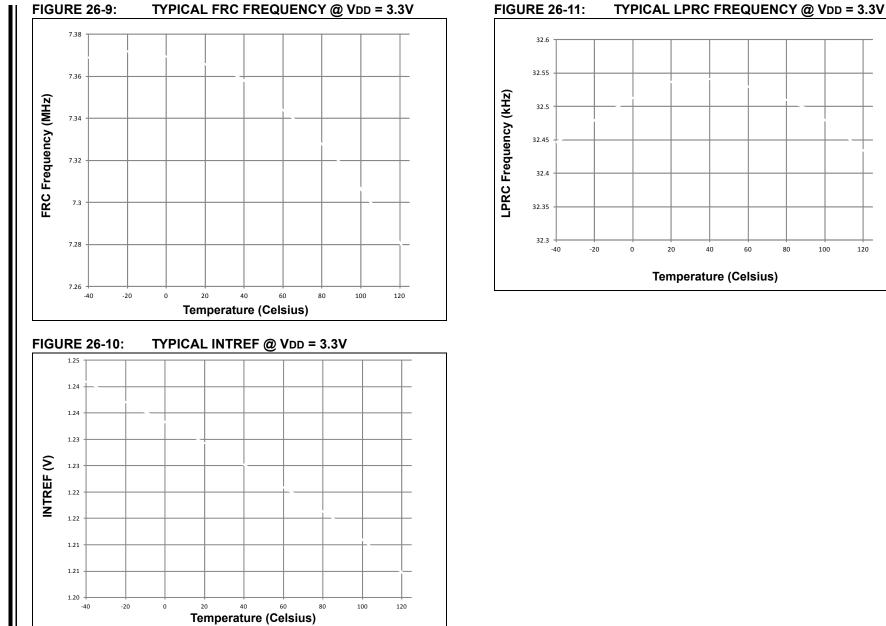
АС СНА		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	—	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120			ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after	—	_	50	ns	

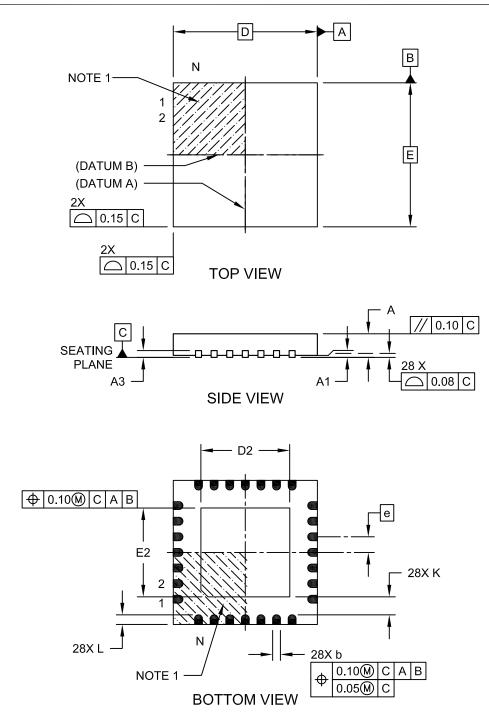

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

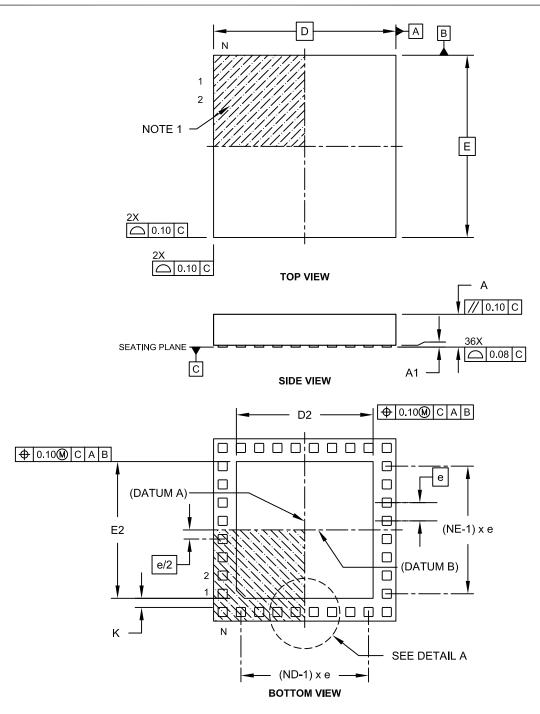
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.


4: Assumes 50 pF load on all SPIx pins.




NOTES:

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
From:	Name						
	Company Address City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Application (optional):							
Would you like a reply?YN							
Devic	e: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302	Literature Number: DS75018C					
Quest	tions:						
1. W	hat are the best features of this document?						
2. How does this document meet your hardware and software development needs?							
3. D	Do you find the organization of this document easy to follow? If not, why?						
4. W	What additions to the document do you think would enhance the structure and subject?						
_							
5. W	What deletions from the document could be made without affecting the overall usefulness?						
_							
6. Is	Is there any incorrect or misleading information (what and where)?						
_							
7. H	ow would you improve this document?						
_							