

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9KB (3K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

FIGURE 2-7: INTERLEAVED PFC

FIGURE 2-8: PHASE-SHIFTED FULL-BRIDGE CONVERTER

4.2 Data Address Space

The CPU has a separate, 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15>=1) is reserved for the Program Space Visibility area (see Section 4.7.3 "Reading Data from Program Memory Using Program Space Visibility").

All devices implement up to 1 Kbyte of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes Post-Modified Register Indirect Addressing mode [Ws++], which results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

TABLE 4-19: CONSTANT CURRENT SOURCE REGISTER MAP

F	ile Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
15	SRCCON	0500	ISRCEN	—		_	—	0	UTSEL<2:0)>	—	—			ISRCCA	AL<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A

											1							
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	LOWCLK — GSWTRG — FORM				EIE	ORDER	SEQSAMP	ASYNCSAMP	_	Α	DCS<2:0	>	0003
ADPCFG	0302	_	_	_	-	_	_	_	—	PCFG7	PCFG6	_	—	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	_	_	_	_	_	—	—	_	P6RDY	_	—	P3RDY	_	P1RDY	P0RDY	0000
ADBASE	0308							A	DBASE<	15:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRO	SRC1<4:0>			IRQEN0	PEND0	SWTRG0		TRGS	RC0<4:0>			0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3		TRO	SRC3<4:0>			_	_	_	—	_	_	_	_	0000
ADCPC3	0310	_	_	_	_	_	—	_	—	IRQEN6	PEND6	SWTRG6		TRGS	RC6<4:0>			0000
ADCBUF0	0320								ADC D	ata Buffer 0)							XXXX
ADCBUF1	0322								ADC D	ata Buffer 1								XXXX
ADCBUF2	0324								ADC D	ata Buffer 2								XXXX
ADCBUF3	0326								ADC D	ata Buffer 3	;							XXXX
ADCBUF6	032C		ADC Data Buffer 6 x							XXXX								
ADCBUF7	032E		ADC Data Buffer 7 x:							XXXX								
ADCBUF12	0338		ADC Data Buffer 12 x:								XXXX							
ADCBUF13	033A		ADC Data Buffer 13 x:							XXXX								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ09GS302

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK		GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	A	DCS<2:0	>	0003
ADPCFG	0302	—	—	—	—	_	—	—	—	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	—	_	_	—		—	—	—	—	P6RDY	—	—	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308							A	DBASE<	15:1>							_	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRO	SRC1<4:0>			IRQEN0	PEND0	SWTRG0		TRGS	RC0<4:0>			0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3		TRO	SRC3<4:0>			IRQEN2	PEND2	SWTRG2		TRGS	RC2<4:0>			0000
ADCPC3	0310	_	_	_	_	_	_	—	_	IRQEN6	PEND6	SWTRG6		TRGS	RC6<4:0>			0000
ADCBUF0	0320								ADC D	ata Buffer 0)							XXXX
ADCBUF1	0322								ADC D	ata Buffer 1								XXXX
ADCBUF2	0324								ADC D	ata Buffer 2	2							XXXX
ADCBUF3	0326								ADC D	ata Buffer 3	;							XXXX
ADCBUF4	0328								ADC D	ata Buffer 4								XXXX
ADCBUF5	032A								ADC D	ata Buffer 5	;							XXXX
ADCBUF6	032C		ADC Data Buffer 6 xx:								XXXX							
ADCBUF7	032E		ADC Data Buffer 7 xx:								XXXX							
ADCBUF12	0338		ADC Data Buffer 12								XXXX							
ADCBUF13	033A		ADC Data Buffer 13								XXXX							

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: ANALOG COMPARATOR CONTROL REGISTER MAP FOR dsPIC33FJ06GS001, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302

File Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON	—	CMPSIDL	HYSS	EL<1:0>	FLTREN	FCLKSEL	DACOE ⁽¹⁾	INSEL	_<1:0>	EXTREF	HYSPOL	CMPSTAT	HGAIN	CMPPOL	RANGE	0000
CMPDAC1	0542	_	_	_	_	_	_					CMR	EF<9:0>					0000
CMPCON2	0544	CMPON	_	CMPSIDL	HYSS	EL<1:0>	FLTREN	FCLKSEL	DACOE ⁽¹⁾	INSEL	_<1:0>	EXTREF	HYSPOL	CMPSTAT	HGAIN	CMPPOL	RANGE	0000
CMPDAC2	0546	_	_	_	—	_	_					CMR	EF<9:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is not available in the dsPIC33FJ06GS001 device.

REGISTER	7-21: IPC2	: INTERRUPT	PRIORITY	CONTROL R	EGISTER 2						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		U1RXIP<2:0>(1)			SPI1IP<2:0> ⁽¹⁾					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—		SPI1EIP<2:0>(1)		_		_				
bit 7							bit C				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit. rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15	Unimpleme	ented: Read as '	0'								
bit 14-12	U1RXIP<2:	0>: UART1 Rece	eiver Interrup	t Priority bits ⁽¹⁾							
	111 = Interr	upt is Priority 7 (highest prior	ity interrupt)							
	•										
	•										
	•	untin Duinaite 4									
	001 = Interr	upt is Priority 1 jupt source is dis	abled								
hit 11	Unimpleme	ented: Read as '	מסופט הי								
bit 10-8	SPI1IP<2.0	> SPI1 Event In	° terrunt Priori	ty hits(1)							
	111 = Interr	unt is Priority 7 (highest prior	ity interrunt)							
	•		nightest phon	ity interrupt)							
	•										
	•										
	001 = Interr	upt is Priority 1	abled								
hit 7		upt source is us	ລຸນເອບ ດຸ								
		ANIEU. Neau as i	J	ity hita(1)							
DIL 0-4	SPITEIPSZ:		highoot prior	ity bits(")							
	•	upt is Phonity 7 (nignest prior	ity interrupt)							
	•										
	•										
	001 = Interr	upt is Priority 1									
		upt source is dis	abied								
bit 3-0	Unimpleme	ented: Read as '	D.								

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This register is reset only on a Power-on Reset (POR).

REGISTER 8	-5: ACLK	CON: AUXILI	ARY CLOCI	k divisor (CONTROL RE	GISTER					
R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1				
ENAPLL	APLLCK	SELACLK	_	_	AP	STSCLR<2:0>	(2)				
bit 15				•	•		bit 8				
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0				
ASRCSEL	FRCSEL	—	—	—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	bit 15 ENAPLL: Auxiliary PLL Enable bit 1 = APLL is enabled 0 = APLL is disabled										
bit 14	APLLCK: AP 1 = Indicates 0 = Indicates	LL Locked Stat that auxiliary P that auxiliary P	us bit (read-ou LL is in lock LL is not in loc	nly) ck							
bit 13	SELACLK: S	elect Auxiliary (Clock Source	for Auxiliary C	lock Divider bit						
	1 = Auxiliary o 0 = Primary P	oscillators provi PLL (Fvco) prov	des the sourc	e clock for au ce clock for au	xiliary clock divio xiliary clock divi	der der					
bit 12-11	Unimplemen	ted: Read as 'o)'								
bit 10-8	APSTSCLR<	2:0>: Auxiliary	Clock Output	Divider bits ⁽²⁾							
	111 = Divideo 110 = Divideo 101 = Divideo 100 = Divideo 011 = Divideo 010 = Divideo 001 = Divideo 001 = Divideo	1 by 1 1 by 2 1 by 4 1 by 8 1 by 16 1 by 32 1 by 64 1 by 256									
bit 7	ASRCSEL: S	elect Reference	e Clock Sourc	e for Auxiliary	Clock bit						
	1 = Primary oscillator is the clock source0 = No clock input is selected										
bit 6	FRCSEL: Sel 1 = Selects Fl 0 = Input cloc	ect Reference RC clock for au k source is dete	Clock Source xiliary PLL ermined by AS	for Auxiliary F	PLL bit						
bit 5-0	Unimplemen	ted: Read as 'd)'		-						
Note 1: This	s register is res	et only on a Po	wer-on Reset	(POR).							

(1) _

2: The auxiliary clock postscaler must be configured to divide-by-1 (APSTSCLR<2:0> = 111) for proper operation of the PWM module.

NOTES:

REGISTER	8 9-5: PMD6	6: PERIPHER		E DISABLE C	ONTROL RE	GISTER 6						
U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0					
	—	—	—	PWM4MD ⁽¹⁾		PWM2MD ⁽²⁾	PWM1MD					
bit 15		·					bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
					_		—					
bit 7							bit 0					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x =							own					
bit 15-12	Unimplemen	ted: Read as '	o'									
bit 11	PWM4MD: P	WM Generator	4 Module Disa	able bit ⁽¹⁾								
	1 = PWM Ger	nerator 4 modu	le is disabled									
	0 = PWM Ger	nerator 4 modu	le is enabled									
bit 10	Unimplemen	ted: Read as '	o'									
bit 9	PWM2MD: P	WM Generator	2 Module Disa	able bit ⁽²⁾								
	1 = PWM Generator 2 module is disabled											
	0 = PWM Ger	nerator 2 modu	le is enabled									
bit 8	PWM1MD: P	WM Generator	1 Module Disa	able bit								
	1 = PWM Ger	nerator 1 modu	le is disabled									
	0 = PWM Ger	nerator 1 modu	le is enabled									
bit 7-0	Unimplemen	ted: Read as '	o'									

Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.

2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.

10.6 Peripheral Pin Select (PPS)

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.6.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn", in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.6.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-15). Each register contains sets of 6-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 illustrates the remappable pin selection for the U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_			FLT3	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—			FLT2	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 11	Unimplomen	ted. Deed es 'o'					
DIL 15-14							
hit 7.6	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 tied to RP32					
DIT 7-6	Unimplemen	ted: Read as 0					
DIT 5-U	<pre>FLI2R<5:0>: 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp</pre>	Assign PWM Fa out tied to Vss out tied to RP35 out tied to RP34 out tied to RP33 out tied to RP32	uit input 2	(FL12) to the Co	orresponding F	kµn µin dits	

REGISTER 10-11: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

R/M-0	R/\\/_0	R/W/-0	R/M_0	11-0	11-0	11-0	11-0
10.00-0	TRGDI	V<3:0>	14.00-0		-		
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTM ⁽¹⁾	_			TRGS	TRT<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-12	TRGDIV<3:0 1111 = Trigg 1100 = Trigg 1100 = Trigg 1011 = Trigg 1010 = Trigg 1001 = Trigg 1000 = Trigg 0110 = Trigg 0110 = Trigg 0101 = Trigg 0101 = Trigg 0010 = Trigg 0011 = Trigg 0001 = Trigg 0001 = Trigg 0000 = Trigg	>: Trigger # Ou jer output for ev jer output for ev	tput Divider I ery 16th trigg ery 15th trigg ery 15th trigg ery 13th trigg ery 12th trigg ery 11th trigg ery 9th trigge ery 8th trigge ery 6th trigge ery 5th trigge ery 2nd trigge ery 2nd trigge ery trigger ev	bits ger event ger event ger event ger event ger event ger event ger event er event			
bit 11-8	Unimplemer	nted: Read as '	0'				
bit 7	DTM: Dual T	rigger Mode bit	(1)				
	1 = Seconda 0 = Seconda two sepa	ary trigger event ary trigger event arate PWM trigg	t is combinec is not combi jers are gene	l with the prima ned with the prine rated	ry trigger event mary trigger ev	to create the P ent to create the	WM trigger. PWM trigger;
bit 6	Unimplemer	nted: Read as '	0'				
bit 5-0	TRGSTRT<5	5:0>: Trigger Po	stscaler Star	t Enable Select	bits		
	111111 = W	ait 63 PWM cyc	les before ge	enerating the fire	st trigger event	after the modul	e is enabled
	•						
	000010 = W 000001 = W 000000 = W	ait 2 PWM cycle ait 1 PWM cycle ait 0 PWM cycle	es before ger e before gen e before gen	nerating the first erating the first erating the first	t trigger event a trigger event af trigger event af	after the module ter the module i ter the module i	is enabled s enabled s enabled

REGISTER 15-13: TRGCONX: PWMx TRIGGER CONTROL REGISTER

REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER (CONTINUED)

CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMODE is Enabled bits ⁽²⁾
IFLTMOD (FCLCONx<15>) = 0, Normal Fault mode:
If current-limit is active, then CLDAT<1> provides the state for PWMxH.
If current-limit is active, then CLDAT<0> provides the state for PWMxL.
IFLTMOD (FCLCONx<15>) = 1, Independent Fault mode:
CLDAT<1:0> is ignored.
SWAP<1:0>: SWAP PWMxH and PWMxL pins
 1 = PWMxH output signal is connected to PWMxL pin and PWMxL signal is connected to PWMxH pins 0 = PWMxH and PWMxL pins are mapped to their respective pins

bit 0 **OSYNC:** Output Override Synchronization bit

- 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
- 0 = Output overrides via the OVRDAT<1:0> bits occur on next CPU clock boundary
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - **2:** State represents the active/inactive state of the PWM module depending on the POLH and POLL bit settings.

REGISTER 19-3: A	ADBASE: ADC BASE REGISTER ⁽¹⁾
------------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADBASE	<15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
		A	DBASE<7:1>(2)			—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 ADBASE<15:1>: ADC Base Register bits⁽²⁾

This register contains the base address of the user's ADC Interrupt Service Routine (ISR) jump table. This register, when read, contains the sum of the ADBASE register contents and the encoded value of the PxRDY status bits.

The encoder logic provides the bit number of the highest priority PxRDY bits, where P0RDY is the highest priority and P6RDY is the lowest priority.

- bit 0 Unimplemented: Read as '0'
- **Note 1:** As an alternative to using the ADBASE register, the ADCP0-6 ADC Pair Conversion Complete Interrupts can be used to invoke A to D conversion completion routines for individual ADC input pairs.
 - 2: The encoding results are shifted left two bits, so bits 1-0 of the result are always zero.

Bit Field	Description
PLLKEN	PLL Lock Enable bit
	 1 = Clock switch to PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal
JTAGEN	JTAG Enable bit
	1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

25.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss, when $VDD \ge 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when $VDD < 3.0V^{(3)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - 3: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 25-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	Stand (unles Opera	ard Operati s otherwise ting tempera	ng Con e stated ature -	ditions: I) 40°C ≤ T 40°C ≤ T	3.0V to 3.6V $\overline{A} \le +85^{\circ}C$ for Industrial $\overline{A} \le +125^{\circ}C$ for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SY10	TMCL	MCLR Pulse Width (low)	2	_	_	μS	-40°C to +125°C
SY11	TPWRT	Power-up Timer Period	_	64	_	ms	-40°C to +125°C
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +125°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY30	Tost	Oscillator Start-up Time	—	1024 Tosc			Tosc = OSC1 period

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

	157
RPOR0 (Peripheral Pin Select Output 0)	168
RPOR1 (Peripheral Pin Select Output 1)	168
RPOR16 (Peripheral Pin Select Output 16)	172
RPOR17 (Peripheral Pin Select Output 17)	172
RPOR2 (Peripheral Pin Select Output 2)	169
RPOR3 (Peripheral Pin Select Output 3)	169
RPOR4 (Peripheral Pin Select Output 4)	170
RPOR5 (Peripheral Pin Select Output 5)	170
RPOR6 (Peripheral Pin Select Output 6)	171
RPOR7 (Peripheral Pin Select Output 7)	171
SDCx (PWMx Secondary Duty Cycle)	192
SEVTCMP (PWM Special Event Compare)	189
SPHASEx (PWMx Secondary Phase Shift)	194
SPIxCON1 (SPIx Control 1)	208
SPIxCON2 (SPIx Control 2)	210
SPIxSTAT (SPIx Status and Control)	207
SR (CPU STATUS)	91
SR (CPU Status)	
STRIGx (PWMx Secondary Trigger	
Compare Value)	201
T1CON (Timer1 Control)	174
T2CON (Timer2 Control)	176
TRGCONx (PWMx Trigger Control)	196
TRIGx (PWMx Primary Trigger Compare Value)	201
U1MODE (UART1 Mode)	~~ 4
UISTA (UART1 Status and Control)	221 223
U1STA (UART1 Status and Control) Reset	221
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR)	221 223 79, 84
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM)	221
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR)	221
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode	221 223 79, 84 79 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Mater Close Reset (MCLR)	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR)	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR)	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT)	79, 84 79, 84 79 79 79 79 79 79 79 79 79 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Warm Reset Warm Reset	79, 84 79, 84 79 79 79 79 79 79 79 79 85 79 79
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register Watchdog Timer Out Reset (WDTO)	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register Watchdog Timer Out Reset (WDTO)	
U1STA (UART1 Status and Control) Reset Brown-out Reset (BOR) Configuration Mismatch Reset (CM) Illegal Condition Device Reset (IOPUWR) Illegal Opcode Security Uninitialized W Register Illegal Device Reset Illegal Opcode Master Clear Reset (MCLR) Power-on Reset (POR) Power-on Reset (POR) Power-up Timer Reset (PWRT) Software RESET Instruction System Reset Cold Reset Warm Reset Trap Conflict Trap Conflict Reset (TRAPR) Uninitialized W Register Watchdog Timer Out Reset (WDTO) Reset Sequence Revision History	221 223 79, 84 79 79 79 79 79 79 79 79

S

Serial Peripheral Interface (SPI) SFR Maps	205
Change Notification for	
dsPIC33FJ06GS001, dsPIC33FJ06GS101A	45
Change Notification for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A, dsPIC33FJ09GS302	45
Constant Current Source	56
CPU Core	43
High-Speed 10-Bit ADC for dsPIC33FJ06GS001,	
dsPIC33FJ06GS101A	56
High-Speed 10-Bit ADC for dsPIC33FJ06GS102A,	
dsPIC33FJ06GS202A	57
High-Speed 10-Bit ADC for dsPIC33FJ09GS302	58
High-Speed PWM	52
High-Speed PWM Generator 1	52

dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS30253
High-Speed PWM Generator 4 for dsPIC33FJ06GS001,
USPIC33FJ00G5101A, USPIC33FJ09G530254
Input Capture for dsPIC33FJ06GS202A.
dsPIC33FJ09GS30251
Interrupt Controller for dsPIC33FJ06GS00146
Interrupt Controller for dsPIC33FJ06GS002A48
Interrupt Controller for dsPIC33FJ06GS101A4/
Interrupt Controller for dsPIC33FJ00GS202A49
NVM
Output Compare for dsPIC33FJ06GS101A,
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,
dsPIC33FJ09GS302
Peripheral Pin Select Input for dsPIC33FJ06GS00159
dsPIC33E.106GS102A 59
Peripheral Pin Select Input for dsPIC33FJ06GS202A,
dsPIC33FJ09GS30260
Peripheral Pin Select Output for dsPIC33FJ06GS001,
dsPIC33FJ06GS101A60
Peripheral Pin Select Output for dsPIC33FJ06GS102A,
PMD for dsPIC33FJ06GS001 64
PMD for dsPIC33FJ06GS101A
PMD for dsPIC33FJ06GS102A 64
PMD for dsPIC33FJ06GS202A 65
PMD for dsPIC33FJ09GS302
PORTA
dsPIC33E.06GS101A 62
PORTB for dsPIC33FJ06GS102A.
dsPIC33FJ06GS202A, dsPIC33FJ09GS30262
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A,
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ09GS202A, dsPIC33FJ09GS30252
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ09GS202A, dsPIC33FJ09GS30255 System Control
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ09GS202A, dsPIC33FJ09GS302 System Control 1 UART1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A, dsPIC33FJ09GS302 55 Software RESET Instruction (SWR)
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ09GS202A, dsPIC33FJ09GS30255 System Control

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support