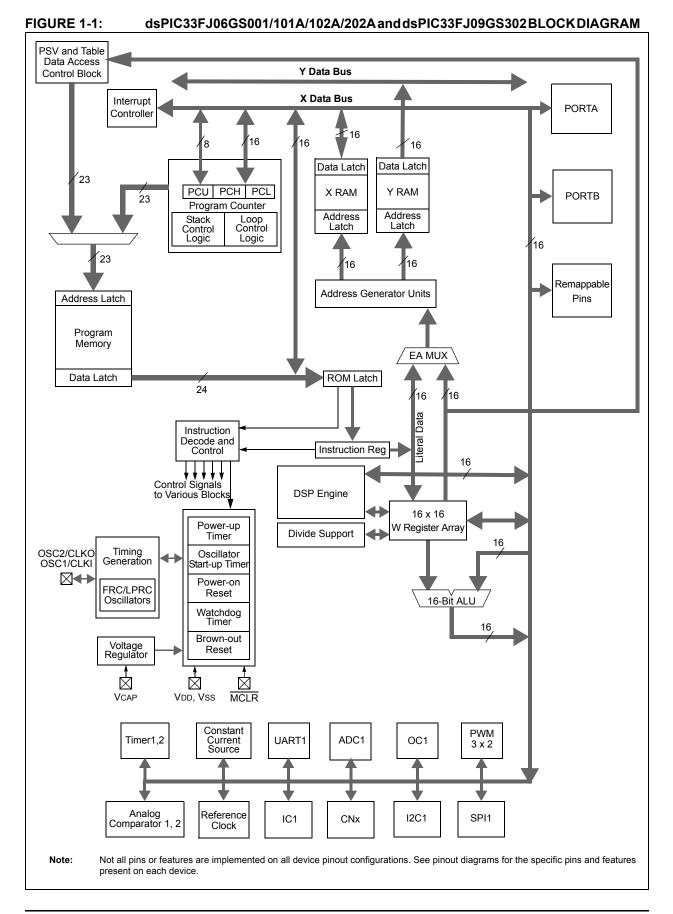


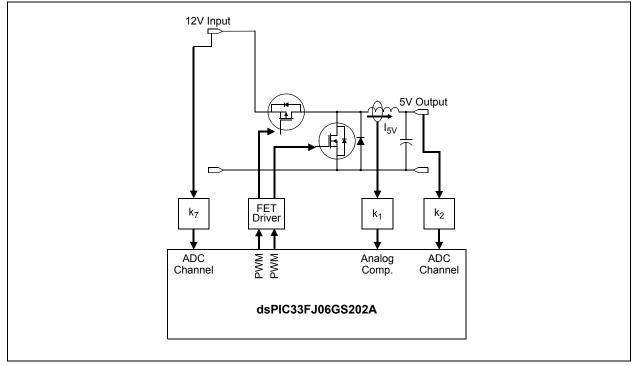
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	9КВ (3К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj09gs302t-i-tl

Email: info@E-XFL.COM

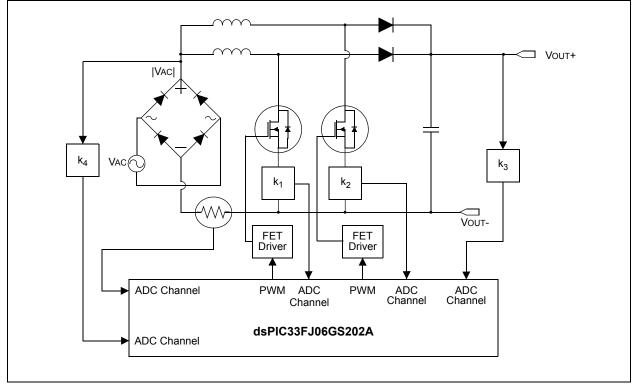

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

FIGURE 2-7: INTERLEAVED PFC

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CORCON	0044	—	_	_	US	EDT	EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 PSV RND						IF	0020				
MODCON	0046	XMODEN	YMODEN	_	_		BWM	<3:0>			ΥW	/M<3:0>			XWM	<3:0>		0000
XMODSRT	0048						Х	S<15:1>									0	XXXX
XMODEND	004A						Х	E<15:1>									1	XXXX
YMODSRT	004C						Y	S<15:1>									0	XXXX
YMODEND	004E						Y	E<15:1>									1	XXXX
XBREV	0050	BREN			XB<14:0>								XXXX					
DISICNT	0052	_	_					Disable In	terrupts Cour	nter Reg	ister							XXXX

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS001

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	—			INT1R<5	5:0>			—	—	—	—	—	—	_	—	3F00
RPINR1	0682	_	—	_	—	_		—	_	—	_			INT2R	<5:0>			003F
RPINR2	0684	_	—			T1CKR<	5:0>			—	_	_	_	—	_	_	_	3F00
RPINR3	0686	_	_		—	—		—	_	_				T2CKR	<5:0>			003F
RPINR29	06BA	_	_			FLT1R<5	5:0>	•		_		_	_	_	_	_		3F00
RPINR30	06BC	_	_			FLT3R<5	5:0>			_				FLT2R	<5:0>			3F3F
RPINR31	06BE	_	_			FLT5R<5	5:0>			_				FLT4R	<5:0>			3F3F
RPINR32	06C0	_	_			FLT7R<5	5:0>			_				FLT6R	<5:0>			3F3F
RPINR33	06C2	_	_			SYNCI1R	<5:0>			_	_			FLT8R	<5:0>			3F3F
RPINR34	06C4	_	_	_	—	—	_	—	_	_	_			SYNCI2	R<5:0>			003F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS101A AND dsPIC33FJ06GS102A

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	—			INT1R<5	5:0>			—	—	_	—	—	—	-	—	3F00
RPINR1	0682	—	—	_	_	_		—	—	_	_			INT2R	<5:0>			003F
RPINR2	0684	_	_			T1CKR<	5:0>			_	_		_	_	_	_	_	3F00
RPINR3	0686	_	_	_	—	—		—	_	_	_			T2CKR	<5:0>		•	003F
RPINR11	0696	_	_	-	_	_		_	_	_	_			OCFAF	<5:0>			003F
RPINR18	06A4	_	_		•	U1CTSR<	<5:0>	•	•		_			U1RXF	<5:0>			3F3F
RPINR20	06A8	_	_			SCK1R<	5:0>				_			SDI1R	<5:0>			3F3F
RPINR21	06AA	_	_	_	—	—		—	_	_	_			SS1R·	<5:0>			003F
RPINR29	06BA	_	_		•	FLT1R<	5:0>	•	•	_	_	_		_	_	_		3F00
RPINR30	06BC	—	—			FLT3R<	5:0>			_	_			FLT2R	<5:0>			3F3F
RPINR31	06BE	_	_			FLT5R<5	5:0>			_	_			FLT4R	<5:0>			3F3F
RPINR32	06C0	_	_			FLT7R<	5:0>			_	_			FLT6R	<5:0>			3F3F
RPINR33	06C2	_	_			SYNCI1R	<5:0>				_			FLT8R	<5:0>			3F3F
RPINR34	06C4	_	_	_	_	_		—	_	_	_			SYNCI2	R<5:0>			003F
Legend:	x = unkn	own value	on Reset	, — = unimpl	emented, re	ad as '0'. Re	eset values	are show	n in hexad	ecimal.	•							*

dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302

FIGURE 7-1: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 INTERRUPT VECTOR TABLE

1	Depet como Instruction		
	Reset - GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	_	
	Address Error Trap Vector	_	
	Stack Error Trap Vector		
	Math Error Trap Vector	_	
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~	_	
	~	_	
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
>	Interrupt Vector 53	0x00007E	,
brit	Interrupt Vector 54	0x000080	
L re	~	_	
er	~	-	
Drd	Interrupt Vector 116	0x0000FC	
Decreasing Natural Order Priority	Interrupt Vector 117	0x0000FC	
fr		0x000100	
Za	Reserved Reserved	0x000100	
bu	Reserved	0x000102	
asi	Oscillator Fail Trap Vector	_	
e c	Address Error Trap Vector		
De	Stack Error Trap Vector		
_	Math Error Trap Vector		
	Reserved	_	
	Reserved		
	Reserved	-	
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~	1	
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	,
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~]	
	Interrupt Vector 116		
↓ J	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
Note de O	Table 7 4 families list of image		
Note 1: See	Table 7-1 for the list of impleme	ented interrupt v	ectors.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		ADCP1IP<2:0>	>	—		ADCP0IP<2:0>	
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			_	_	_		_
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
	• • 001 = Inter	rupt is Priority 7 (rupt is Priority 1		ty interrupt)			
bit 11		rupt source is dis ented: Read as '					
bit 10-8	ADCP0IP<	2:0>: ADC Pair 0 rupt is Priority 7 (Conversion		Priority bits		
		rupt is Priority 1 rupt source is dis	abled				

10.6 Peripheral Pin Select (PPS)

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

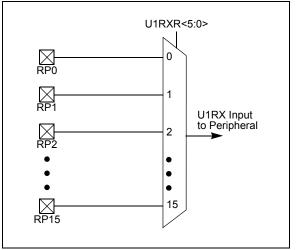
10.6.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn", in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.6.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-15). Each register contains sets of 6-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 illustrates the remappable pin selection for the U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			SCK1F	R<5:0> ⁽¹⁾		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				SDI1R	<5:0> ⁽¹⁾		
bit 7							bit (
Legend:							
R = Readabl		W = Writable		•	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
L:1 4 5 4 4		ta da Da a da a (~ '				
bit 15-14	-	ted: Read as '				(4)	
bit 13-8	SCK1R<5:0>	: Assign SPI1	Clock Input (S	CK1) to the Co	prresponding R	Pn Pin bits ⁽¹⁾	
	111111 = Inp						
		out tied to RP3					
		out tied to RP34					
		out tied to RP3					
		out tied to RP32	2				
	•						
	•						
	00000 = Inpu	t tied to RP0					
bit 7-6		ted: Read as '	0'				
bit 5-0	-			11) to the Corre	esponding RPn	Pin bits ⁽¹⁾	
	111111 = Inp				sepending rain		
		out tied to RP3	5				
		out tied to RP34					
		out tied to RP33					
		out tied to RP32					
	•						
	•						
	•						
	00000 = Inpu	t tied to RPO					
	00000 – mpu						

REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	_				
bit 15							bit 8		
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
				SS1R	<5:0> ⁽¹⁾				
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-6	Unimplemen	ted: Read as '	כי						
bit 5-0	SS1R<5:0>: /	Assign SPI1 Sla	ave Select In	put (SS1) to the	e Corresponding	g RPn Pin bits ⁽¹	1)		
	111111 = Inp								
		out tied to RP35							
		out tied to RP34							
		out tied to RP33 out tied to RP32							
	•		-						
	•								
	•								
	00000 = Inpu	t tied to RP0							

REGISTER 10-9: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT7	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT6	R<5:0>		
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '()'				
bit 13-8	•	: Assign PWM F		=I T7) to the Co	orresponding R	Pn Pin hits	
		put tied to Vss			incoponding is		
		put tied to RP35					
	100010 = ln	put tied to RP34					
		put tied to RP34 put tied to RP33					
	100001 = In		1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In	put tied to RP33	1				
	100001 = In 100000 = In •	put tied to RP33 put tied to RP32	1				
bit 7-6	100001 = In 100000 = In • • • 00000 = Inp	put tied to RP33 put tied to RP32 ut tied to RP0					
bit 7-6	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0	; ; ;	ELT6) to the Co	prresponding P	PDn Din hite	
bit 7-6 bit 5-0	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 :: Assign PWM F	; ; ;	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss	₎ , Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35) ⁾ Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34) ⁾ Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁻ LT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	FLT6) to the Co	prresponding R	Pn Pin bits	
	100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	ut tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (I	⁼ LT6) to the Co	prresponding R	Pn Pin bits	

REGISTER 10-13: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	—	SYNCSF	RC<1:0> ⁽¹⁾		SEV	[PS<3:0> ⁽¹⁾	
bit 7							bit (
Legend:		HC = Hardware	e Clearable bit	HS = Hardv	vare Settable	bit	
R = Readable	bit	W = Writable b	it	U = Unimpl	lemented bit,	read as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is c	cleared	x = Bit is unkr	lown
bit 15	PTFN: PWM	Module Enable	bit				
		dule is enabled					
	0 = PWM mod	dule is disabled					
bit 14		ted: Read as '0					
bit 13		V Time Base Sto	•	bit			
		e base halts in C					
bit 12		e base runs in C cial Event Interr					
DIT 12		/ent interrupt is	•				
	•	/ent interrupt is	•				
bit 11	SEIEN: Speci	al Event Interrup	ot Enable bit				
	•	ent interrupt is					
	-	/ent interrupt is		n			
bit 10		Immediate Peri	•				
		riod register is u riod register upd			oundaries		
bit 9		ynchronization I			Janaanee		
		nd SYNCO1 po		•			
		nd SYNCO1 are	-				
bit 8		rimary Time Ba		bit ⁽¹⁾			
		output is enable					
hit 7		output is disable ternal Time Base		n Enchla hit	(1)		
bit 7		synchronization	•				
		synchronization					
bit 6		ted: Read as '0'					
bit 5-4		:0>: Synchrono		ction bits ⁽¹⁾			
	11 = Reserve	d					
	10 = Reserve						
	01 = SYNCI2 00 = SYNCI1						
bit 3-0		>: PWM Special	Event Trigger (Jutnut Posts	caler Select I	_{Dits} (1)	
		Postscaler genera					atch event
	•	3	-1	55 0	. ,		
	•						
	• 0001 = 1·2 Pr	ostscaler genera	ites a Special Fi	vent Trigger (nn everv sec	ond compare m	atch event
		ostscaler genera					
		-	-				
		be changed only					
		ogram the Peric			signuy large	er man me expe	scied period of

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

the external synchronization input signal.

REGISTER 15-19: PWMCAPx: PRIMARY PWMx TIME BASE CAPTURE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCA	P<15:8> ^(1,2)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	PW	/MCAP<7:3> ^{(1,;}	2)		—	—	—
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

 bit 15-3
 PWMCAP<15:3>: Captured PWM Time Base Value bits^(1,2)

 The value in this register represents the captured PWM time base value when a leading edge is detected on the current-limit input.

 bit 2-0
 Unimplemented: Read as '0'

- **Note 1:** The capture feature is only available on primary output (PWMxH).
 - 2: This feature is active only after LEB processing on the current-limit input signal is complete.

REGISTER 15-20: CHOP: PWM CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
CHPCLKEN	—	—	—	—	—	CHOPC	LK<6:5>	
bit 15					•		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
	CI	HOPCLK<4:0>			—	—	_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15	CHPCLKEN:	Enable Chop	Clock Generat	tor bit				
	•	ck generator is ck generator is						
bit 14-10	•	ited: Read as '						
	-							
bit 9-3	CHOPCLK<6	5:0>: Chop Clo	ck Divider bits	5				
					ollowing expressionary Master PWN		CLKDIV<2:0>)	
bit 2-0	Unimplemen	ted: Read as '	0'					
	-							

NOTES:

REGISTER 18-1: U1MODE: UART1 MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit ⁽³⁾
	1 = U1RX Idle state is '0'
	0 = U1RX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit ⁽³⁾
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits ⁽³⁾
	11 = 9-bit data, no parity
	10 = 8-bit data, odd parity
	01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit ⁽³⁾
	1 = Two Stop bits
	0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).
 - 3: This bit is not available in the dsPIC33FJ06GS001 device.

20.3 Module Applications

This module provides a means for the SMPS dsPIC DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator, an associated 10-bit DAC and a DAC output amplifier that provide a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- · Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- · Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: 1) generate an interrupt, 2) have the ADC take a sample and convert it, and 3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

20.4 DAC

The range of the DAC is controlled via an analog multiplexer that selects either AVDD/2, an internal reference source, INTREF, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small (<1.25V); therefore, the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.

DACOUT, shown in Figure 20-1, can only be associated with a single comparator at a given time.

Note:	It should be ensured in software that
	multiple DACOE bits are not set. The
	output on the DACOUT pin will be indeter-
	minate if multiple comparators enable the
	DAC output.

20.5 DAC Buffer Gain

The output of the DAC is buffered/amplified via the DAC buffer. The block functions as a 1x gain amplifier or as a 1.8x gain amplifier. The gain selection is controlled via the HGAIN bit in the CMPCONx register. Using the 1.8x gain option will raise the reference voltage to the analog comparator to a maximum of 2.8V. Using a higher reference voltage for the analog comparator can improve the signal-to-noise ratio in an application.

20.6 Comparator Input Range

The comparator has an input voltage range from -0.2V to AVDD + 0.2V, making it a rail-to-rail input.

20.7 Digital Logic

The CMPCONx register (see Register 20-1) provides the control logic that configures the High-Speed Analog Comparator module. The digital logic provides a pulse stretcher. The analog comparator can respond to very fast transient signals. After the comparator output is given the desired polarity, the signal is passed to this pulse stretching circuit. The pulse stretching circuit has an asynchronous set function and a delay circuit that insure the minimum pulse width is three system clock cycles wide so that the attached circuitry can properly respond.

The stretch circuit is followed by a digital filter. The digital filter is enabled via the FLTREN bit in the CMPCONx register. The digital filter operates with the clock specified via the FCLKSEL bit in the CMPCONx register. The comparator signal must be stable in a high or low state for at least three of the selected clock cycles for it to pass through the digital filter.

During Sleep mode, the clock signal inputs to the module are disabled. However, the module's analog components may continue to function in a reduced power manner to allow the user to wake-up the device when a signal is applied to a comparator input.

In Sleep mode, the clocks are stopped; however, the analog comparator signal has an asynchronous connection across the filter that allows interrupts to be generated regardless of the stopped clocks.

The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, and any CMPSIDL bit is set, the entire group of comparators will be disabled while in Idle mode. The advantage is reduced power consumption. Moreover, this behavior reduces complexity in the design of the clock control logic for this module.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	—	—	_		—	CMREF<9:8> ⁽¹⁾		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CMREF<7:0> ⁽¹⁾								
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-10	Unimplemen	ted: Read as '	0'					
bit 9-0	CMREF<9:0>	: Comparator I	Reference Vo	Itage Select bit	(1)			
	1111111111	= (CMREF * I	NTREF/1024)	or (CMREF *	(AVDD/2)/1024)	volts dependir	ng on RANGE	
bit or (CMREF * EXTREF/1024) if EXTREF is set								
	•							
	•							
	•							
	0000000000	= 0.0 volts						

REGISTER 20-2: CMPDACx: COMPARATOR DAC CONTROL x REGISTER

Note 1: These bits are not implemented in dsPIC33FJ06GS101A/102A devices.

Bit Field	Description			
PLLKEN	PLL Lock Enable bit			
	 1 = Clock switch to PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal 			
JTAGEN	JTAG Enable bit			
	1 = JTAG is enabled 0 = JTAG is disabled			
ICS<1:0>	ICD Communication Channel Select bits			
	11 = Communicate on PGEC1 and PGED1			
	10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3			
	00 = Reserved, do not use			

TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)							
Base Instr # Assembly Mnemonic			Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

24.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

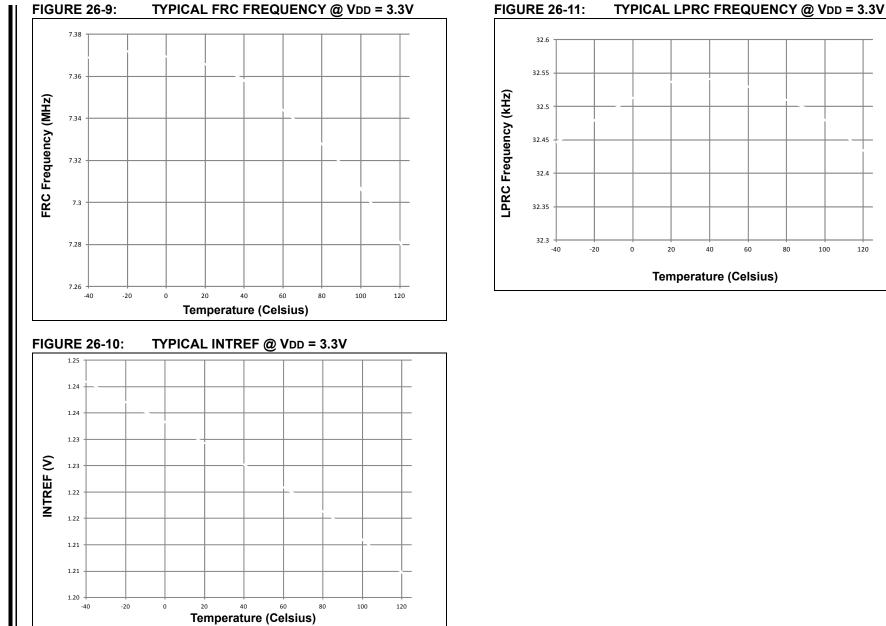
The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

24.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

24.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.


The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

