Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | F ² MC-16LX | | Core Size | 16-Bit | | Speed | 24MHz | | Connectivity | CANbus, EBI/EMI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, WDT | | Number of I/O | 51 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | Mask ROM | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 3.5V ~ 5.5V | | Data Converters | A/D 15x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb90352espmc-gs-129e1 | # 3. Packages and Product Correspondence | Package | MB90V340E-101
MB90V340E-102
MB90V340E-103
MB90V340E-104 | MB90351E (S), MB90351TE (S) MB90F351E (S), MB90F351TE (S) MB90352E (S), MB90352TE (S) MB90F352E (S), MB90F352TE (S) MB90F356E (S), MB90356TE (S) MB90F356E (S), MB90F356TE (S) MB90F357E (S), MB90F357TE (S) | |---|--|--| | PGA-299C-A01 | \circ | × | | FPT-64P-M23
(12.0 mm, 0.65 mm pitch) | × | 0 | | FPT-64P-M24
(10.0 mm, 0.50 mm pitch) | × | 0 | \bigcirc : Yes, \times : No Note: Refer to "Package Dimensions" for detail of each package. | Pin No. | Pin name | I/O
Circuit
type* | Function | |---------|----------|-------------------------|--| | | P30 | _ | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. | | 54 | ALE | G | Address latch enable output pin. This function is enabled when external bus is enabled. | | | IN4 | 1 | Data sample input pin for input capture ICU4 | | | P31 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. | | 55 | RD | G | Read strobe output pin for data bus. This function is enabled when external bus is enabled. | | | IN5 | 1 | Data sample input pin for input capture ICU5 | | | P32 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the WR/WRL pin output disabled. | | 56 | WR/WRL | G | Write strobe output pin for the data bus. This function is enabled when both the external bus and the WR/WRL pin output are enabled. WRL is used to write-strobe 8 lower bits of the data bus in 16-bit access. WR is used to write-strobe 8 bits of the data bus in 8-bit access. | | | INT10R | 1 | External interrupt request input pin for INT10 | | 57 | P33 | - G | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode, in external bus 8-bit mode or with the WRH pin output disabled. | | 37 | WRH | | Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16-bit mode is selected, and when the WRH output pin is enabled. | | | P34 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled. | | 58 | HRQ | G | Hold request input pin. This function is enabled when both the external bus and the hold function are enabled. | | | OUT4 | 1 | Wave form output pin for output compare OCU4 | | | P35 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled. | | 59 | HAK | G | Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled. | | | OUT5 | 1 | Wave form output pin for output compare OCU5 | | | P36 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the external ready function disabled. | | 60 | RDY | G | Ready input pin. This function is enabled when both the external bus and the external ready function are enabled. | | | OUT6 | | Wave form output pin for output compare OCU6 | During an internal RAM write cycle, low voltage reset is generated after the completion of writing. During the output of this internal reset, the reset output from the low voltage detection reset circuit is suppressed. #### (2) CPU operation detection reset circuit The CPU operation detection reset circuit is a counter that prevents program runaway. The counter starts automatically after a power-on reset, and must be continually and regularly cleared within a given time. If the given time interval elapses and the counter has not been cleared, a cause such as infinite program looping is assumed and an internal reset signal is generated. The internal reset generated from the CPU operation detection circuit has a width of 5 machine cycles. | | Interval time | |--------------------|---------------------| | 2 ²⁰ /F | C (approx. 262 ms*) | *: This value assumes the interval time at an oscillation clock frequency of 4 MHz. During recovery from standby mode, the detection period is the maximum interval plus 20 μs . This circuit does not operate in modes where CPU operation is stopped. The CPU operation detection reset circuit counter is cleared under any of the following conditions. - ■"0" writing to CL bit of LVRC register - ■Internal reset - ■Main oscillation clock stop - ■Transit to sleep mode - ■Transit to timebase timer mode and watch mode #### 19. Internal CR oscillation circuit | Parameter | Symbol | | Unit | | | |-------------------------------------|-----------------|-----|------|-----|-------| | raidilletei | Syllibol | Min | Тур | Max | Offic | | Oscillation frequency | f _{RC} | 50 | 100 | 200 | kHz | | Oscillation stabilization wait time | tstab | _ | _ | 100 | μ\$ | Document Number: 002-04493 Rev. *A #### ■ MB90V340E-103/104 # 9. Memory Map Note: The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration. For example, an attempt to access $00C000_H$ practically accesses the value at FFC000_H in ROM. The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00. The image between $FF8000_H$ and $FFFFF_H$ is visible in bank 00, while the image between $FF0000_H$ and $FF7FFF_H$ is visible only in bank FF. | Address | Register | Abbreviation | Access | Resource name | Initial value | |---|--|--------------|-------------|----------------------|-----------------------| | 0000B9 _H | Interrupt Control Register 09 | ICR09 | W,R/W | | 00000111 _B | | 0000BA _H | Interrupt Control Register 10 | ICR10 | W,R/W | | 00000111 _B | | 0000BB _H | Interrupt Control Register 11 | ICR11 | W,R/W | | 00000111 _B | | 0000BC _H | Interrupt Control Register 12 | ICR12 | W,R/W | Interrupt Control | 00000111 _B | | 0000BD _H | Interrupt Control Register 13 | ICR13 | W,R/W | | 00000111 _B | | 0000BE _H | Interrupt Control Register 14 | ICR14 | W,R/W | | 00000111 _B | | 0000BF _H | Interrupt Control Register 15 | ICR15 | W,R/W | | 00000111 _B | | 0000C0 _H
to 0000C9 _H | | Reserved | | | | | 0000CA _H | External Interrupt Enable Register 1 | ENIR1 | R/W | | 00000000 _B | | 0000CB _H | External Interrupt Source Register 1 | EIRR1 | R/W | | XXXXXXXX _B | | 0000CC _H | External Interrupt Level Register 1 | ELVR1 | R/W | External Interrupt 1 | 00000000 _B | | 0000CD _H | External Interrupt Level Register 1 | ELVR1 | R/W | External interrupt 1 | 00000000 _B | | 0000CE _H | External Interrupt Source Select
Register | EISSR | R/W | | 00000000 _B | | 0000CF _H | PLL/Sub clock Control register | PSCCR | W | PLL | XXXX0000 _B | | 0000D0 _H | DMA Buffer Address Pointer L
Register | BAPL | R/W | | XXXXXXXX _B | | 0000D1 _H | DMA Buffer Address Pointer M
Register | ВАРМ | R/W | | XXXXXXXX _B | | 0000D2 _H | DMA Buffer Address Pointer H
Register | ВАРН | R/W | | XXXXXXXX _B | | 0000D3 _H | DMA Control Register | DMACS | R/W | DMA | XXXXXXXX _B | | 0000D4 _H | I/O Register Address Pointer L
Register | IOAL | R/W | | XXXXXXXX _B | | 0000D5 _H | I/O Register Address Pointer H
Register | IOAH | R/W | | XXXXXXXX _B | | 0000D6 _H | Data Counter L Register | DCTL | R/W | | XXXXXXXX | | 0000D7 _H | Data Counter H Register | DCTH | R/W | | XXXXXXXX | | 0000D8 _H | Serial Mode Register 2 | SMR2 | W,R/W | | 00000000 _B | | 0000D9 _H | Serial Control Register 2 | SCR2 | W,R/W | | 00000000 _B | | 0000DA _H | Reception/Transmission Data
Register 2 | RDR2/TDR2 | R/W | | 00000000 _B | | 0000DB _H | Serial Status Register 2 | SSR2 | R,R/W | UART2 | 00001000 _B | | 0000DC _H | Extended Communication Control Register 2 | ECCR2 | R,W,
R/W | | 000000XX _B | | 0000DD _H | Extended Status/Control Register 2 | ESCR2 | R/W | | 00000100 _B | | 0000DE _H | Baud Rate Generator Register 20 | BGR20 | R/W | | 00000000 _B | | Address | Register | Abbreviation | Access | Resource name | Initial value | | | |--|-----------------------------------|---|--------|---------------------------|-----------------------|--|--| | 0079C3 _H to
0079DF _H | | Reserve | d | | | | | | 0079E0 _H | Detect Address Setting Register 0 | PADR0 | R/W | | XXXXXXXX | | | | 0079E1 _H | Detect Address Setting Register 0 | PADR0 | R/W | | XXXXXXXX | | | | 0079E2 _H | Detect Address Setting Register 0 | PADR0 | R/W | | XXXXXXXX _B | | | | 0079E3 _H | Detect Address Setting Register 1 | PADR1 | R/W | | XXXXXXXX | | | | 0079E4 _H | Detect Address Setting Register 1 | PADR1 | R/W | Address Match Detection 0 | XXXXXXXX | | | | 0079E5 _H | Detect Address Setting Register 1 | PADR1 | R/W | 20100110110 | XXXXXXXX | | | | 0079E6 _H | Detect Address Setting Register 2 | PADR2 | R/W | | XXXXXXXX | | | | 0079E7 _H | Detect Address Setting Register 2 | PADR2 | R/W | | XXXXXXXX | | | | 0079E8 _H | Detect Address Setting Register 2 | PADR2 | R/W | | XXXXXXXX | | | | 0079E9 _H
to
0079EF _H | | Reserve | d | | | | | | 0079F0 _H | Detect Address Setting Register 3 | PADR3 | R/W | | XXXXXXXX | | | | 0079F1 _H | Detect Address Setting Register 3 | PADR3 | R/W | | XXXXXXXX | | | | 0079F2 _H | Detect Address Setting Register 3 | PADR3 | R/W | | XXXXXXXX | | | | 0079F3 _H | Detect Address Setting Register 4 | PADR4 | R/W | A -1-1 | XXXXXXXX | | | | 0079F4 _H | Detect Address Setting Register 4 | PADR4 | R/W | Address Match Detection 1 | XXXXXXXX | | | | 0079F5 _H | Detect Address Setting Register 4 | PADR4 | R/W | | XXXXXXXX | | | | 0079F6 _H | Detect Address Setting Register 5 | PADR5 | R/W | | XXXXXXXX | | | | 0079F7 _H | Detect Address Setting Register 5 | PADR5 | R/W | | XXXXXXXX | | | | 0079F8 _H | Detect Address Setting Register 5 | PADR5 | R/W | | XXXXXXXX | | | | 0079F9 _H
to
007BFF _H | | Reserve | d | | | | | | 007C00 _H to
007DFF _H | Reserved t | Reserved for CAN controller 1. Refer to "CAN Controllers" | | | | | | | $\begin{array}{c} 007\text{E}00_{\text{H}} \\ \text{to } 007\text{FFF}_{\text{H}} \end{array}$ | | Reserve | d | | | | | Notes: " Initial value of "X" represents unknown value. #### 11. CAN Controllers - Compliant with CAN standard Version2.0 Part A and Part B - Supports tr12ansmission/reception in standard frame and extended frame formats - Supports transmitting of data frames by receiving remote frames - 16 transmitting/receiving message buffers - 29-bit ID and 8-byte data - Multi-level message buffer configuration - Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask - Two acceptance mask registers in either standard frame format or extended frame formats - Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz) [&]quot; Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results reading unknown value. # **List of Control Registers** | Address | Dogistor | Abbreviation | Access | Initial Value | | |---------------------|-----------------------------------|--------------|--------|-----------------------|--| | CAN1 | Register | Appreviation | Access | initial value | | | 000080 _H | Message buffer enable register | BVALR | R/W | 00000000 _B | | | 000081 _H | wessage bullet ellable register | DVALIX | 10,44 | 00000000 _B | | | 000082 _H | Transmit request register | TREOR | R/W | 00000000 _B | | | 000083 _H | Transmit request register | INEQI | 1000 | 00000000 _B | | | 000084 _H | Transmit cancel register | TCANR | W | 00000000 _B | | | 000085 _H | Transmit cancer register | TOANK | VV | 00000000 _B | | | 000086 _H | Transmission complete register | TCR | R/W | 00000000 _B | | | 000087 _H | Transmission complete register | 1010 | 1000 | 00000000 _B | | | 000088 _H | Receive complete register | RCR | R/W | 00000000 _B | | | 000089 _H | receive complete register | NON | 1000 | 00000000 _B | | | 00008A _H | Remote request receiving register | RRTRR | R/W | 00000000 _B | | | 00008B _H | Remote request receiving register | MATAK | 10,00 | 00000000 _B | | | 00008C _H | Receive overrun register | ROVRR | R/W | 00000000 _B | | | 00008D _H | Neceive overfull register | NOVIK | 17/77 | 00000000 _B | | | 00008E _H | Reception interrupt | RIER | R/W | 00000000 _B | | | 00008F _H | enable register | NILN | FX/VV | 00000000 _B | | # 12. Interrupt Factors, Interrupt Vectors, Interrupt Control Register | Interrupt cause | El ² OS | DMA ch | Interru | pt vector | Interrupt control register | | | |--|--------------------|--------|---------|---------------------|----------------------------|---------------------|--------| | · | corresponding | number | Number | Address | Number | Address | | | Reset | N | _ | #08 | FFFFDC _H | _ | _ | | | INT9 instruction | N | _ | #09 | FFFFD8 _H | _ | - | | | Exception | N | _ | #10 | FFFFD4 _H | _ | - | | | Reserved | N | _ | #11 | FFFFD0 _H | IODOO | 000000 | | | Reserved | N | _ | #12 | FFFFCC _H | ICR00 | 0000B0 _H | | | CAN 1 RX / Input Capture 6 | Y1 | _ | #13 | FFFFC8 _H | 10004 | 0000004 | | | CAN 1 TX/NS / Input Capture 7 | Y1 | _ | #14 | FFFFC4 _H | ICR01 | 0000B1 _H | | | I ² C | N | _ | #15 | FFFFC0 _H | IODOO | 000000 | | | Reserved | N | _ | #16 | FFFFBC _H | ICR02 | 0000B2 _H | | | 16-bit Reload Timer 0 | Y1 | 0 | #17 | FFFFB8 _H | IODOO | 000000 | | | 16-bit Reload Timer 1 | Y1 | 1 | #18 | FFFFB4 _H | ICR03 | 0000B3 _H | | | 16-bit Reload Timer 2 | Y1 | 2 | #19 | FFFFB0 _H | 10004 | 0000004 | | | 16-bit Reload Timer 3 | Y1 | _ | #20 | FFFFAC _H | ICR04 | 0000B4 _H | | | PPG 4/5 | N | _ | #21 | FFFFA8 _H | IODOF | 0000B5 _H | | | PPG 6/7 | N | _ | #22 | FFFFA4 _H | ICR05 | | | | PPG 8/9/C/D | N | _ | #23 | FFFFA0 _H | IODOO | 0000B6 _H | | | PPG A/B/E/F | N | _ | #24 | FFFF9C _H | ICR06 | | | | Timebase Timer | N | _ | #25 | FFFF98 _H | 10007 | ICB07 0 | 000007 | | External Interrupt 8 to 11 | Y1 | 3 | #26 | FFFF94 _H | ICR07 | 0000B7 _H | | | Watch Timer | N | _ | #27 | FFFF90 _H | IODOO | 000000 | | | External Interrupt 12 to 15 | Y1 | 4 | #28 | FFFF8C _H | - ICR08 | 0000B8 _H | | | A/D Converter | Y1 | 5 | #29 | FFFF88 _H | | | | | Free-run Timer 0 /
free-run Timer 1 | N | _ | #30 | FFFF84 _H | ICR09 | 0000B9 _H | | | Input Capture 4/5 | Y1 | 6 | #31 | FFFF80 _H | ICD40 | 000000 | | | Output Compare 4/5 | Y1 | 7 | #32 | FFFF7C _H | ICR10 | 0000BA _H | | | Input Capture 0/1 | Y1 | 8 | #33 | FFFF78 _H | ICD44 | 000000 | | | Output Compare 6/7 | Y1 | 9 | #34 | FFFF74 _H | ICR11 | 0000BB _H | | | Reserved | N | 10 | #35 | FFFF70 _H | ICD40 | 000000 | | | Reserved | N | 11 | #36 | FFFF6C _H | - ICR12 | 0000BC _F | | | UART 3 RX | Y2 | 12 | #37 | FFFF68 _H | 10040 | 000000 | | | UART 3 TX | Y1 | 13 | #38 | FFFF64 _H | - ICR13 | 0000BD _H | | | Interrupt cause | El ² OS | DMA ch
number | Interrup | ot vector | | t control
ister | |-------------------|--------------------|------------------|----------|---------------------|--------|---------------------| | | corresponding | Hullibei | Number | Address | Number | Address | | UART 2 RX | Y2 | 14 | #39 | FFFF60 _H | ICR14 | 0000BE _H | | UART 2 TX | Y1 | 15 | #40 | FFFF5C _H | ICK 14 | 0000BEH | | Flash Memory | N | _ | #41 | FFFF58 _H | ICR15 | 00000E | | Delayed Interrupt | N | _ | #42 | FFFF54 _H | ICKIO | 0000BF _H | Y1 : Usable Y2: Usable, with El²OS stop function N : Unusable Notes: •The peripheral resources sharing the ICR register have the same interrupt level. •When the peripheral resources sharing the ICR register use extended intelligent I/O service, only one can use EI²OS at a time. •When either of the two peripheral resources sharing the ICR register specifies El²OS, the other one cannot use interrupts. # 13. Electrical Characteristics # 13.1 Absolute Maximum Ratings | Downwoodow | C. mah al | Rating | | | 5 | | |--|----------------------|-----------------------|-----------------------|----|--------------------------------------|--| | Parameter | Symbol | Min | Min Max | | Remarks | | | | V _{CC} | V _{SS} - 0.3 | V _{SS} + 6.0 | V | | | | Power supply voltage*1 | AV _{CC} | V _{SS} - 0.3 | V _{SS} + 6.0 | V | $V_{CC} = AV_{CC}^{*2}$ | | | | AVRH | V _{SS} – 0.3 | V _{SS} + 6.0 | V | AV _{CC} ≥AVRH* ² | | | Input voltage*1 | V _I | V _{SS} – 0.3 | V _{SS} + 6.0 | V | *3 | | | Output voltage* ¹ | V _O | V _{SS} - 0.3 | V _{SS} + 6.0 | V | *3 | | | Maximum Clamp Current | I _{CLAMP} | -4.0 | +4.0 | mA | *5 | | | Total Maximum Clamp Current | $\Sigma I_{CLAMP} $ | _ | 40 | mA | *5 | | | "L" level maximum output current | I _{OL} | _ | 15 | mA | *4 | | | "L" level average output current | I _{OLAV} | _ | 4 | mA | *4 | | | "L" level maximum overall output current | Σl _{OL} | _ | 100 | mA | *4 | | | "L" level average overall output current | ΣI_{OLAV} | _ | 50 | mA | *4 | | | "H" level maximum output current | I _{OH} | _ | -15 | mA | *4 | | | "H" level average output current | I _{OHAV} | _ | -4 | mA | *4 | | | "H" level maximum overall output current | Σl _{OH} | _ | -100 | mA | *4 | | | "H" level average overall output current | ΣI_{OHAV} | _ | -50 | mA | *4 | | | Power consumption | P _D | _ | 454 | mW | | | | Operating temperature | т | -40 | +105 | °C | | | | Operating temperature | T _A | -40 | +125 | °C | *6 | | | Storage temperature | T _{STG} | -55 | +150 | °C | | | # 13.2 Recommended Operating Conditions $(V_{SS} = AV_{SS} = 0 V)$ | Parameter | Symbol | Value | | | Unit | Remarks | |-----------------------|---------------------------------------|-------|-----|------|-------|---| | raiailletei | Syllibol | Min | Тур | Max | Oilit | Remarks | | | | 4.0 | 5.0 | 5.5 | V | Under normal operation | | Power supply voltage | V _{CC} ,
AV _{CC} | 3.5 | 5.0 | 5.5 | ٧ | Under normal operation, when not using the A/D converter and not Flash programming. | | AVCC | Avcc | 4.5 | 5.0 | 5.5 | V | When External bus is used. | | | | 3.0 | _ | 5.5 | V | Maintains RAM data in stop mode | | Smoothing capacitor | C _S | 0.1 | _ | 1.0 | μF | Use a ceramic capacitor or comparable capacitor of the AC characteristics. Bypass capacitor at the V _{CC} pin should be greater than this capacitor. | | Operating temperature | T _A | -40 | _ | +125 | °C | * | $^{^*}$: If used exceeding $T_A = +105^{\circ}C$, be sure to contact Cypress for reliability limitations. #### WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Note: If you change the power supply voltage too rapidly, a power on reset may occur. We recommend that you start up smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within 1 V/s, you can operate while using the PLL clock. #### 13.4.4 Clock Output Timing (T_A = $$-40^{\circ}C$$ to $+105^{\circ}C,~V_{CC}=5.0~V\pm10\%,~V_{SS}=0.0~V,~f_{CP}\leq24~MHz)$ | Parameter | Symbol | Pin | Condition | Value | | Unit | Remarks | |------------|-------------------|-----|-----------|-------|-----|-------|--------------------------| | Parameter | | | | Min | Max | Oille | Remarks | | Cycle time | t _{CYC} | CLK | - | 62.5 | _ | ns | f _{CP} = 16 MHz | | | | | | 41.67 | _ | ns | f _{CP} = 24 MHz | | CLK↑ →CLK↓ | t _{CHCL} | CLK | - | 20 | _ | ns | f _{CP} = 16 MHz | | | | | | 13 | _ | ns | f _{CP} = 24 MHz | # 13.4.7 Ready Input Timing (T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz) | Parameter | Symbol | Pin | Condition | Va | lue | Units | Remarks | |-----------------|-------------------|-----|-----------|-----|-----|-------|--------------------------| | Farameter | Syllibol | | | Min | Max | | | | RDY set-up time | + | RDY | | 45 | - | ns | f _{CP} = 16 MHz | | ND1 Set-up time | ^I RYHS | NDT | _ | 32 | - | ns | f _{CP} = 24 MHz | | RDY hold time | t _{RYHH} | RDY | | 0 | Ī | ns | | Note: If the RDY set-up time is insufficient, use the auto-ready function. # ■ Bit setting: ESCR:SCES = 1, ECCR:SCDE = 1 $$(T_A = -40 ^{\circ} C$$ to +125 $^{\circ} C,~V_{CC} = 5.0~V \pm 10\%,~f_{CP} \leq 24~MHz,~V_{SS} = 0~V)$ | Parameter | Symbol | Pin | Condition | Va | Unit | | |--|--------------------|--------------------------|--|------------------------|------|-------| | Faiailletei | Symbol | FIII | Condition | Min | Max | Oilit | | Serial clock cycle time | t _{SCYC} | SCK2, SCK3 | | 5 t _{CP} | ı | ns | | $SCK \downarrow \to SOT$ delay time | t _{SLOVI} | SCK2, SCK3
SOT2, SOT3 | | -50 | +50 | ns | | Valid SIN → SCK ↑ | t _{IVSHI} | SCK2, SCK3
SIN2, SIN3 | Internal clock operation output pins are | t _{CP} + 80 | _ | ns | | $SCK \uparrow \rightarrow Valid SIN hold time$ | t _{SHIXI} | SCK2, SCK3
SIN2, SIN3 | CL = 80 pF + 1 TTL. | 0 | _ | ns | | $SOT \rightarrow SCK \uparrow delay time$ | t _{SOVHI} | SCK2, SCK3
SOT2, SOT3 | | 3 t _{CP} – 70 | _ | ns | Notes: \bullet C_L is load capacity value of pins when testing. [•]t_{CP} is internal operating clock cycle time (machine clock) . Refer to "Clock Timing". Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied. #### 13.7 Flash Memory Program/Erase Characteristics #### ■ Dual Operation Flash Memory | Parameter | Conditions | | Value | | Unit | Remarks | |---|-------------------------|-------|-------|------|-------|--| | Parameter | Conditions | Min | Тур | Max | | Remarks | | Sector erase time
(4 Kbytes sector) | | _ | 0.2 | 0.5 | s | Excludes programming prior to erasure | | Sector erase time
(16 Kbytes sector) | T _A = +25°C | _ | 0.5 | 7.5 | S | Excludes programming prior to erasure | | Chip erase time | V _{CC} = 5.0 V | _ | 4.6 | _ | S | Excludes programming prior to erasure | | Word (16-bit width) programming time | | _ | 64 | 3600 | μS | Except for the overhead time of the system level | | Program/Erase cycle | _ | 10000 | _ | _ | cycle | | | Parameter | Conditions | | Value | | Unit | Remarks | | |-------------------------------------|-----------------------------------|-----|-------|-----|------|---------|--| | raiailletei | | Min | Тур | Max | | Remarks | | | Flash memory Data
Retention Time | Average
T _A = +85°C | 20 | _ | _ | year | * | | ^{* :} Corresponding value comes from the technology reliability evaluation result. (Using Arrhenius equation to translate high temperature measurements test result into normalized value at +85°C) # 14. Ordering Information | Part number | Package | Remarks | | | | |----------------|------------------------------------|---|--|--|--| | MB90F351EPMC | | | | | | | MB90F351ESPMC | | | | | | | MB90F351TEPMC | | | | | | | MB90F351TESPMC | 64-pin plastic LQFP
FPT-64P-M23 | Flash memory products | | | | | MB90F356EPMC | 12.0 mm , 0.65 mm pitch | (64 Kbytes) | | | | | MB90F356ESPMC | | | | | | | MB90F356TEPMC | | | | | | | MB90F356TESPMC | | | | | | | MB90F352EPMC | | | | | | | MB90F352ESPMC | | | | | | | MB90F352TEPMC | | | | | | | MB90F352TESPMC | 64-pin plastic LQFP
FPT-64P-M23 | Dual operation
Flash memory products | | | | | MB90F357EPMC | 12.0 mm, 0.65 mm pitch | (128 Kbytes) | | | | | MB90F357ESPMC | _ | | | | | | MB90F357TEPMC | | | | | | | MB90F357TESPMC | | | | | | | MB90351EPMC | | | | | | | MB90351ESPMC | | | | | | | MB90351TEPMC | | | | | | | MB90351TESPMC | 64-pin plastic LQFP
FPT-64P-M23 | MASK ROM products | | | | | MB90356EPMC | 12.0 mm, 0.65 mm pitch | (64 Kbytes) | | | | | MB90356ESPMC | _ | | | | | | MB90356TEPMC | | | | | | | MB90356TESPMC | | | | | | | MB90352EPMC | | | | | | | MB90352ESPMC | | | | | | | MB90352TEPMC | | | | | | | MB90352TESPMC | 64-pin plastic LQFP
FPT-64P-M23 | MASK ROM products | | | | | MB90357EPMC | 12.0 mm, 0.65 mm pitch | (128 Kbytes) | | | | | MB90357ESPMC | _ | | | | | | MB90357TEPMC | | | | | | | MB90357TESPMC | | | | | | ### 14.1 Package Dimensions # Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** ARM® Cortex® Microcontrollers Automotive Clocks & Buffers Interface Lighting & Power Control Memory Cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/powerpsoc cypress.com/memory cypress.com/psoc PSoC cypress.com/psoc Touch Sensing cypress.com/touch USB Controllers cypress.com/usb Wireless/RF cypress.com/wireless # PSoC® Solutions cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP ### **Cypress Developer Community** Community | Forums | Blogs | Video | Training Technical Support cypress.com/support © Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.