Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | F ² MC-16LX | | Core Size | 16-Bit | | Speed | 24MHz | | Connectivity | CANbus, EBI/EMI, I ² C, LINbus, UART/USART | | Peripherals | DMA, LVD, POR, WDT | | Number of I/O | 51 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | Mask ROM | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 3.5V ~ 5.5V | | Data Converters | A/D 15x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb90352espmc1-gs-163e1 | # 1. Product Lineup1 (Without Clock supervisor function) ■ Flash memory products | Part Number | MB90F351E | MB90F351TE | MB90F351ES | MB90F351TES | | | | | | |--|--|--|----------------------------------|--------------------|--|--|--|--|--| | | MB90F352E | MB90F352TE | MB90F352ES | MB90F351TES | | | | | | | Parameter | | | | | | | | | | | Туре | | Flash memo | | | | | | | | | CPU | | F ² MC-16 | SLX CPU | | | | | | | | System clock | Minimum instruction execut | PLL clock multiplication circuit (\times 1, \times 2, \times 3, \times 4, \times 6, 1/2 when PLL stops)
Minimum instruction execution time : 42 ns (oscillation clock 4 MHz, PLL \times 6) | | | | | | | | | ROM | | MB90F351E(S), MB90F352
Flash memory (Erase/write a
2TE(S) | | at the same time): | | | | | | | RAM | | 4 Kb | ytes | | | | | | | | Emulator-specific power supply* | | - | - | | | | | | | | Sub clock pin
(X0A, X1A)
(Max 100 kHz) | Ye | es | ı | No | | | | | | | Clock supervisor | | N | 0 | | | | | | | | Low voltage/CPU operation detection reset | No | Yes | No Yes | | | | | | | | Operating voltage | | perating (not using A/D conv
converter/Flash programmi
ernal bus | | | | | | | | | Operating temperature | | –40°C to | +125°C | | | | | | | | Package | | LQFI | P-64 | | | | | | | | | | 2 cha | nnels | | | | | | | | LIN-UART | Special synchronous option | ttings using a dedicated bau
is for adapting to different sy
ther as master or slave LIN o | nchronous serial protocols | ner) | | | | | | | I ² C (400 kbps) | | 1 cha | annel | | | | | | | | | | 15 cha | annels | | | | | | | | A/D converter | 10-bit or 8-bit resolution
Conversion time : Min 3 μs | includes sample time (per c | one channel) | | | | | | | | 16-bit reload timer
(2 channels) | Operation clock frequency :
Supports External Event Co | fsys/ 2^1 , fsys/ 2^3 , fsys/ 2^5 (fsyout function. | ys = Machine clock frequen | icy) | | | | | | | 40 hit Farance " | Free-run Timer 0 (clock inputere-run Timer 1 (clock inputere-run Timer 1) | ut FRCK0) corresponds to I0
ut FRCK1) corresponds to I0 | CU0/1.
CU4/5/6/7, OCU4/5/6/7. | | | | | | | | (2 channels) | 6-bit Free-run timer 2 channels) Signals an interrupt when overflowing. Supports Timer Clear when it matches Output Compare (ch.0, ch.4). Operation clock frequency: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fsys/2 ⁶ , fsys/2 ⁷ (fsys = Machine clock frequency) | | | | | | | | | | 16 hit output | | 4 cha | nnels | | | | | | | | 16-bit output compare | | 6-bit free-run Timer matches can be used to generate an | | ters. | | | | | | ■ MASK ROM products/Evaluation products | Part Number Parameter | MB90351E
MB90352E | MB90351TE
MB90352TE | MB90351ES
MB90352ES | MB90351TES
MB90352TES | MB90V340E-1
01 | MB90V340E-1 | | | |--|---|--|---|--|---------------------|-------------|--|--| | Туре | | MASK RO | M products | | Evaluation products | | | | | CPU | | | F ² MC-1 | 6LX CPU | | | | | | System clock | · | • | 2, ×3, ×4, ×6, 1/2 v
42 ns (oscillation of | when PLL stops)
clock 4 MHz, PLL × | 6) | | | | | ROM | , | B90351E(S), MB90
B90352E(S), MB90 | ` ' | | Exte | ernal | | | | RAM | | 4 Kt | oytes | | 30 K | bytes | | | | Emulator-specific power supply* | | - | _ | | Y | es | | | | Sub clock pin
(X0A, X1A)
(Max 100 kHz) | Ye | es | N | No | No | Yes | | | | Clock supervisor | | | N | lo | • | 1 | | | | Low voltage/CPU operation detection reset | No | Yes | No | Yes | N | lo | | | | Operating voltage range | 4.0 V to 5.5 V : at | normal operating (
using A/D converte
using external bus | 5 V ± 10% | | | | | | | Operating temperature range | | −40°C to | +125°C | | _ | | | | | Package | | LQF | P-64 | | PGA-299 | | | | | | | 2 cha | innels | | 5 channels | | | | | LIN-UART | Special synchrono | ous options for ada | | d rate generator (re
nchronous serial p
device | | | | | | I ² C (400 kbps) | | 1 cha | annel | | 2 cha | nnels | | | | | | 15 ch | annels | | 24 ch | annels | | | | A/D converter | | 10-bit or 8-bit resolution Conversion time : Min 3 μs includes sample time (per one channel) | | | | | | | | | | 2 cha | innels | | 4 cha | nnels | | | | 16-bit reload timer | Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = Machine clock frequency) Supports External Event Count function. | | | | | | | | | 16-bit free-run timer
(2 channels) | Free-run Timer 0 (
Free-run Timer 1 (| Free-run Timer 0 corresponds to ICU0/1/2/3, OCU0/1/2/3. Free-run Timer 1 corresponds to ICU4/5/6/7, OCU4/5/6/7. | | | | | | | | • | Supports Timer Ci
Operation clock from | Signals an interrupt when overflowing. Supports Timer Clear when it matches Output Compare (ch.0, ch.4). Operation clock frequency: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fsys/2 ⁶ , fsys/2 ⁷ (fsys = Machine clock frequency) | | | | | | | | Part Number Parameter | MB90351E
MB90352E | MB90351TE
MB90352TE | MB90351ES
MB90352ES | MB90351TES
MB90352TES | MB90V340E-1
01 | MB90V340E-1
02 | | | | | |---|--|--|---|--------------------------|----------------------|-------------------|--|--|--|--| | | | 4 cha | ınnels | | 8 channels | | | | | | | 16-bit output compare | | Signals an interrupt when 16-bit free-run Timer matches output compare registers. A pair of compare registers can be used to generate an output signal. | | | | | | | | | | 40 hit is not a set of | | 6 cha | innels | | 8 cha | annels | | | | | | 16-bit input capture | Retains 16-bit free | e-run timer value by | / (rising edge, fallin | ig edge, or the both | n edges), signals ar | n interrupt. | | | | | | 8/16-bit
programmable pulse gen-
erator | 8- | 6 channels (16-bit)
8-bit reload o
bit reload registers
bit reload registers | 8 channels (16-bit)/ 16 channels (8-bit) 8-bit reload counters × 16 8-bit reload registers for L pulse width × 16 8-bit reload registers for H pulse width × 16 | | | | | | | | | cidio | Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler + 8-bit reload counter. Operation clock frequency: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ or 128 μs@fosc = 4 MHz (fsys = Machine clock frequency, fosc = Oscillation clock frequency) | | | | | | | | | | | | | 1 ch | 3 channels | | | | | | | | | CAN interface | Compliant with CAN standard Version 2.0 Part A and Part B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame 16 prioritized message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering: Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps. | | | | | | | | | | | | | 8 cha | innels | | 16 ch | annels | | | | | | External interrupt | Can be used rising edge, falling edge, starting up by "H"/"L" level input, external interrupt, extended intelligent I/O services (El ² OS) and DMA. | | | | | | | | | | | D/A converter | - 2 channels | | | | | | | | | | | I/O ports | Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin) | | | | | | | | | | | Flash memory | | | - | | | | | | | | | Corresponding evaluation name | MB90V3 | 40E-102 | MB90V3 | 340E-101 | - | | | | | | ^{*:} It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details. ## 3. Packages and Product Correspondence | Package | MB90V340E-101
MB90V340E-102
MB90V340E-103
MB90V340E-104 | MB90351E (S), MB90351TE (S) MB90F351E (S), MB90F351TE (S) MB90352E (S), MB90352TE (S) MB90F352E (S), MB90F352TE (S) MB90F356E (S), MB90356TE (S) MB90F356E (S), MB90F356TE (S) MB90F357E (S), MB90F357TE (S) | |---|--|--| | PGA-299C-A01 | \circ | × | | FPT-64P-M23
(12.0 mm, 0.65 mm pitch) | × | 0 | | FPT-64P-M24
(10.0 mm, 0.50 mm pitch) | × | 0 | \bigcirc : Yes, \times : No Note: Refer to "Package Dimensions" for detail of each package. | Pin No. | Pin name | I/O
Circuit
type* | Function | |---------|----------|-------------------------|--| | | P30 | _ | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. | | 54 | ALE | G | Address latch enable output pin. This function is enabled when external bus is enabled. | | | IN4 | 1 | Data sample input pin for input capture ICU4 | | | P31 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. | | 55 | RD | G | Read strobe output pin for data bus. This function is enabled when external bus is enabled. | | | IN5 | 1 | Data sample input pin for input capture ICU5 | | | P32 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the WR/WRL pin output disabled. | | 56 | WR/WRL | G | Write strobe output pin for the data bus. This function is enabled when both the external bus and the WR/WRL pin output are enabled. WRL is used to write-strobe 8 lower bits of the data bus in 16-bit access. WR is used to write-strobe 8 bits of the data bus in 8-bit access. | | | INT10R | 1 | External interrupt request input pin for INT10 | | 57 | P33 | - G | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode, in external bus 8-bit mode or with the WRH pin output disabled. | | 37 | WRH | | Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16-bit mode is selected, and when the WRH output pin is enabled. | | | P34 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled. | | 58 | HRQ | G | Hold request input pin. This function is enabled when both the external bus and the hold function are enabled. | | | OUT4 | 1 | Wave form output pin for output compare OCU4 | | | P35 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled. | | 59 | HAK | G | Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled. | | | OUT5 | 1 | Wave form output pin for output compare OCU5 | | | P36 | | General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the external ready function disabled. | | 60 | RDY | G | Ready input pin. This function is enabled when both the external bus and the external ready function are enabled. | | | OUT6 | | Wave form output pin for output compare OCU6 | ■ MB90351E (S), MB90351TE (S), MB90F351E (S), MB90F351TE (S), MB90352E (S), MB90352TE (S), MB90F352E (S) | Address | Register | Abbreviation | Access | Resource name | Initial value | | | | | | |--|---|--------------|--------|--|-----------------------|--|--|--|--|--| | 000058 _H | | 1 | | | | | | | | | | to
00005B _H | Reserved | | | | | | | | | | | 00005C _H | Output Compare Control Status
Register 4 | OCS4 | R/W | | 0000XX00 _B | | | | | | | 00005D _H | Output Compare Control Status
Register 5 | OCS5 | R/W | Output Compare 4/5 | 0XX00000 _B | | | | | | | 00005E _H | Output Compare Control Status
Register 6 | OCS6 | R/W | Output Compare 6/7 | 0000XX00 _B | | | | | | | 00005F _H | Output Compare Control Status
Register 7 | OCS7 | R/W | Output Compare 6/7 | 0XX00000 _B | | | | | | | 000060 _H | Timer Control Status Register 0 | TMCSR0 | R/W | 40 hit Daland Times 0 | 00000000 _B | | | | | | | 000061 _H | Timer Control Status Register 0 | TMCSR0 | R/W | 16-bit Reload Timer 0 | XXXX0000 _B | | | | | | | 000062 _H | Timer Control Status Register 1 | TMCSR1 | R/W | 4C hit Daland Timen 4 | 00000000 _B | | | | | | | 000063 _H | Timer Control Status Register 1 | TMCSR1 | R/W | 16-bit Reload Timer 1 | XXXX0000 _B | | | | | | | 000064 _H | Timer Control Status Register 2 | TMCSR2 | R/W | 40 hit Daland Times 0 | 00000000 _B | | | | | | | 000065 _H | Timer Control Status Register 2 | TMCSR2 | R/W | 16-bit Reload Timer 2 | XXXX0000 _B | | | | | | | 000066 _H | Timer Control Status Register 3 | TMCSR3 | R/W | 40.1 " D 1 1 1 1 1 2 | 00000000 _B | | | | | | | 000067 _H | Timer Control Status Register 3 | TMCSR3 | R/W | 16-bit Reload Timer 3 | XXXX0000 _B | | | | | | | 000068 _H | A/D Control Status Register 0 | ADCS0 | R/W | | 000XXXX0 _B | | | | | | | 000069 _H | A/D Control Status Register 1 | ADCS1 | R/W | | 0000000X _B | | | | | | | 00006A _H | A/D Data Register 0 | ADCR0 | R | A /D O | 00000000 _B | | | | | | | 00006B _H | A/D Data Register 1 | ADCR1 | R | A/D Converter | XXXXXX00 _B | | | | | | | 00006C _H | ADC Setting Register 0 | ADSR0 | R/W | | 00000000 _B | | | | | | | 00006D _H | ADC Setting Register 1 | ADSR1 | R/W | | 00000000 _B | | | | | | | 00006E _H | Low Voltage/CPU Operation Detection Reset
Control Register | LVRC | R/W, W | Low Voltage/CPU
Operation Detection Reset | 00111000 _B | | | | | | | 00006F _H | ROM Mirror Function Select Register | ROMM | W | ROM Mirror | XXXXXXX1 _B | | | | | | | 000070 _H
to
00007F _H | Reserved | | | | | | | | | | | 000080 _H
to
00008F _H | Reserved for CAN controller 1. Refer to "CAN Controllers" | | | | | | | | | | | 000090 _H
to
00009A _H | Reserved | | | | | | | | | | | Address | Posistor | Abbreviation | A00000 | Initial Value | | |---------------------|--------------------------------|--------------|--------|-----------------------|--| | CAN1 | Register | Appreviation | Access | | | | 007D00 _H | Control status register | CSR | R/W, W | 0XXXX0X1 _B | | | 007D01 _H | Control status register | CSK | R/W, R | 00XXX000 _B | | | 007D02 _H | Last event indicator register | LEIR | R/W | 000X0000 _B | | | 007D03 _H | Last event indicator register | LLIIV | 1000 | XXXXXXXX _B | | | 007D04 _H | Receive/transmit error counter | RTEC | R | 00000000 _B | | | 007D05 _H | Neceive/transmit error counter | KILO | IX. | 00000000 _B | | | 007D06 _H | Bit timing register | BTR | R/W | 11111111 _B | | | 007D07 _H | Dit tilling register | BIK | 1000 | X1111111 _B | | | 007D08 _H | IDE register | IDER | R/W | $XXXXXXXX_B$ | | | 007D09 _H | IDE register | IDEN | 1000 | XXXXXXXX _B | | | 007D0A _H | Transmit RTR register | TRTRR | R/W | 00000000 _B | | | 007D0B _H | Transmit ivity register | IIVIIII | 1000 | 00000000 _B | | | 007D0C _H | Remote frame receive waiting | RFWTR | R/W | XXXXXXXX _B | | | 007D0D _H | register | IXI VVIIX | 1000 | XXXXXXXX _B | | | 007D0E _H | Transmit interrupt | TIER | R/W | 00000000 _B | | | 007D0F _H | enable register | TILIX | 1000 | 00000000 _B | | | 007D10 _H | | | | XXXXXXXX _B | | | 007D11 _H | Acceptance mask | AMSR | R/W | XXXXXXXX _B | | | 007D12 _H | select register | | 1000 | XXXXXXXX _B | | | 007D13 _H | | | | XXXXXXXX _B | | | 007D14 _H | | | | XXXXXXXX _B | | | 007D15 _H | Acceptance mask register 0 | AMR0 | R/W | XXXXXXXX _B | | | 007D16 _H | Acceptance mask register o | Alviito | 1000 | XXXXXXXX _B | | | 007D17 _H | | | | XXXXXXXX _B | | | 007D18 _H | | | | XXXXXXXX _B | | | 007D19 _H | Acceptance mask register 1 | AMR1 | R/W | XXXXXXXX _B | | | 007D1A _H | Acceptance mask register i | AIVIRI | F/VV | XXXXXXXX _B | | | 007D1B _H | | | | $XXXXXXXX_B$ | | ## **List of Message Buffers (ID Registers)** | Address | Register | Abbreviation | Access | Initial Value | | |---------------------------|---------------------|--------------|-----------|----------------------------|--| | CAN1 | Register | Abbreviation | Access | miliai vaido | | | 007C00 _H | | | | XXXXXXXX _B | | | to
007C1F _H | General-purpose RAM | _ | R/W | to
XXXXXXX _B | | | 007C20 _H | | | + | XXXXXXXX | | | 007C21 _H | | | | XXXXXXXX _B | | | 007C22 _H | ID register 0 | IDR0 | R/W | XXXXXXXX | | | 007C23 _H | | | | XXXXXXXXB | | | 007C24 _H | | | | XXXXXXXX _B | | | 007C25 _H | | | | XXXXXXXXB | | | 007C26 _H | ID register 1 | IDR1 | R/W | XXXXXXXX _B | | | 007C27 _H | | | | XXXXXXXXB | | | 007C28 _H | | | 1 | XXXXXXXX _B | | | 007C29 _H | | | | XXXXXXXXB | | | 007C2A _H | ID register 2 | IDR2 | R/W | XXXXXXXX _B | | | 007C2B _H | | | | XXXXXXXXB | | | 007C2C _H | | | | XXXXXXXX _B | | | 007C2D _H | ID as vistos 0 | IDR3 | DAM | XXXXXXXXB | | | 007C2E _H | ID register 3 | | R/W | XXXXXXXX _B | | | 007C2F _H | | | | $XXXXXXXX_B$ | | | 007C30 _H | | | | XXXXXXXX | | | 007C31 _H | ID variatas 4 | IDR4 | R/W | XXXXXXXXB | | | 007C32 _H | ID register 4 | | R/W | XXXXXXXX _B | | | 007C33 _H | | | XXXXXXXXB | | | | 007C34 _H | | | | XXXXXXXX _B | | | 007C35 _H | ID register 5 | IDR5 | R/W | XXXXXXXXB | | | 007C36 _H | ID register 5 | פאטו | K/VV | XXXXXXXX _B | | | 007C37 _H | | | | XXXXXXXXB | | | 007C38 _H | | | | XXXXXXXX _B | | | 007C39 _H | ID register 6 | IDR6 | R/W | XXXXXXXXB | | | 007C3A _H | up register o | סאטו | [N/VV | XXXXXXXX _B | | | 007C3B _H | | | | XXXXXXXXB | | | 007C3C _H | | | | XXXXXXXX _B | | | 007C3D _H | ID register 7 | IDD7 | D/M | XXXXXXXXB | | | 007C3E _H | ID register 7 | IDR7 | R/W | XXXXXXXX _B | | | 007C3F _H | | | | XXXXXXXXB | | | Address | Register | Abbreviation | Access | Initial Value | | |---------------------|----------------|--------------|--------|-----------------------|--| | CAN1 | Negistei | Abbieviation | Access | illitiai value | | | 007C40 _H | | | | XXXXXXXX _B | | | 007C41 _H | ID register 8 | IDR8 | R/W | XXXXXXXX _B | | | 007C42 _H | ib register o | IDRO | INVV | XXXXXXXX _B | | | 007C43 _H | | | | XXXXXXXX _B | | | 007C44 _H | | | | XXXXXXXX _B | | | 007C45 _H | ID register 9 | IDR9 | R/W | XXXXXXXX _B | | | 007C46 _H | ib register 9 | IDIX9 | 1000 | XXXXXXXX _B | | | 007C47 _H | | | | XXXXXXXX _B | | | 007C48 _H | | | | XXXXXXXX _B | | | 007C49 _H | ID register 10 | IDR10 | R/W | XXXXXXXX _B | | | 007C4A _H | ID register to | IDKIU | 17/1/ | XXXXXXXX _B | | | 007C4B _H | | | | XXXXXXXXB | | | 007C4C _H | | | R/W | XXXXXXXX _B | | | 007C4D _H | ID register 11 | IDR11 | | $XXXXXXXX_B$ | | | 007C4E _H | ib register 11 | IDICIT | F/VV | XXXXXXXX _B | | | 007C4F _H | | | | $XXXXXXXX_B$ | | | 007C50 _H | | IDR12 | R/W | XXXXXXXX _B | | | 007C51 _H | ID register 12 | | | $XXXXXXXX_B$ | | | 007C52 _H | ID register 12 | | F/VV | XXXXXXXX _B | | | 007C53 _H | | | | $XXXXXXXX_B$ | | | 007C54 _H | | | | XXXXXXXX _B | | | 007C55 _H | ID register 13 | IDR13 | R/W | $XXXXXXXX_B$ | | | 007C56 _H | ib register 13 | IDK13 | F/VV | XXXXXXXX _B | | | 007C57 _H | | | | XXXXXXXXB | | | 007C58 _H | | | | XXXXXXXX _B | | | 007C59 _H | ID register 14 | IDR14 | R/W | XXXXXXXX _B | | | 007C5A _H | ID register 14 | IDK 14 | 17/1/ | XXXXXXXX _B | | | 007C5B _H | | | | XXXXXXXXB | | | 007C5C _H | | | | XXXXXXXX _B | | | 007C5D _H | ID register 15 | IDR15 | R/W | XXXXXXXXB | | | 007C5E _H | ID register 15 | פואטו | TV VV | XXXXXXXX _B | | | 007C5F _H | | | | XXXXXXXXB | | ### 13.2 Recommended Operating Conditions $(V_{SS} = AV_{SS} = 0 V)$ | Parameter | Symbol | | Value | | Unit | Remarks | |-----------------------|---------------------------------------|-----|-------|------|-------|---| | raiailletei | Syllibol | Min | Тур | Max | Oilit | Remarks | | | | 4.0 | 5.0 | 5.5 | V | Under normal operation | | Power supply voltage | V _{CC} ,
AV _{CC} | 3.5 | 5.0 | 5.5 | ٧ | Under normal operation, when not using the A/D converter and not Flash programming. | | | | 4.5 | 5.0 | 5.5 | V | When External bus is used. | | | | 3.0 | _ | 5.5 | V | Maintains RAM data in stop mode | | Smoothing capacitor | C _S | 0.1 | _ | 1.0 | μF | Use a ceramic capacitor or comparable capacitor of the AC characteristics. Bypass capacitor at the V _{CC} pin should be greater than this capacitor. | | Operating temperature | T _A | -40 | _ | +125 | °C | * | $^{^*}$: If used exceeding $T_A = +105^{\circ}C$, be sure to contact Cypress for reliability limitations. #### WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. ## 13.4 AC Characteristics ### 13.4.1 Clock Timing (T_A = -40 °C to +125 °C, V_{CC} = 5.0 V \pm 10%, $f_{CP} \leq$ 24 MHz, $V_{SS} = AV_{SS} = 0$ V) | Dovementor | Compleal | Di- | Value | | | I I mit | Domonico | |--------------------------------|-------------------------------------|----------|-------|--------|-----|---------|--| | Parameter | Symbol | Pin | Min | Тур | Max | Unit | Remarks | | | | | 3 | _ | 16 | MHz | 1/2 (at PLL stop)
When using an oscillation circuit | | | | | 4 | _ | 16 | MHz | 1 multiplied PLL
When using an oscillation circuit | | | | X0, X1 | 4 | _ | 12 | MHz | 2 multiplied PLL
When using an oscillation circuit | | | | λ0, λ1 | 4 | _ | 8 | MHz | 3 multiplied PLL
When using an oscillation circuit | | | | | 4 | ı | 6 | MHz | 4 multiplied PLL
When using an oscillation circuit | | | f _C | | - | _ | 4 | MHz | 6 multiplied PLL
When using an oscillation circuit | | Clock frequency | ic ic | X0 | 3 | _ | 24 | MHz | 1/2 (at PLL stop),
When using an external clock | | | | | 4 | _ | 24 | MHz | 1 multiplied PLL
When using an external clock | | | | | 4 | _ | 12 | MHz | 2 multiplied PLL
When using an external clock | | | | | 4 | _ | 8 | MHz | 3 multiplied PLL
When using an external clock | | | | | 4 | _ | 6 | MHz | 4 multiplied PLL
When using an external clock | | | | | - | _ | 4 | MHz | 6 multiplied PLL
When using an external clock | | | fCL | X0A, X1A | _ | 32.768 | 100 | kHz | When using sub clock | | | | X0, X1 | 62.5 | | 333 | ns | When using an oscillation circuit | | Clock cycle time | t _{CYL} | X0 | 41.67 | _ | 333 | ns | When using an external clock | | | tCYLL | X0A, X1A | 10 | 30.5 | - | μS | | | Input clock pulse width | P _{WH} , P _{WL} | X0 | 10 | _ | - | ns | Duty ratio should be about | | Input clock pulse width | P _{WHL} , P _{WLL} | X0A | 5 | 15.2 | 1 | μS | 30% to 70%. | | Input clock rise and fall time | t _{CR} , t _{CF} | X0 | _ | _ | 5 | ns | When using an external clock | Note: If you change the power supply voltage too rapidly, a power on reset may occur. We recommend that you start up smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within 1 V/s, you can operate while using the PLL clock. ### 13.4.4 Clock Output Timing (T_A = $$-40^{\circ}C$$ to $+105^{\circ}C,~V_{CC}=5.0~V\pm10\%,~V_{SS}=0.0~V,~f_{CP}\leq24~MHz)$ | Parameter | Symbol | Pin | Condition | Value | | Unit | Remarks | | |-------------|------------------|-----|-----------|-------|-----|-------|--------------------------|--| | | | | | Min | Max | Uiiii | Nemarks | | | Cycle time | t _{CYC} | CLK | _ | 62.5 | _ | ns | f _{CP} = 16 MHz | | | | | | | 41.67 | _ | ns | f _{CP} = 24 MHz | | | CLK↑ →CLK ↓ | tchcl | CLK | _ | 20 | _ | ns | f _{CP} = 16 MHz | | | | | | | 13 | _ | ns | f _{CP} = 24 MHz | | ## 13.4.5 Bus Timing (Read) (T_A = –40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz) | Parameter | Sym- | Pin | Condition | Va | Unit | | |--|-------------------|-------------------------------------|-----------|-------------------------------|-------------------------------|-------| | Faranteter | bol | FIII | Condition | Min | Max | Ullit | | ALE pulse width | t _{LHLL} | ALE | | t _{CP} /2 - 10 | _ | ns | | $Valid\;address\toALE\;\!\downarrowtime$ | t _{AVLL} | ALE, A21 to A16, AD15 to AD00 | | t _{CP} /2 – 20 | _ | ns | | $ALE \downarrow \to Address$ valid time | t _{LLAX} | ALE, AD15 to AD00 | | t _{CP} /2 - 15 | _ | ns | | $Valid \; address \to \overline{RD} \; \downarrow \; time$ | t _{AVRL} | A21 to A16,
AD15 to AD00, RD | | t _{CP} – 15 | _ | ns | | Valid address → Valid data input | t _{AVDV} | A21 to A16,
AD15 to AD00 | | _ | 5 t _{CP} /2 – 60 | ns | | RD pulse width | t _{RLRH} | RD | | (n*+3/2) t _{CP} - 20 | _ | ns | | $\overline{RD} \downarrow \to Valid$ data input | t _{RLDV} | RD, AD15 to AD00 | _ | _ | (n*+3/2) t _{CP} - 50 | ns | | $\overline{RD} \uparrow \to Data \; hold \; time$ | t _{RHDX} | RD, AD15 to AD00 | | 0 | _ | ns | | $\overline{RD} \uparrow \to ALE \uparrow time$ | t _{RHLH} | RD, ALE | | t _{CP} /2 - 15 | _ | ns | | $\overline{RD} \uparrow \to Address$ valid time | t _{RHAX} | RD, A21 to A16 | | t _{CP} /2 - 10 | _ | ns | | Valid address → CLK ↑ time | t _{AVCH} | A21 to A16,
AD15 to AD00,
CLK | | t _{CP} /2 – 16 | _ | ns | | $\overline{RD} \downarrow \to CLK \uparrow time$ | t _{RLCH} | RD, CLK | | t _{CP} /2 – 15 | _ | ns | | $ALE \downarrow \to \overline{RD} \downarrow time$ | t _{LLRL} | ALE, RD | | t _{CP} /2 – 15 | _ | ns | ^{*:} Number of ready cycles ### 13.4.6 Bus Timing (Write) (T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz) | Parameter | Symbol | Pin | Condition | Value | Unit | | |---|-------------------|------------------------------|-----------|------------------------------|---------|----| | raidilletei | Symbol | FIII | Condition | Min | Min Max | | | $Valid \; address \to \overline{WR} \; \downarrow time$ | t _{AVWL} | A21 to A16, AD15 to AD00, WR | | t _{CP} -15 | _ | ns | | WR pulse width | t _{WLWH} | WR | | (n*+3/2)t _{CP} - 20 | _ | ns | | Valid data output \rightarrow $\overline{\rm WR}$ \uparrow time | t _{DVWH} | AD15 to AD00, WR | | (n*+3/2)t _{CP} - 20 | _ | ns | | $\overline{ m WR} \uparrow ightarrow$ Data hold time | t _{WHDX} | AD15 to AD00, WR | _ | 15 | _ | ns | | $\overline{WR} \uparrow \to Address$ valid time | t _{WHAX} | A21 to A16, WR | | t _{CP} /2 - 10 | _ | ns | | $\overline{WR} \uparrow \to ALE \uparrow time$ | t _{WHLH} | WR, ALE | | t _{CP} /2 - 15 | _ | ns | | $\overline{WR} \downarrow \to CLK \uparrow time$ | t _{WLCH} | WR, CLK | | t _{CP} /2 - 15 | _ | ns | ^{*:} Number of ready cycles ### 13.4.7 Ready Input Timing (T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz) | Parameter | Symbol | Pin | Condition | Value | | Units | Remarks | | |-----------------|-------------------|-----|-----------|-------|-----|--------|--------------------------|--| | | | | | Min | Max | Ullits | Remarks | | | RDY set-up time | t _{RYHS} | RDY | | 45 | - | ns | f _{CP} = 16 MHz | | | | | KDT | _ | 32 | - | ns | f _{CP} = 24 MHz | | | RDY hold time | t _{RYHH} | RDY | | 0 | Ī | ns | | | Note: If the RDY set-up time is insufficient, use the auto-ready function. #### 13.4.9 LIN-UART2/3 ■ Bit setting: ESCR:SCES = 0, ECCR:SCDE = 0 $(T_A = -40^{\circ}C$ to +125°C, $V_{CC} = 5.0~V \pm 10\%, f_{CP} \leq 24~MHz, \, V_{SS} = 0~V)$ | Parameter | Symbol | Pin | Condition | Value | | Unit | | |--|--------------------|--------------------------|---|------------------------------------|------------------------|-------|--| | Parameter | Symbol | PIII | Condition | Min | Max | Offic | | | Serial clock cycle time | t _{SCYC} | SCK2, SCK3 | | 5 t _{CP} | _ | ns | | | $SCK \downarrow \to SOT$ delay time | t _{SLOVI} | SCK2, SCK3
SOT2, SOT3 | Internal shift clock | -50 | +50 | ns | | | Valid SIN → SCK ↑ | t _{IVSHI} | SCK2, SCK3
SIN2, SIN3 | mode output pins are CL = 80 pF + 1 TTL. | t _{CP} + 80 | _ | ns | | | SCK ↑ → Valid SIN hold time | t _{SHIXI} | SCK2, SCK3
SIN2, SIN3 | | 0 | _ | ns | | | Serial clock "L" pulse width | t _{SHSL} | SCK2, SCK3 | | 3 t _{CP} - t _R | _ | ns | | | Serial clock "H" pulse width | t _{SLSH} | SCK2, SCK3 | | t _{CP} + 10 | _ | ns | | | $SCK \downarrow \to SOT$ delay time | t _{SLOVE} | SCK2, SCK3
SOT2, SOT3 | | _ | 2 t _{CP} + 60 | ns | | | Valid SIN → SCK ↑ | t _{IVSHE} | SCK2, SCK3
SIN2, SIN3 | External shift clock
mode output pins are
CL = 80 pF + 1 TTL. | 30 | _ | ns | | | $SCK \uparrow \rightarrow Valid SIN hold time$ | t _{SHIXE} | SCK2, SCK3
SIN2, SIN3 | 35 p <u>2</u> . | t _{CP} + 30 | _ | ns | | | SCK fall time | t _F | SCK2, SCK3 | | _ | 10 | ns | | | SCK rise time | t _R | SCK2, SCK3 | | _ | 10 | ns | | Notes: • AC characteristic in CLK synchronized mode. - C_L is load capacity value of pins when testing. - t_{CP} is internal operating clock cycle time (machine clock) . Refer to "Clock Timing". Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied. ### ■ MASK ROM device ### ■ About the error Values of relative errors grow larger, as $|AVRH - AV_{SS}|$ becomes smaller. ## Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** ARM® Cortex® Microcontrollers cypress.com/arm Automotive Clocks & Buffers Interface Lighting & Power Control Memory **PSoC** Touch Sensing **USB Controllers** Wireless/RF cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/powerpsoc cypress.com/memory cypress.com/psoc cypress.com/touch cypress.com/usb cypress.com/wireless ### PSoC® Solutions cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP **Cypress Developer Community** Community | Forums | Blogs | Video | Training **Technical Support** cypress.com/support © Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners