

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 15x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f351espmc-gs-spe1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	MB90351E MB90352E	MB90351TE MB90352TE	MB90351ES MB90352ES	MB90351TES MB90352TES	MB90V340E-1 01	MB90V340E-1 02			
		4 cha	Innels		8 channels				
16-bit output compare	Signals an interrupt when 16-bit free-run Timer matches output compare registers. A pair of compare registers can be used to generate an output signal.								
40 bit in a to a three	6 channels 8 channels Retains 16-bit free-run timer value by (rising edge, falling edge, or the both edges), signals an interrup								
16-bit input capture	Retains 16-bit free	e-run timer value by	/ (rising edge, fallin	ig edge, or the both	edges), signals ar	n interrupt.			
8/16-bit programmable pulse gen- erator	8- 8-	6 channels (16-bit) 8-bit reload o bit reload registers bit reload registers	8 channels (16-bit)/ 16 channels (8-bit) 8-bit reload counters × 16 8-bit reload registers for L pulse width × 16 8-bit reload registers for H pulse width × 16						
	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler + 8-bit reload counter. Operation clock frequency : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ or 128 µs@fosc = 4 MHz (fsys = Machine clock frequency, fosc = Oscillation clock frequency)								
		1 cha	3 channels						
CAN interface	Automatic re-trans Automatic transmi 16 prioritized mes Supports multiple Flexible configurat	smission in case of ssion responding t sage buffers for da messages. tion of acceptance /Full bit mask/Two	o Remote Frame ta and ID filtering :	art B.					
		8 cha	innels		16 ch	annels			
External interrupt	Can be used rising extended intelliger	g edge, falling edge nt I/O services (El ²	e, starting up by "H OS) and DMA.	"/"L" level input, ext	ternal interrupt,				
D/A converter		-	_		2 cha	annels			
I/O ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)								
Flash memory			-	_					
Corresponding evaluation name	MB90V3	40E-102	MB90V3	340E-101	-	_			

*: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

MASK ROM products/Evaluation products

Part Number Parameter	MB90356E MB90357E	MB90356TE MB90357TE	MB90356ES MB90357ES	MB90356TES MB90357TES	MB90V340E-1 03	MB90V340E-1 04				
CPU	F ² MC-16LX CPU									
System clock		n-chip PLL clock multiplier (×1, ×2, ×3, ×4, ×6, 1/2 when PLL stops) linimum instruction execution time : 42 ns (oscillation clock 4 MHz, PLL × 6)								
ROM		B90356E(S), MB90 B90357E(S), MB90		External						
RAM		4 Kt	oytes		30 K	bytes				
Emulator-specific power supply*		-	_		Y	es				
Sub clock pin (X0A, X1A)	Y	es	No	Yes						
Clock supervisor			Y	es	•					
Low voltage/CPU operation detection reset	No	Yes	No	Yes	No					
Operating voltage range	4.0 V to 5.5 V : at	normal operating (using A/D converte using external bus		erter)	5 V ±	: 10%				
Operating temperature range		–40°C to	o +125°C		-					
Package		LQF	P-64		PGA-299					
		2 cha	annels		5 channels					
LIN-UART	Special synchrono	ous options for ada	ng a dedicated bau pting to different sy aster or slave LIN c	nchronous serial p						
I ² C (400 kbps)		1 ch	annel		2 cha	innels				
		15 ch	annels		24 ch	annels				
A/D converter	10-bit or 8-bit reso Conversion time :		sample time (per o	ne channel)						
16-bit reload timer (4 channels)		equency : fsys/2 ¹ , Event Count funct	fsys/2 ³ , fsys/2 ⁵ (fs <u>y</u> ion.	ys = Machine clock	frequency)					
16-bit free-run timer (2 channels)		(clock input FRCK0 (clock input FRCK1	Free-run Timer 0 corresponds to ICU 0/1/2/3, OCU 0/1/2/3. Free-run Timer 1 corresponds to ICU 4/5/6/7, OCU 4/5/6/7.							
	Supports Timer C	equency : fsys, fsys	g. with Output Compa s/2 ¹ , fsys/2 ² , fsys/2	are (Channel 0, 4) . ³ , fsys/2 ⁴ , fsys/2 ⁵ ,	fsys/2 ⁶ , fsys/2 ⁷	(Conti				

3. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.

4. Precautions for when not using a sub clock signal

X0A and X1A are oscillation pins for sub clock. If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin, and leave the X1A pin open.

5. Notes on during operation of PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Cypress will not guarantee results of operations if such failure occurs.

6. Treatment of Power Supply Pins (V_{CC}/V_{SS})

If there are multiple V_{CC} and V_{SS} pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent malfunction such as latch-up.

To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{CC} and V_{SS} pins to the power supply and ground externally. Connect V_{CC} and V_{SS} pins to the device from the current supply source at a possibly low impedance.

■ As a measure against power supply noise, it is recommended to connect a capacitor of about 0.1 µF as a bypass capacitor between V_{CC} and V_{SS} pins in the vicinity of V_{CC} and V_{SS} pins of the device.

7. Pull-up/down resistors

The MB90350E series does not support internal pull-up/down resistors (Port 0 to Port 3: built-in pull-up resistors). Use external components where needed.

8. Crystal oscillator circuit

Noise around the X0/X1, or X0A/X1A pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

Please ask each crystal maker to evaluate the oscillational characteristics of the crystal and this device.

Turning-on sequence of power supply to A/D converter and analog inputs 9.

Make sure to turn on the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (AN0 to AN14) after turning-on the digital power supply (V_{CC}). Turn-off the digital power after turning off the A/D converter power

supply and analog inputs. In this case, make sure that the power supply voltage does not exceed the rated voltage of the A/D converter (turning on/of the analog and digital power supplies simultaneously is acceptable).

10. Connection of unused pins of A/D converter if A/D converter is not used

Connect unused pins of A/D converter to $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

11. Notes on energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).

12. Stabilization of power supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the V_{CC} supply voltage operating range. Therefore, the V_{CC} supply voltage should be stabilized. For reference, the supply voltage should be controlled so that V_{CC} ripple variations (peak- to-peak values) at commercial frequencies (50 MHz/ 60 MHz) fall below 10% of the standard V_{CC} supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instanta-

neous power switching.

13. Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Retransmit the data if an error occurs because of applying the checksum to the last data in consideration of receiving wrong data due to the noise.

14. Port 0 to port 3 output during power-on (External-bus mode)

As shown below, when power is turned on in external-bus mode, there is a possibility that output signal of Port 0 to Port 3 might be unstable regardless of reset inputs.

15. Setting using CAN function

To use CAN function, please set "1" to DIRECT bit of CAN direct mode register (CDMR).

16. Flash security function

The security byte is located in the area of the Flash memory. If protection code 01_H is written in the security byte, the Flash memory is in the protected state by security.

Therefore please do not write $01_{\rm H}$ in this address if you do not use the security function. Please refer to following table for the address of the security byte.

Product name	Flash memory size	Address for security bit
MB90F352E(S) MB90F352TE(S) MB90F357E(S) MB90F357TE(S)	Embedded 1 Mbit Flash memory	FE0001 _H

17. Operation with $T_A = +105^{\circ}C$ or more

If used exceeding $T_A = +105$ °C, please contact Cypress sales representatives for reliability limitations.

18. Low voltage/CPU operation reset circuit

The low voltage detection reset circuit is a function that monitors power supply voltage in order to detect when a voltage drops below a given voltage level. When a low voltage condition is detected, an internal reset signal is generated.

The CPU operation detection reset circuit is a 20-bit counter that uses oscillation as a count clock and generates an internal reset signal if not cleared within a given time after startup.

(1) Low voltage detection reset circuit

Detection voltage	
$4.0 V \pm 0.3 V$	

When a low voltage condition is detected, the low voltage detection flag (LVRC : LVRF) is set to "1" and an internal reset signal is output.

Because the low voltage detection reset circuit continues to operate even in stop mode, detection of a low voltage condition generates an internal reset and releases stop mode.

During an internal RAM write cycle, low voltage reset is generated after the completion of writing. During the output of this internal reset, the reset output from the low voltage detection reset circuit is suppressed.

(2) CPU operation detection reset circuit

The CPU operation detection reset circuit is a counter that prevents program runaway. The counter starts automatically after a power-on reset, and must be continually and regularly cleared within a given time. If the given time interval elapses and the counter has not been cleared, a cause such as infinite program looping is assumed and an internal reset signal is generated. The internal reset generated from the CPU operation detection circuit has a width of 5 machine cycles.

Interval time	
2 ²⁰ /F _C (approx. 262 ms*)	

 *: This value assumes the interval time at an oscillation clock frequency of 4 MHz. During recovery from standby mode, the detection period is the maximum interval plus 20 μs.

This circuit does not operate in modes where CPU operation is stopped. The CPU operation detection reset circuit counter is cleared under any of the following conditions.

- ■"0" writing to CL bit of LVRC register
- Internal reset
- Main oscillation clock stop
- Transit to sleep mode
- Transit to timebase timer mode and watch mode
- 19. Internal CR oscillation circuit

Parameter	Symbol		Value		Unit
	Symbol	Min	Тур	Мах	Unit
Oscillation frequency	f _{RC}	50	100	200	kHz
Oscillation stabilization wait time	tstab	_	_	100	μs

10. I/O Map

Address	Register	Abbreviation	Access	Resource name	Initial value
000000 _H	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXAB
000001 _H	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXAB
000002 _H	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
000003 _H	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXAB
000004 _H	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXAB
000005 _H	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
000006 _H	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX _B
000007 _H to 00000A _H		Reserve	d		
00000B _H	Port 5 Analog Input Enable Register	ADER5	R/W	Port 5, A/D	11111111 _B
00000C _H	Port 6 Analog Input Enable Register	ADER6	R/W	Port 6, A/D	11111111 _B
00000D _H		Reserve	d		
00000E _H	Input Level Select Register 0	ILSR0	R/W	Ports	00000000 _B
00000F _H	Input Level Select Register 1	ILSR1	R/W	Ports	00000000 _B
000010 _H	Port 0 Direction Register	DDR0	R/W	Port 0	00000000 _B
000011 _H	Port 1 Direction Register	DDR1	R/W	Port 1	00000000 _B
000012 _H	Port 2 Direction Register	DDR2	R/W	Port 2	XX000000 _B
000013 _H	Port 3 Direction Register	DDR3	R/W	Port 3	00000000 _B
000014 _H	Port 4 Direction Register	DDR4	R/W	Port 4	XX000000 _B
000015 _H	Port 5 Direction Register	DDR5	R/W	Port 5	X0000000 _B
000016 _H	Port 6 Direction Register	DDR6	R/W	Port 6	00000000 _B
000017 _H to 000019 _H		Reserve	d		
00001A _H	SIN input Level Setting Register	DDRA	W	UART2, UART3	X00XXXXX _B
00001B _H		Reserve	d		
00001C _H	Port 0 Pull-up Control Register	PUCR0	R/W	Port 0	00000000 _B
00001D _H	Port 1 Pull-up Control Register	PUCR1	R/W	Port 1	00000000 _B
00001E _H	Port 2 Pull-up Control Register	PUCR2	R/W	Port 2	00000000 _B
00001F _H	Port 3 Pull-up Control Register	PUCR3	R/W	Port 3	00000000 _B
000020 _H to 000037 _H		Reserve	d		

Address	Register	Abbreviation	Access	Resource name	Initial value
000058 _H to 00005B _H		Reserved			
00005C _H	Output Compare Control Status Register 4	OCS4	R/W	Output Compare 4/5	0000XX00 _B
00005D _H	Output Compare Control Status Register 5	OCS5	R/W	Output Compare 4/5	0XX00000 _B
00005E _H	Output Compare Control Status Register 6	OCS6	R/W	Output Company 6/7	0000XX00 _B
00005F _H	Output Compare Control Status Register 7	OCS7	R/W	Output Compare 6/7	0XX00000 _B
000060 _H	Timer Control Status Register 0	TMCSR0	R/W	40 bit Dalaget Timer 0	00000000 _B
000061 _H	Timer Control Status Register 0	TMCSR0	R/W	16-bit Reload Timer 0	XXXX0000 _B
000062 _H	Timer Control Status Register 1	TMCSR1	R/W	16 hit Delead Timer 1	00000000 _B
000063 _H	Timer Control Status Register 1	TMCSR1	R/W	16-bit Reload Timer 1	XXXX0000 _B
000064 _H	Timer Control Status Register 2	TMCSR2	R/W	40 kit Dala ad Tim an 0	00000000 _B
000065 _H	Timer Control Status Register 2	TMCSR2	R/W	16-bit Reload Timer 2	XXXX0000 _B
000066 _H	Timer Control Status Register 3	TMCSR3	R/W	40 bit Dalaged Timer 2	00000000 _B
000067 _H	Timer Control Status Register 3	TMCSR3	R/W	16-bit Reload Timer 3	XXXX0000 _B
000068 _H	A/D Control Status Register 0	ADCS0	R/W		000XXXX0 _B
000069 _H	A/D Control Status Register 1	ADCS1	R/W		0000000X _B
00006A _H	A/D Data Register 0	ADCR0	R	A/D Oceanity	00000000 _B
00006B _H	A/D Data Register 1	ADCR1	R	A/D Converter	XXXXXX00 _B
00006C _H	ADC Setting Register 0	ADSR0	R/W		00000000 _B
00006D _H	ADC Setting Register 1	ADSR1	R/W		00000000 _B
00006E _H	Low Voltage/CPU Operation Detection Reset Control Register	LVRC	R/W, W	Low Voltage/CPU Operation Detection Reset	00111000 _B
00006F _H	ROM Mirror Function Select Register	ROMM	W	ROM Mirror	XXXXXXX1 _B
000070 _H to 00007F _H		Reserved		·	
000080 _H to 00008F _H	Reserved for CAN controller 1. Refer to "CAN C	ontrollers"			
000090 _H to 00009A _H		Reserved			

Demonst	Sym-	Dia	(1 _A = -40 C t0 +123		Value				
Parameter	bol	Pin	Condition	Min	Тур	Max	Unit	Remarks	
Power supply current			V_{CC} = 5.0 V, Internal frequency: 8 kHz, During stopping clock supervisor, At watch mode T_A = +25°C	_	10	35	μΑ	MB90351E MB90F351E MB90F352E MB90F352E MB905356E MB90F356E MB905357E MB90F357E	
			V_{CC} = 5.0 V, Internal frequency: 8 kHz, During operating clock supervi- sor, At watch mode T_A = +25°C	_	25	150	μΑ	MB90356E MB90F356E MB90357E MB90F357E	
		V_{CC} = 5.0 V, Internal CR oscillation/ 4 division, At watch mode T_A = +25°C	_	25	150	μΑ	MB90356ES MB90F356ES MB90357ES MB90F357ES		
	ССТ	V _{CC}	V_{CC} = 5.0 V, Internal frequency: 8 kHz, During stopping clock supervisor, At watch mode T_A = +25°C	_	60	140	μΑ	MB90351TE MB90F351TE MB90352TE MB90F352TE MB90356TE MB90F356TE MB905357TE	
		$V_{CC} = 5.0 V$, Internal frequency: 8 kHz, During operating clock supervisor, At watch mode $T_A = +25^{\circ}C$	_	80	250	μΑ	MB90356TE MB90F356TE MB90357TE MB90F357TE		
			V_{CC} = 5.0 V, Internal CR oscillation/ 4 division, At watch mode T_A = +25°C	_	80	250	μΑ	MB90356TES MB90F356TES MB90357TES MB90F357TES	
			$V_{CC} = 5.0 V$,	-	7	25	μA	Devices without "T"-suffix	
	ССН		At stop mode, $T_A = +25^{\circ}C$	_	60	130	μA	Devices with "T"-suffix	
Input capacity	C _{IN}	Other than C, AV _{CC} , AV _{SS} , AVRH, V _{CC} , V _{SS}	_	-	5	15	pF		

(T_A = -40°C to +125°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V)

(T_A = -40°C to +125°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V_{SS}										
Parameter	Symbol	Pin		Value		Unit	Remarks			
	Symbol	FIII	Min	Тур	Мах	Unit	Remarks			
Internal operating clock fre- quency (machine clock)	f _{CP}	_	1.5	—	24	MHz	When using main clock			
	f _{CPL}	_	_	8.192	50	kHz	When using sub clock			
Internal operating clock cy- cle time (machine clock)	t _{CP}	_	41.67	—	666	ns	When using main clock			
	t _{CPL}	_	20	122.1	_	μS	When using sub clock			

*: The limitation is in the range of the clock frequency when PLL is used. Use within the range in graph of ". PLL guaranteed operation range External clock frequency and internal operation clock frequency".

13.4.6 Bus Timing (Write)

				0.		
Parameter	Symbol	Pin	Condition	Value	Unit	
Falameter	Symbol	FIII	Condition	Min	Max	Onit
Valid address $\rightarrow \overline{WR} \downarrow$ time	t _{AVWL}	A21 to A16, AD15 to AD00, WR		t _{CP} -15	_	ns
WR pulse width	t _{WLWH}	WR		(n*+3/2)t _{CP} - 20	_	ns
Valid data output $\rightarrow \overline{\text{WR}} \uparrow$ time	t _{DVWH}	AD15 to AD00, WR		(n*+3/2)t _{CP} - 20	_	ns
$\overline{\mathrm{WR}}\uparrow \rightarrow$ Data hold time	t _{WHDX}	AD15 to AD00, WR	_	15	_	ns
$\overline{WR} \uparrow \to Address$ valid time	t _{WHAX}	A21 to A16, WR		t _{CP} /2 - 10	_	ns
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	t _{WHLH}	WR, ALE		t _{CP} /2 – 15	_	ns
$\overline{WR}\downarrow \to CLK\uparrow$ time	t _{WLCH}	WR, CLK		t _{CP} /2 - 15	_	ns

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz)

* : Number of ready cycles

13.4.7 Ready Input Timing

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz)

Parameter	Symbol	Pin	Condition	Value		Units	Remarks						
Falameter	Symbol	FIII	Condition	Min	Мах	Units	Rellidiks						
RDY set-up time	+	RDY		45	_	ns	f _{CP} = 16 MHz						
RDT set-up time	^I RYHS	RDT	RDT	KD I	RDT	RUT	RDT	RYHS ND I	RYHS -	32	_	ns	f _{CP} = 24 MHz
RDY hold time	t _{RYHH}	RDY		0	_	ns							

Note : If the RDY set-up time is insufficient, use the auto-ready function.

CLK		/		2.4 V	
ALE					
RD/WR			tryhs +	←→ tкүнн	
RDY (When WAIT is not used.	.)		V _{IH}	VIH	
RDY (When WAIT is used.)			VIL		

13.4.9 LIN-UART2/3

■ Bit setting: ESCR:SCES = 0, ECCR:SCDE = 0

Devemator	Symbol	Din	Condition	Va	Unit	
Parameter	Symbol	Pin	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK2, SCK3		5 t _{CP}	-	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVI}	SCK2, SCK3 SOT2, SOT3	Internal shift clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \uparrow	t _{i∨SHI}	SCK2, SCK3 SIN2, SIN3	mode output pins are CL = 80 pF + 1 TTL.	t _{CP} + 80	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	t _{SHIXI}	SCK2, SCK3 SIN2, SIN3		0	-	ns
Serial clock "L" pulse width	t _{SHSL}	SCK2, SCK3		3 t _{CP} - t _R	_	ns
Serial clock "H" pulse width	t _{SLSH}	SCK2, SCK3		t _{CP} + 10	_	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCK2, SCK3 SOT2, SOT3		_	2 t _{CP} + 60	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHE}	SCK2, SCK3 SIN2, SIN3	External shift clock mode output pins are CL = 80 pF + 1 TTL.	30	-	ns
SCK $\uparrow \rightarrow$ Valid SIN hold time	t _{SHIXE}	SCK2, SCK3 SIN2, SIN3		t _{CP} + 30	-	ns
SCK fall time	t _F	SCK2, SCK3]	-	10	ns
SCK rise time	t _R	SCK2, SCK3]	-	10	ns

Notes : • AC characteristic in CLK synchronized mode.

• C_L is load capacity value of pins when testing.

 \bullet t_{CP} is internal operating clock cycle time (machine clock) . Refer to "Clock Timing".

$(T_A=-40^\circ C \text{ to } +125^\circ C, \ V_{CC}=5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ \text{MHz}, \ V_{SS}=0 \ \text{V})$

13.4.10 Trigger Input Timing

$(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, V_{CC} = 5.0 \text{ V} \pm 10\%, f_{CP} \le 24 \text{ MHz}, V_{SS} = AV_{SS} = 0 \text{ V})$							
Parameter	Symbol	Pin	Condition	Value		Unit	
Parameter			Condition	Min	Max		
Input pulse width	t _{TRGH} t _{TRGL}	INT8 to INT15, INT9R to INT11R, ADTG	_	5 t _{CP}	_	ns	

13.4.11 Timer Related Resource Input Timing

(T_A = -40 ^{\circ}C to +125 ^{\circ}C, V_{CC} = 5.0 \text{ V} \pm 10\%, f_{CP} \leq 24 \text{ MHz}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})

Parameter	Symbol	vmbol Pin		Va	Unit		
Parameter Symbol		FIII	in Condition		Max	Onit	
Input pulse width	t _{TIWH} t _{TIWL}	TIN1, TIN3,IN0, IN1, IN4 to IN7	_	4 t _{CP}	_	ns	

13.4.12 Timer Related Resource Output Timing

(T_A = -40°C to +125°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V)

Parameter	Symbol	Pin	Condition	Val	Unit		
Farameter Symbo		F III	Condition	Min	Max	Onit	
$CLK \uparrow \to T_{OUT} \text{ change time}$	t _{TO}	TOT1, TOT3, PPG4, PPG6, PPG8 to PPGF	_	30	_	ns	

Note : The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

13.5 A/D Converter

	Demonstra Demonstra		Value				
Parameter	Symbol	Pin	Min	Тур	Max	Unit	Remarks
Resolution	—	_	_	_	10	bit	
Total error	—	—	-	-	±3.0	LSB	
Nonlinearity error	—	_	-	—	±2.5	LSB	
Differential nonlinearity error	_	_	_	_	±1.9	LSB	
Zero reading voltage	V _{OT}	AN0 to AN14	AV _{SS} — 1.5×LSB	AV _{SS} + 0.5×LSB	AV _{SS} + 2.5×LSB	V	
Full scale reading voltage	V _{FST}	AN0 to AN14	AVRH — 3.5×LSB	AVRH — 1.5×LSB	AVRH + 0.5×LSB	V	
Compare time	_	_	1.0		16500		$4.5~\text{V} \le \text{AV}_{\text{CC}} \le 5.5~\text{V}$
Compare une		_	2.0		10500	μs	$4.0 \text{ V} \le \text{AV}_{\text{CC}} < 4.5 \text{ V}$
Sampling time	_	_	0.5	_	×	μS	$4.5~\text{V} \le \text{AV}_{\text{CC}} \le 5.5~\text{V}$
			1.2		~	μs	$4.0~\text{V} \le \text{AV}_{\text{CC}} < 4.5~\text{V}$
Analog port input current	I _{AIN}	AN0 to AN14	- 0.3	_	+ 0.3	μA	
Analog input voltage range	V _{AIN}	AN0 to AN14	AV _{SS}	_	AVRH	V	
Reference voltage range	_	AVRH	$AV_{SS} + 2.7$	_	AV _{CC}	V	
Power supply	I _A	AV _{CC}	_	3.5	7.5	mA	
current	I _{AH}	AV _{CC}	_	_	5	μΑ	*
Reference	I _R	AVRH	_	600	900	μΑ	
voltage supply current	I _{RH}	AVRH	_	_	5	μΑ	*
Offset between channels	_	AN0 to AN14	_	_	4	LSB	

 $(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, 3.0 \text{ V} \le \text{AVRH}, \text{V}_{CC} = \text{AV}_{CC} = 5.0 \text{ V} \pm 10\%, \text{f}_{CP} \le 24 \text{ MHz}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

* : If A/D converter is not operating, a current when CPU is stopped is applicable ($V_{CC} = AV_{CC} = AVRH = 5.0 V$).

Notes on A/D Converter Section

About the external impedance of the analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting

A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.

MASK ROM device

About the error

Values of relative errors grow larger, as $|{\rm AVRH}-{\rm AV}_{\rm SS}|$ becomes smaller.

13.6 Definition of A/D Converter Terms

Resolution	: Analog variation that is recognized by an A/D converter.
Non linearity error	. Deviation between a line across zero-transition line ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 1110" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linearity error	: Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error	: Difference between an actual value and a theoretical value. A total error includes zero transition error, full-scale transition error, and linear error.

Parameter	Conditions		Value		Unit	Remarks
Falameter	Conditions	Min	Тур	Мах	Onit	i ciliai kə
Flash memory Data Retention Time	Average T _A = +85°C	20	_	_	year	*

* : Corresponding value comes from the technology reliability evaluation result.
 (Using Arrhenius equation to translate high temperature measurements test result into normalized value at +85°C)

14. Ordering Information

Part number	Package	Remarks		
MB90F351EPMC				
MB90F351ESPMC				
MB90F351TEPMC				
MB90F351TESPMC	64-pin plastic LQFP	Flash memory products		
MB90F356EPMC	FPT-64P-M23 12.0 mm , 0.65 mm pitch	(64 Kbytes)		
MB90F356ESPMC				
MB90F356TEPMC				
MB90F356TESPMC				
MB90F352EPMC				
MB90F352ESPMC				
MB90F352TEPMC				
MB90F352TESPMC	64-pin plastic LQFP	Dual operation		
MB90F357EPMC	FPT-64P-M23 12.0 mm, 0.65 mm pitch	Flash memory products (128 Kbytes)		
MB90F357ESPMC				
MB90F357TEPMC				
MB90F357TESPMC				
MB90351EPMC				
MB90351ESPMC				
MB90351TEPMC				
MB90351TESPMC	64-pin plastic LQFP FPT-64P-M23	MASK ROM products		
MB90356EPMC	12.0 mm , 0.65 mm pitch	(64 Kbytes)		
MB90356ESPMC				
MB90356TEPMC				
MB90356TESPMC				
MB90352EPMC				
MB90352ESPMC				
MB90352TEPMC				
MB90352TESPMC	64-pin plastic LQFP FPT-64P-M23	MASK ROM products		
MB90357EPMC	12.0 mm , 0.65 mm pitch	(128 Kbytes)		
MB90357ESPMC				
MB90357TEPMC				
MB90357TESPMC				

14.1 Package Dimensions

