

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 15x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f357epmc1-ge1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 8/16-bit PPG timer : 8-bit ∞ 10 channels or 16-bit × 6 channels
- 16-bit reload timer : 2 channels (only Evaluation products has 4 channels)
- 16- bit input/output timer - 16-bit free-run timer : 2 channels (FRT0 : ICU0/1, FRT1 : ICU4/5/6/7, OCU4/5/6/7)
 - 16- bit input capture: (ICU) : 6 channels
 - 16-bit output compare : (OCU) : 4 channels

FULL-CAN interface: 1 channel

- Compliant with CAN standard Version2.0 Part A and Part B
- 16 message buffers are built-in
- CAN wake-up function

LIN-UART: 2 channels

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.

I²C interface: 1 channel

Up to 400 kbps transfer rate

DTP/External interrupt: 8 channels, CAN wakeup: 1 channel

Module for activation of extended intelligent I/O service (EI²OS), DMA, and generation of external interrupt by external input.

Delay interrupt generator module

Generates interrupt request for task switching.

8/10-bit A/D converter: 15 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time : 3 µs (at 24 MHz machine clock, including sampling time)

Address matching detection (Program patch) function

■ Address matching detection for 6 address pointers.

Capable of changing input voltage level for port

- Automotive/CMOS-Schmitt (initial level is Automotive in single chip mode)
- TTL level (corresponds to external bus pins only, initial level of these pins is TTL in external bus mode)

Low voltage/CPU operation detection reset (devices with T-suffix)

- \blacksquare Detects low voltage (4.0 V \pm 0.3 V) and resets automatically
- Resets automatically when program is runaway and counter is not cleared within interval time (approx. 262 ms : external 4 MHz)

Dual operation Flash memory (only devices 128 Kbytes Flash memory)

Erase/write and read can be executed in the different bank (Upper Bank/Lower Bank) at the same time.

Supported $T_A = + 125^{\circ}C$

The maximum operating frequency is 24 MHz* : (at $T_{\text{A}}=+125^{\circ}\text{C})$.

Flash security function

 Protects the content of Flash memory (MB90F352x, MB90F357x only)

External bus interface

- 4 Mbytes external memory space MB90F351E(S), MB90F351TE(S), MB90F352E(S), MB90F352TE(S) : External bus Interface can not be used in internal vector mode. It can be used only in external vector mode.
- * : If used exceeding $T_A = +105 \text{ °C}$, be sure to contact Cypress for reliability limitations.

1. Product Lineup1 (Without Clock supervisor function)

Flash memory products

Part Number	MB90F351E	MB90F351TE	MB90F351ES	MB90F351TES	
Parameter	MB90F352E	MB90F352TE	MB90F352ES	MB90F352TES	
Туре		Flash memo	ory products		
CPU		F ² MC-16	SLX CPU		
System clock	Minimum instruction execut	cuit (× 1, × 2, × 3, × 4, × 6, 1/ tion time : 42 ns (oscillation of	clock 4 MHz, PLL \times 6)		
ROM		3	1TE(S) and read can be operated at	the same time) :	
RAM		4 Kb	oytes		
Emulator-specific power supply*		-	-		
Sub clock pin (X0A, X1A) (Max 100 kHz)	Y	es	Ν	0	
Clock supervisor		N	0		
Low voltage/CPU operation detection reset	No	Yes	No	Yes	
Operating voltage		perating (not using A/D conv) converter/Flash programm ernal bus			
Operating temperature		-40°C to	o +125°C		
Package		LQF	P-64		
		2 cha	nnels		
LIN-UART	Special synchronous option	ttings using a dedicated bau ns for adapting to different sy ther as master or slave LIN o	•	er)	
I ² C (400 kbps)		1 cha	annel		
		15 cha	annels		
A/D converter	•	includes sample time (per c	,		
16-bit reload timer (2 channels)	Operation clock frequency Supports External Event Co		ys = Machine clock frequenc	cy)	
	Free-run Timer 0 (clock input FRCK0) corresponds to ICU0/1. Free-run Timer 1 (clock input FRCK1) corresponds to ICU4/5/6/7, OCU4/5/6/7.				
16-bit Free-run timer (2 channels)	Signals an interrupt when overflowing. Supports Timer Clear when it matches Output Compare (ch.0, ch.4). Operation clock frequency : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fsys/2 ⁶ , fsys/2 ⁷ (fsys = Machine clock frequency)				
16-bit output		4 cha	nnels		
compare	Signals an interrupt when 16-bit free-run Timer matches with output compare registers. A pair of compare registers can be used to generate an output signal.				

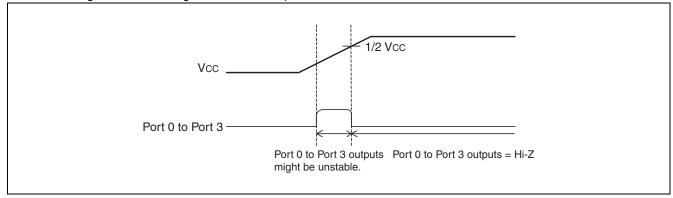
(Continued)

Part Number Parameter	MB90F351E MB90F352E	MB90F351TE MB90F352TE	MB90F351ES MB90F352ES	MB90F351TES MB90F352TES		
16-bit Input capture			nnels			
	6 channels (16-bit)/10 chan		ng edge or rising & falling edg	ge) , signals an interrupt.		
8/16-bit	8-bit reload counters × 12 8-bit reload registers for L p 8-bit reload registers for H p					
programmable pulse gen- erator	8-bit prescaler + 8-bit reload Operation clock frequency	ers can be configured as one I counter.	e 16-bit reload counter or as 2 ³ , fsys/2 ⁴ or 128 μs@fosc = ck frequency)	4 MHz		
		1 cha	annel			
CAN interface	Compliant with CAN standard Version2.0 Part A and Part B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame 16 prioritized message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps.					
		8 cha	nnels			
External interrupt	Can be used rising edge, fa extended intelligent I/O ser		"/"L" level input, external inte	errupt,		
D/A converter		-	_			
I/O ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)					
Flash memory	Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles : 10000 times Data retention time : 20 years Boot block configuration Erase can be performed on each block. Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash (MB90F352E(S) and MB90F352TE(S) only)					
Corresponding evaluation name	MB90V3	40E-102	MB90V3	40E-101		

*: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

5. Pin Description

Pin No.	Pin name	I/O Circuit type*	Function	
46	X1	А	Oscillation output pin	
47	X0	Л	Oscillation input pin	
45	RST	Е	Reset input pin	
	P62 to P67		General purpose I/O ports	
	AN2 to AN7		Analog input pins for A/D converter	
3 to 8	PPG4 (5) , 6 (7) , 8 (9) , A (B) , C (D) , E (F)	I	Output pins for PPGs	
	P50		General purpose I/O port	
9	AN8	0	Analog input pin for A/D converter	
	SIN2		Serial data input pin for UART2	
	P51		General purpose I/O port	
10	AN9	I	Analog input pin for A/D converter	
	SOT2		Serial data output pin for UART2	
	P52		General purpose I/O port	
11	AN10	I	Analog input pin for A/D converter	
	SCK2		Serial clock I/O pin for UART2	
	P53		General purpose I/O port	
12	AN11	I	Analog input pin for A/D converter	
	TIN3		Event input pin for reload timer3	
	P54		General purpose I/O port	
13	AN12	I	Analog input pin for A/D converter	
	TOT3		Output pin for reload timer3	
14 15	P55, P56	I	General purpose I/O ports	
14, 15	AN13, AN14	I	Analog input pins for A/D converter	
	P42		General purpose I/O port	
16	IN6	F	Data sample input pin for input capture ICU6	
10	RX1	Г	RX input pin for CAN1	
	INT9R		External interrupt request input pin for INT9	
	P43		General purpose I/O port	
17	IN7	F	Data sample input pin for input capture ICU7	
	TX1		TX output pin for CAN1	
	P40, P41	F	General purpose I/O ports (devices with S-suffix and MB90V340E-101/103)	
19, 20	X0A, X1A	В	X0A : Oscillation input pin for sub clock X1A : Oscillation output pin for sub clock (devices without S-suffix and MB90V340E-102/104)	


13. Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Retransmit the data if an error occurs because of applying the checksum to the last data in consideration of receiving wrong data due to the noise.

14. Port 0 to port 3 output during power-on (External-bus mode)

As shown below, when power is turned on in external-bus mode, there is a possibility that output signal of Port 0 to Port 3 might be unstable regardless of reset inputs.

15. Setting using CAN function

To use CAN function, please set "1" to DIRECT bit of CAN direct mode register (CDMR).

16. Flash security function

The security byte is located in the area of the Flash memory. If protection code 01_H is written in the security byte, the Flash memory is in the protected state by security.

Therefore please do not write $01_{\rm H}$ in this address if you do not use the security function. Please refer to following table for the address of the security byte.

Product name	Flash memory size	Address for security bit
MB90F352E(S) MB90F352TE(S) MB90F357E(S) MB90F357TE(S)	Embedded 1 Mbit Flash memory	FE0001 _H

17. Operation with $T_A = +105^{\circ}C$ or more

If used exceeding $T_A = +105$ °C, please contact Cypress sales representatives for reliability limitations.

18. Low voltage/CPU operation reset circuit

The low voltage detection reset circuit is a function that monitors power supply voltage in order to detect when a voltage drops below a given voltage level. When a low voltage condition is detected, an internal reset signal is generated.

The CPU operation detection reset circuit is a 20-bit counter that uses oscillation as a count clock and generates an internal reset signal if not cleared within a given time after startup.

(1) Low voltage detection reset circuit

Detection voltage	
$4.0 V \pm 0.3 V$	

When a low voltage condition is detected, the low voltage detection flag (LVRC : LVRF) is set to "1" and an internal reset signal is output.

Because the low voltage detection reset circuit continues to operate even in stop mode, detection of a low voltage condition generates an internal reset and releases stop mode.

During an internal RAM write cycle, low voltage reset is generated after the completion of writing. During the output of this internal reset, the reset output from the low voltage detection reset circuit is suppressed.

(2) CPU operation detection reset circuit

The CPU operation detection reset circuit is a counter that prevents program runaway. The counter starts automatically after a power-on reset, and must be continually and regularly cleared within a given time. If the given time interval elapses and the counter has not been cleared, a cause such as infinite program looping is assumed and an internal reset signal is generated. The internal reset generated from the CPU operation detection circuit has a width of 5 machine cycles.

Interval time						
2 ²⁰ /F _C (approx. 262 ms*)						

 *: This value assumes the interval time at an oscillation clock frequency of 4 MHz. During recovery from standby mode, the detection period is the maximum interval plus 20 μs.

This circuit does not operate in modes where CPU operation is stopped. The CPU operation detection reset circuit counter is cleared under any of the following conditions.

- ■"0" writing to CL bit of LVRC register
- Internal reset
- Main oscillation clock stop
- Transit to sleep mode
- Transit to timebase timer mode and watch mode
- 19. Internal CR oscillation circuit

Parameter	Symbol		Unit		
Farameter	Symbol	Min	Тур	Мах	Unit
Oscillation frequency	f _{RC}	50	100	200	kHz
Oscillation stabilization wait time	tstab	_	_	100	μs

10. I/O Map

Address	Register	Abbreviation	Access	Resource name	Initial value
000000 _H	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXAB
000001 _H	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXAB
000002 _H	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
000003 _H	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXAB
000004 _H	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXAB
000005 _H	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
000006 _H	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX _B
000007 _H to 00000A _H		Reserve	d		
00000B _H	Port 5 Analog Input Enable Register	ADER5	R/W	Port 5, A/D	11111111 _B
00000C _H	Port 6 Analog Input Enable Register	ADER6	R/W	Port 6, A/D	11111111 _B
00000D _H		Reserve	d		
00000E _H	Input Level Select Register 0	ILSR0	R/W	Ports	00000000 _B
00000F _H	Input Level Select Register 1	ILSR1	R/W	Ports	00000000 _B
000010 _H	Port 0 Direction Register	DDR0	R/W	Port 0	00000000 _B
000011 _H	Port 1 Direction Register	DDR1	R/W	Port 1	00000000 _B
000012 _H	Port 2 Direction Register	DDR2	R/W	Port 2	XX000000 _B
000013 _H	Port 3 Direction Register	DDR3	R/W	Port 3	00000000 _B
000014 _H	Port 4 Direction Register	DDR4	R/W	Port 4	XX000000 _B
000015 _H	Port 5 Direction Register	DDR5	R/W	Port 5	X0000000 _B
000016 _H	Port 6 Direction Register	DDR6	R/W	Port 6	00000000 _B
000017 _H to 000019 _H		Reserve	d		
00001A _H	SIN input Level Setting Register	DDRA	W	UART2, UART3	X00XXXXX _B
00001B _H		Reserve	d		
00001C _H	Port 0 Pull-up Control Register	PUCR0	R/W	Port 0	00000000 _B
00001D _H	Port 1 Pull-up Control Register	PUCR1	R/W	Port 1	00000000 _B
00001E _H	Port 2 Pull-up Control Register	PUCR2	R/W	Port 2	00000000 _B
00001F _H	Port 3 Pull-up Control Register	PUCR3	R/W	Port 3	00000000 _B
000020 _H to 000037 _H		Reserve	d		

Address	Register	Abbreviation	Access	Resource name	Initial value
007950 _H	Serial Mode Register 3	SMR3	W, R/W		00000000 _B
007951 _H	Serial Control Register 3	SCR3	W, R/W		00000000 _B
007952 _H	Reception/Transmission Data Register 3	RDR3/TDR3	R/W		00000000 _B
007953 _H	Serial Status Register 3	SSR3	R,R/W		00001000 _B
007954 _H	Extended Communication Control Register 3	ECCR3	R,W, R/W	UART3	000000XX _B
007955 _H	Extended Status Control Register 3	ESCR3	R/W		00000100 _B
007956 _H	Baud Rate Generator Register 30	BGR30	R/W		00000000 _B
007957 _H	Baud Rate Generator Register 31	BGR31	R/W		00000000 _B
007958 _H , 007959 _H		Reserved			
007960 _H	Clock supervisor Control Register	CSVCR	R, R/W	Clock Supervisor	00011100 _B
007961 _H to 00796D _H		Reserved			
00796E _H	CAN Direct Mode Register	CDMR	R/W	CAN Clock Sync	XXXXXXX0 _B
00796F _H		Reserved			
007970 _H	I ² C Bus Status Register 0	IBSR0	R	-	00000000 _B
007971 _H	I ² C Bus Control Register 0	IBCR0	W,R/W		0000000 _B
007972 _H	I ² C 10-bit Slave Address Register 0	ITBAL0	R/W		00000000 _B
007973 _H	TO TO-DIL Slave Address Register 0	ITBAH0	R/W		00000000 _B
007974 _H	I ² C 10-bit Slave Address Mask	ITMKL0	R/W	I ² C Interface 0	11111111 _B
007975 _H	Register 0	ITMKH0	R/W		00111111 _B
007976 _H	I ² C 7-bit Slave Address Register 0	ISBA0	R/W		00000000 _B
007977 _H	I ² C 7-bit Slave Address Mask Register 0	ISMK0	R/W		01111111 _B
007978 _H	I ² C data register 0	IDAR0	R/W		00000000 _B
007979 _H , 00797A _H		Reserved			
00797B _H	I ² C Clock Control Register 0	ICCR0	R/W	I ² C Interface 0	00011111 _B
00797C _H to 0079A1 _H		Reserved			
0079A2 _H	Flash Write Control Register 0	FWR0	R/W	D 10 "	00000000 _B
0079A3 _H	Flash Write Control Register 1	FWR1	R/W	Dual Operation Flash	00000000 _B
0079A4 _H	Sector Change Setting Register 0	SSR0	R/W		00XXXXX0 _B
H+AC 100					·
0079A5 _H to 0079C1 _H		Reserved			

(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value	
0079C3 _H to 0079DF _H		Reserve	d			
0079E0 _H	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXXAB	
0079E1 _H	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXX _B	
0079E2 _H	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXX _B	
0079E3 _H	Detect Address Setting Register 1	PADR1	R/W		XXXXXXXX _B	
0079E4 _H	Detect Address Setting Register 1	PADR1	R/W	Address Match Detection 0	XXXXXXXX _B	
0079E5 _H	Detect Address Setting Register 1	PADR1	R/W	Botootion o	XXXXXXXX _B	
0079E6 _H	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXX _B	
0079E7 _H	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXXB	
0079E8 _H	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXX _B	
0079E9 _H to 0079EF _H		Reserve	d			
0079F0 _H	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXX _B	
0079F1 _H	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXXB	
0079F2 _H	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXAB	
0079F3 _H	Detect Address Setting Register 4	PADR4	R/W		XXXXXXXX _B	
0079F4 _H	Detect Address Setting Register 4	PADR4	R/W	Address Match Detection 1	XXXXXXXXB	
0079F5 _H	Detect Address Setting Register 4	PADR4	R/W	Botootion	XXXXXXXXB	
0079F6 _H	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXX _B	
0079F7 _H	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB	
0079F8 _H	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB	
0079F9 _H to 007BFF _H 007C00 _H to	Reserved f	Reserve	-	Controllers"		
007DFF _H 007E00 _H to 007FFF _H	Reserved for CAN controller 1. Refer to "CAN Controllers" Reserved					

Notes : " Initial value of "X" represents unknown value.

" Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results reading unknown value.

11. CAN Controllers

- Compliant with CAN standard Version2.0 Part A and Part B
 Supports tr12ansmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

List of Control Registers

Address	Pagistar	Abbreviation	Access	Initial Value	
CAN1	Register	Abbreviation	ALLESS	initial value	
000080 _H	Message buffer enable register	BVALR	R/W	00000000 _B	
000081 _H	message buller enable register	DVALI	10.00	00000000 _B	
000082 _H	Transmit request register	TREQR	R/W	00000000 _B	
000083 _H	Tananii Tequest Tegister	INEQN	10,00	00000000 _B	
000084 _H	Transmit cancel register	TCANR	W	00000000 _B	
000085 _H		TOANIX	vv	00000000 _B	
000086 _H	Transmission complete register	TCR	R/W	00000000 _B	
000087 _H	Transmission complete register	TOIX	10,00	00000000 _B	
000088 _H	Receive complete register	RCR	R/W	00000000 _B	
000089 _H	Receive complete register	KOK	10,00	00000000 _B	
00008A _H	Remote request receiving register	RRTRR	R/W	00000000 _B	
00008B _H	Remote request receiving register		N/ VV	00000000 _B	
00008C _H	Receive overrun register	ROVRR	R/W	00000000 _B	
00008D _H		NUVIN	FN/ ¥ ¥	00000000 _B	
00008E _H	Reception interrupt	RIER	R/W	00000000 _B	
00008F _H	enable register		1.7. V V	00000000 _B	

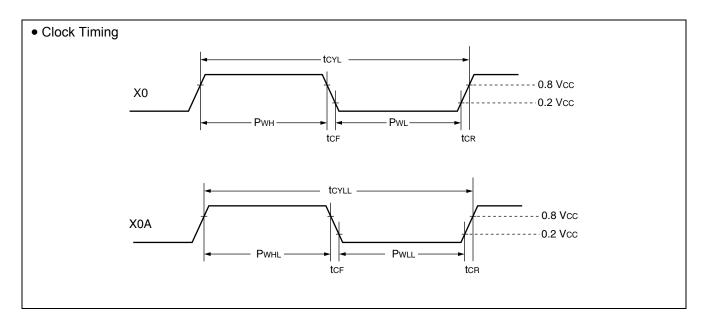
Address	Register	Abbreviation	Access	Initial Value	
CAN1	Register	ADDIEVIATION	Access	illitial value	
007C60 _H	DLC register 0	DLCR0	R/W	XXXXXXXXB	
007C61 _H	DLC register 0	DECRU	FN/ V V	~~~~B	
007C62 _H	DLC register 1	DLCR1	R/W	XXXXXXXXB	
007C63 _H	DECTEGISIENT	DEGITI		XXXXXXXB	
007C64 _H	DLC register 2	DLCR2	R/W	XXXXXXXXB	
007C65 _H	BEO register 2	DEGIVE	1000	XXXXXXB	
007C66 _H	DLC register 3	DLCR3	R/W	XXXXXXXXB	
007C67 _H	DLC register 5	DECIUS	10.00	XXXXXXXB	
007C68 _H	DLC register 4	DLCR4	R/W	XXXXXXXX _B	
007C69 _H	DLC register 4	DECK4	FN/ V V	~~~~B	
007C6A _H	DLC register 5	DLCR5	R/W	XXXXXXXX-	
007C6B _H	DLC register 5	DECKS	FN/ V V	XXXXXXXXB	
007C6C _H	DLC register 6	DLCR6	R/W	XXXXXXXXB	
007C6D _H	DLC register o	DECKO	FN/ V V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
007C6E _H	DLC register 7	DLCR7	R/W	XXXXXXXXB	
007C6F _H	DLC register 7	DEGRI	FN/ V V	XXXXXXXB	
007C70 _H	DLC register 8	DLCR8	R/W	XXXXXXX _B	
007C71 _H	DLC register o	DECKO	FN/ V V	~~~~B	
007C72 _H	DLC register 9	DLC register 9 DLCR9	R/W	XXXXXXXXB	
007C73 _H	DLC register 9	DECKS	FN/ V V	~~~~B	
007C74 _H	DLC register 10	DLCR10	R/W	XXXXXXX _B	
007C75 _H	DEC register 10	DEGRIO	FN/ V V	~~~~B	
007C76 _H	DLC register 11	DLCR11	R/W	XXXXXXX _B	
007C77 _H	DLC register 11	DEGRIT	FN/ V V	~~~~B	
007C78 _H	DLC register 12	DLCR12	R/W	XXXXXXXXB	
007C79 _H	DLC register 12	DLGRIZ	F\/ V V	~~~~B	
007C7A _H	DLC register 13	DLCR13	R/W	XXXXXXX	
007C7B _H	DLC register 13	DLGKIS	r\/ v v	XXXXXXXX _B	
007C7C _H	DLC register 14	DLCR14	R/W	*****	
007C7D _H	DLC register 14	DLGK 14	r\/ v v	XXXXXXXX _B	
007C7E _H	DLC register 15	DLCR15	R/W	XXXXXXXXB	
007C7F _H	DLC register 15	DLCK15	rt/ VV	~~~~B	

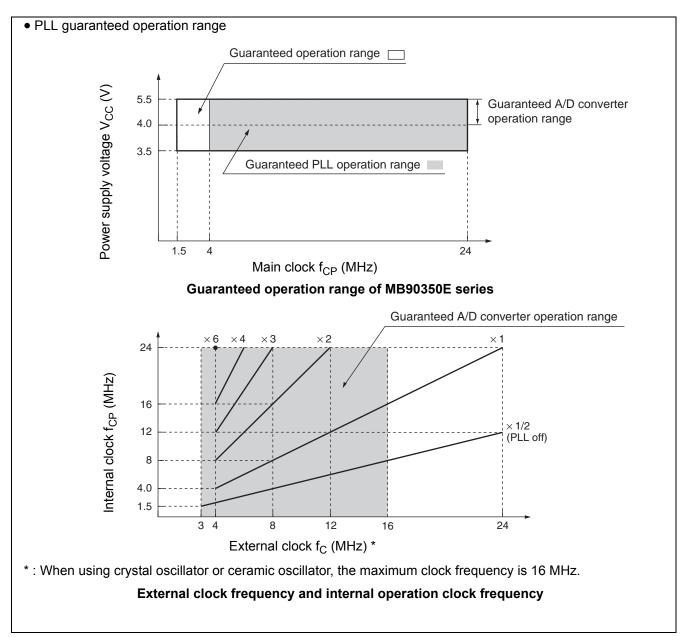
List of Message Buffers (DLC Registers and Data Registers)

-

Address	Register	Abbreviation	Access	Initial Value
CAN1	-			
007C80 _H	Data register 0	DTDA	5.44	XXXXXXXXB
to 007C87 _H	(8 bytes)	DTR0	R/W	to XXXXXXX _B
007C88 _H				XXXXXXXXB
to	Data register 1	DTR1	R/W	to
007C8F _H	(8 bytes)			XXXXXXXX _B
007C90 _H	Data register 2			XXXXXXXX _B
to	(8 bytes)	DTR2	R/W	to
007C97 _H	· · ·			XXXXXXXXB
007C98 _H to	Data register 3	DTR3	R/W	XXXXXXXX _B to
007C9F _H	(8 bytes)	DING	1000	XXXXXXXXX
007CA0 _H				XXXXXXXXB
to	Data register 4 (8 bytes)	DTR4	R/W	to
007CA7 _H	(O bytes)			XXXXXXXXB
007CA8 _H	Data register 5			XXXXXXXXB
to 007CAF _H	(8 bytes)	DTR5	R/W	to XXXXXXX _B
007CB0 _H to	Data register 6	DTR6	R/W	XXXXXXXX _B to
007CB7 _H	(8 bytes)			XXXXXXXXB
007CB8 _H	Dete register 7			XXXXXXXXB
to	Data register 7 (8 bytes)	DTR7	R/W	to
007CBF _H	(0.03(00)			XXXXXXXXB
007CC0 _H	Data register 8	DTDO	DAA	XXXXXXXXB
to 007CC7 _H	(8 bytes)	DTR8	R/W	to XXXXXXX _B
007CC8 _H				XXXXXXXXAB
to	Data register 9	DTR9	R/W	to
007CCF _H	(8 bytes)			XXXXXXXAB
007CD0 _H	Data register 10			XXXXXXXX _B
to	(8 bytes)	DTR10	R/W	to
007CD7 _H				XXXXXXXXB
007CD8 _H to	Data register 11	DTR11	R/W	XXXXXXXX _B to
007CDF _H	(8 bytes)	DIKI	10.00	XXXXXXXXAB
007CE0 _H				XXXXXXXXB
to	Data register 12	DTR12	R/W	to
007CE7 _H	(8 bytes)			XXXXXXXXB
007CE8 _H	Data register 13			XXXXXXXXB
to 007CEF _H	(8 bytes)	DTR13	R/W	to XXXXXXX _B

Parameter	Sym-	Pin	Condition		Value	-	11:-:*	Pomorko
Farameter bol	Pin	Condition	Min	Тур	Max	Unit	Remarks	
Power supply current			V_{CC} = 5.0 V, Internal frequency: 8 kHz, During stopping clock supervisor, At sub sleep T_A = +25°C	_	20	50	μΑ	MB90351E MB90F351E MB90F352E MB90F352E MB905356E MB90F356E MB905357E MB90F357E
			$V_{CC} = 5.0 V$, Internal frequency: 8 kHz, During operating clock supervisor, At sub sleep $T_A = +25^{\circ}C$	_	60	200	μΑ	MB90356E MB90F356E MB90357E MB90F357E
			V_{CC} = 5.0 V, Internal CR oscillation/ 4 division, At sub sleep T_A = +25°C	_	60	200	μΑ	MB90356ES MB90F356ES MB90357ES MB90F357ES
	ICCLS	V _{CC}	V_{CC} = 5.0 V, Internal frequency: 8 kHz, At sub sleep T_A = +25°C	_	70	150	μΑ	MB90351TE MB90F351TE MB90F352TE MB90F352TE MB905356TE MB90F356TE MB90357TE MB90F357TE
		Intern Durin super At sul $T_A = -$ $V_{CC} =$ Intern 4 divis At sul	$V_{CC} = 5.0 V$, Internal frequency: 8 kHz, During operating clock supervisor, At sub sleep $T_A = +25^{\circ}C$	_	110	300	μΑ	MB90356TE MB90F356TE MB90357TE MB90F357TE
			V_{CC} = 5.0 V, Internal CR oscillation/ 4 division, At sub sleep T_A = +25°C	_	110	300	μΑ	MB90356TES MB90F356TES MB90357TES MB90F357TES


(T_A = -40°C to +125°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V)


(Continued)

()	(T _A = -40°C to +125°C, V _{CC} = 5.0 V \pm 10%, f _{CP} \leq 24 MHz, V _{SS} = AV _{SS} = 0												
Parameter	Symbol	Pin		Value		Unit	Remarks						
	Symbol	FIII	Min	Тур	Мах	Unit	Remarks						
Internal operating clock fre-	f _{CP}	_	1.5	—	24	MHz	When using main clock						
quency (machine clock)	f _{CPL}	_	_	8.192	50	kHz	When using sub clock						
Internal operating clock cy-	t _{CP}	_	41.67	—	666	ns	When using main clock						
cle time (machine clock)	t _{CPL}	_	20	122.1	_	μS	When using sub clock						

*: The limitation is in the range of the clock frequency when PLL is used. Use within the range in graph of ". PLL guaranteed operation range External clock frequency and internal operation clock frequency".

13.4.2 Reset Standby Input

```
(T_A = -40°C to +125°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = AV_{SS} = 0 V)
```

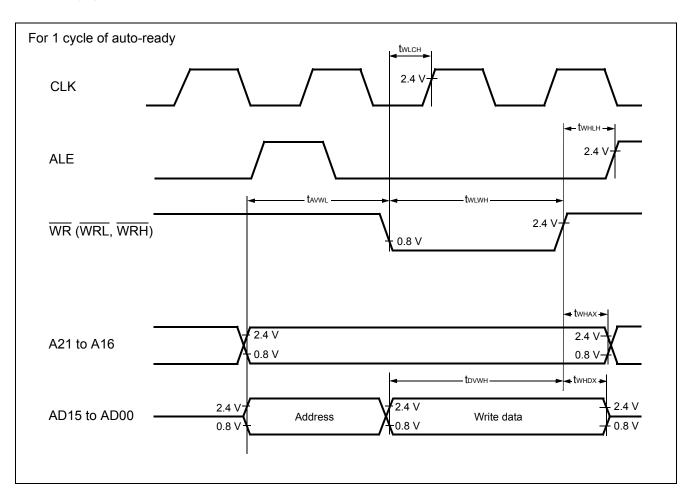
Baramatar	eter Symbol Pin		Value			Remarks
Parameter S	Symbol		Min	Max	Unit	Remarks
			500	-	ns	Under normal operation
Reset input time	t _{RSTL}	RST	Oscillation time of oscillator* $+$ 100 μ s	-	μs	In Stop mode, Sub Clock mode, Sub Sleep mode and Watch mode
			100	-	μs	In Main timer mode and PLL timer mode

13.4.5 Bus Timing (Read)

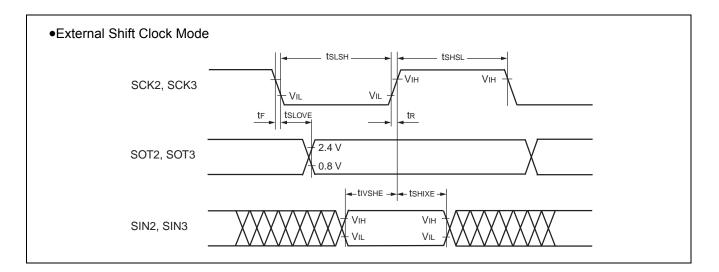
Parameter	Sym-			Va	lue	Unit
Faranieter	bol		Condition	Min	Мах	Unit
ALE pulse width	t _{LHLL}	ALE		t _{CP} /2 – 10	—	ns
Valid address \rightarrow ALE \downarrow time	t _{AVLL}	ALE, A21 to A16, AD15 to AD00		$t_{CP}^{}/2-20$	_	ns
$ALE \downarrow \rightarrow Address$ valid time	t _{LLAX}	ALE, AD15 to AD00		t _{CP} /2 – 15	—	ns
Valid address $\rightarrow \overline{RD} \downarrow$ time	t _{AVRL}	A21 to A16, AD15 to AD00, RD		t _{CP} – 15	_	ns
Valid address \rightarrow Valid data input	t _{AVDV}	A21 to A16, AD15 to AD00		_	5 t _{CP} /2 – 60	ns
RD pulse width	t _{RLRH}	RD		(n*+3/2) t _{CP} - 20	_	ns
$\overline{RD} \downarrow \rightarrow Valid$ data input	t _{RLDV}	RD, AD15 to AD00	_	_	(n*+3/2) t _{CP} – 50	ns
$\overline{RD} \uparrow \rightarrow Data$ hold time	t _{RHDX}	RD, AD15 to AD00		0	—	ns
$\overline{RD} \uparrow \rightarrow ALE \uparrow time$	t _{RHLH}	RD, ALE		t _{CP} /2 – 15	—	ns
$\overline{RD} \uparrow \rightarrow Address$ valid time	t _{RHAX}	RD, A21 to A16		t _{CP} /2 - 10	_	ns
Valid address \rightarrow CLK \uparrow time	t _{AVCH}	A21 to A16, AD15 to AD00, CLK		t _{CP} /2 - 16	_	ns
$\overline{RD} \downarrow \rightarrow CLK \uparrow time$	t _{RLCH}	RD, CLK		t _{CP} /2 - 15	_	ns
ALE $\downarrow \rightarrow \overline{RD} \downarrow$ time	t _{LLRL}	ALE, RD		t _{CP} /2 – 15	—	ns

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz)

* : Number of ready cycles



13.4.6 Bus Timing (Write)


						0.
Parameter	Symbol	Pin	Condition	Value	Unit	
Falameter	Symbol	FIII	Condition	Min	Max	Onit
Valid address $\rightarrow \overline{WR} \downarrow$ time	t _{AVWL}	A21 to A16, AD15 to AD00, WR		t _{CP} -15	_	ns
WR pulse width	t _{WLWH}	WR		(n*+3/2)t _{CP} - 20	_	ns
Valid data output $\rightarrow \overline{\text{WR}} \uparrow$ time	t _{DVWH}	AD15 to AD00, WR		(n*+3/2)t _{CP} - 20	_	ns
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{Data}$ hold time	t _{WHDX}	AD15 to AD00, WR	_	15	_	ns
$\overline{WR} \uparrow \to Address$ valid time	t _{WHAX}	A21 to A16, WR		t _{CP} /2 - 10	_	ns
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	t _{WHLH}	WR, ALE		t _{CP} /2 – 15	_	ns
$\overline{WR} \downarrow \rightarrow CLK \uparrow time$	t _{WLCH}	WR, CLK		t _{CP} /2 – 15	—	ns

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz)

* : Number of ready cycles

■ Bit setting: ESCR:SCES = 1, ECCR:SCDE = 0

(T_A = -40°C to +125°C, V_{CC} = 5.0 V \pm 10%, f_{CP} \leq 24 MHz, V_{SS} = 0 V)

Parameter	Symbol Pin		Condition	Va	Unit	
Farameter	Symbol	FIII	Condition	Min	Max	Unit
Serial clock cycle time	t _{SCYC}	SCK2, SCK3		5 t _{CP}	-	ns
$SCK\!\uparrow \to SOT$ delay time	t _{SHOVI}	SCK2, SCK3 SOT2, SOT3	Internal shift clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \downarrow	t _{IVSLI}	SCK2, SCK3 SIN2, SIN3	mode output pins are $CL = 80 \text{ pF} + 1 \text{ TTL}.$	t _{CP} + 80	-	ns
$SCK \downarrow \to Valid\;SIN\;hold\;time$	t _{SLIXI}	SCK2, SCK3 SIN2, SIN3		0	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCK2, SCK3		3 t _{CP} - t _R	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCK2, SCK3		t _{CP} + 10	-	ns
$SCK\!\uparrow o SOT$ delay time	t _{SHOVE}	SCK2, SCK3 SOT2, SOT3		_	2 t _{CP} + 60	ns
Valid SIN $ ightarrow$ SCK \downarrow	t _{IVSLE}	SCK2, SCK3 SIN2, SIN3	External shift clock mode output pins are CL = 80 pF + 1 TTL.	30	-	ns
SCK $\downarrow \rightarrow$ Valid SIN hold time	t _{SLIXE}	SCK2, SCK3 SIN2, SIN3		t _{CP} + 30	-	ns
SCK fall time	t _F	SCK2, SCK3]	-	10	ns
SCK rise time	t _R	SCK2, SCK3		_	10	ns

Notes : $\ \ \, \bullet \ C_L$ is load capacity value of pins when testing.

• t_{CP} is internal operating clock cycle time (machine clock) . Refer to "Clock Timing".

13.5 A/D Converter

				Value			
Parameter	Symbol	Pin	Min Typ		Max	Unit	Remarks
Resolution	—	_	_	_	10	bit	
Total error	—	—	-	-	±3.0	LSB	
Nonlinearity error	—	_	-	—	±2.5	LSB	
Differential nonlinearity error	_	_	_	_	±1.9	LSB	
Zero reading voltage	V _{OT}	AN0 to AN14	AV _{SS} — 1.5×LSB	AV _{SS} + 0.5×LSB	AV _{SS} + 2.5×LSB	V	
Full scale reading voltage	V _{FST}	AN0 to AN14	AVRH — 3.5×LSB	AVRH — 1.5×LSB	AVRH + 0.5×LSB	V	
Compare time		_	1.0	_	16500	μS	$4.5~\text{V} \le \text{AV}_{\text{CC}} \le 5.5~\text{V}$
Compare une		_	2.0		μ5		$4.0 \text{ V} \le \text{AV}_{\text{CC}} < 4.5 \text{ V}$
Sampling time	_	_	0.5	_	×	μS	$4.5~\text{V} \le \text{AV}_{\text{CC}} \le 5.5~\text{V}$
			1.2		~	μs	$4.0~\text{V} \le \text{AV}_{\text{CC}} < 4.5~\text{V}$
Analog port input current	I _{AIN}	AN0 to AN14	- 0.3	_	+ 0.3	μA	
Analog input voltage range	V _{AIN}	AN0 to AN14	AV _{SS}	_	AVRH	V	
Reference voltage range	_	AVRH	$AV_{SS} + 2.7$	_	AV _{CC}	V	
Power supply	I _A	AV _{CC}	_	3.5	7.5	mA	
current	I _{AH}	AV _{CC}	_	_	5	μΑ	*
Reference	I _R	AVRH	_	600	900	μΑ	
voltage supply current	I _{RH}	AVRH	_	_	5	μΑ	*
Offset between channels	_	AN0 to AN14	_	_	4	LSB	

 $(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, 3.0 \text{ V} \le \text{AVRH}, \text{V}_{CC} = \text{AV}_{CC} = 5.0 \text{ V} \pm 10\%, \text{f}_{CP} \le 24 \text{ MHz}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

* : If A/D converter is not operating, a current when CPU is stopped is applicable ($V_{CC} = AV_{CC} = AVRH = 5.0 V$).

Notes on A/D Converter Section

About the external impedance of the analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting

A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.

15. Major Changes

Page	Section	Change Results
_	_	The following names are changed. UART \rightarrow LIN-UART 16-bit I/O timer \rightarrow 16-bit free-run timer
26	Handling Devices	Added the section "13. Serial Communication".
51	Electrical Characteristics Absolute Maximum Ratings	Changed the maximum value of power consumption.
63	Electrical Characteristics AC Characteristics	Changed the "(4) Clock Output Timing". Changed the Minimum value of cycle time. $(41.76 \rightarrow 41.67)$
69 to 73		Changed the notation of "(9) LIN-UART".
78	A/D Converter	Changed the notation of "Zero reading voltage" and "full scale reading voltage".
85	Ordering Information	Changed the part number; MB90V340E-101 \rightarrow MB90V340E-101CR MB90V340E-102 \rightarrow MB90V340E-102CR MB90V340E-103 \rightarrow MB90V340E-103CR MB90V340E-104 \rightarrow MB90V340E-104CR

NOTE: Please see "Document History" about later revised information.

Document History

	Document Title: MB90350E Series F ² MC-16LX 16-bit Microcontrollers Document Number: 002-04493										
Revision ECN Orig. of Change Submission Date Description of Change											
**	_	AKIH	10/12/2006	Migrated to Cypress and assigned document number 002-04993. No change to document contents or format.							
*A	5193077	AKIH	04/07/2016	Updated to Cypress template							