

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, I²C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 15x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f357tespmc1-ge1

■ MASK ROM products/Evaluation products

Part Number Parameter	MB90351E MB90352E	MB90351TE MB90352TE	MB90351ES MB90352ES	MB90351TES MB90352TES	MB90V340E-1 01	MB90V340E-1				
Туре		MASK RO		Evaluation products						
CPU	F ² MC-16LX CPU									
System clock	·	PLL clock multiplication circuit (×1, ×2, ×3, ×4, ×6, 1/2 when PLL stops) Minimum instruction execution time: 42 ns (oscillation clock 4 MHz, PLL × 6)								
ROM	,	B90351E(S), MB90 B90352E(S), MB90	` '		Exte	ernal				
RAM		4 Kt	oytes		30 K	bytes				
Emulator-specific power supply*		-	_		Y	es				
Sub clock pin (X0A, X1A) (Max 100 kHz)	Ye	es	N	No	No	Yes				
Clock supervisor			N	lo	•	1				
Low voltage/CPU operation detection reset	No	Yes	No	Yes	N	lo				
Operating voltage range	4.0 V to 5.5 V : at	normal operating (using A/D converte using external bus		erter)	5 V ± 10%					
Operating temperature range		−40°C to	+125°C		-					
Package		LQF	P-64		PGA-299					
		2 cha	innels		5 channels					
LIN-UART	Special synchrono	ous options for ada		d rate generator (re nchronous serial p device						
I ² C (400 kbps)		1 cha	annel		2 cha	nnels				
		15 ch	annels		24 ch	annels				
A/D converter	10-bit or 8-bit reso Conversion time :		sample time (per c	one channel)						
		2 cha	innels		4 cha	nnels				
16-bit reload timer	Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = Machine clock frequency) Supports External Event Count function.									
16-bit free-run timer (2 channels)	Free-run Timer 0 (clock input FRCK0) corresponds to ICU0/1. Free-run Timer 1 (clock input FRCK1) corresponds to ICU4/5/6/7, OCU4/5/6/7.				Free-run Timer 0 corresponds to ICU0/1/2/3, OCU0/1/2/3. Free-run Timer 1 corresponds to ICU4/5/6/7, OCU4/5/6/7.					
•	Signals an interrupt when overflowing. Supports Timer Clear when it matches Output Compare (ch.0, ch.4). Operation clock frequency: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fsys/2 ⁶ , fsys/2 ⁷ (fsys = Machine clock frequency)									

Part Number Parameter	MB90F356E MB90F357E	MB90F356TE MB90F357TE	MB90F356ES MB90F357ES	MB90F356TES MB90F357TES		
16 hit input conture		6 cha	nnels			
16-bit input capture	Retains 16-bit free-run time	r value by (rising edge, fallin	g edge or rising & falling edg	ge), signals an interrupt.		
8/16-bit		6 channels (16-bit). 8-bit reload c 8-bit reload registers 8-bit reload registers	counters × 12			
programmable pulse generator	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler + 8-bit reload counter. Operation clock frequency: fsys, fsys/ 2^1 , fsys/ 2^2 , fsys/ 2^3 , fsys/ 2^4 or 128 μ s@fosc = 4 MHz (fsys = Machine clock frequency, fosc = Oscillation clock frequency)					
		1 cha	annel			
CAN interface	Conforms to CAN Specification Version 2.0 Part A and B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering: Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps.					
		8 cha	nnels			
External interrupt	Can be used rising edge, far extended intelligent I/O services.	illing edge, starting up by H/l vices (El ² OS) and DMA.	_ level input, external interru	pt,		
D/A converter		-	_			
I/O ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral module signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)					
Flash memory	Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles: 10000 times Data retention time: 20 years Boot block configuration Erase can be performed on each block. Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash (MB90F357x only)					
Corresponding EVA name	MB90V3	40E-104	MB90V3	40E-103		

^{*:} It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

Туре	Circuit	Remarks
F	P-ch Nout R CMOS hysteresis inputs Automotive input Standby control for input shutdown	 ■ CMOS level output (I_{OL} = 4 mA, I_{OH} = −4 mA) ■ CMOS hysteresis inputs (With input shutdown function when is standby) ■ Automotive input (With the standby-time input shutdown function)
G	Pull-up control Pull-up control Pout Pout R CMOS hysteresis inputs Automotive input Standby control for input shutdown	 ■ CMOS level output (I_{OL} = 4 mA, I_{OH} = −4 mA) ■ CMOS hysteresis inputs (With the standby-time input shutdown function) ■ Automotive input (With the standby-time input shutdown function) ■ TTL input (With the standby-time input shutdown function) ■ Programmable pull-up resistor: approx. 50 kΩ
н	P-ch Nout R CMOS hysteresis inputs Automotive input Standby control for input shutdown	 ■ CMOS level output (I_{OL} = 3 mA, I_{OH} = −3 mA) ■ CMOS hysteresis inputs (With the standby-time input shutdown function) ■ Automotive input (With the standby-time input shutdown function)

Туре	Circuit	Remarks
I	P-ch Nout R CMOS hysteresis inputs Automotive input Standby control for input shutdown Analog input	 ■ CMOS level output (I_{OL} = 4 mA, I_{OH} = -4 mA) ■ CMOS hysteresis inputs (With the standby-time input shutdown function) ■ Automotive input (With the standby-time input shutdown function) ■ Analog input for A/D converter
К	P-ch N-ch	Protection circuit for power supply input
L	ANE P-ch AVR ANE ANE	 With the protection circuit of A/D converter reference voltage power input pin Flash memory devices do not have a protection circuit against V_{CC} for pin AVRH.

Type	Circuit	Remarks
	Pull-up control	■ CMOS level output (I _{OL} = 4 mA, I _{OH} = −4 mA)
	resistor P-ch P-ch Pout	■ CMOS inputs (With the standby-time input shutdown function)
	N-ch	■ Automotive input (With the standby-time input shutdown function)
	Nout	■ TTL input (With the standby-time input shutdown function)
N	CMOS inputs	■ Programmable pull-up resistor: approx. 50 kΩ
	Automotive input	
	TTL input	
	Standby control for input shutdown	
	P-ch	■ CMOS level output (I _{OL} = 4 mA, I _{OH} = −4 mA)
	Pout N-ch	■ CMOS inputs (With the standby-time input shutdown function)
	Nout	■ Automotive input (With the standby-time input shutdown function)
0	CMOS inputs	■ Analog input for A/D converter
	Automotive input	
	Standby control for input shutdown	
	Analog input	

7. Handling Devices

1. Preventing latch-up

CMOS IC may suffer latch-up under the following conditions:

- \blacksquare A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- $\blacksquare A$ voltage higher than the rated voltage is applied between V_{CC} and V_{SS} pins.
- ■The AV_{CC} power supply is applied before the V_{CC} voltage.

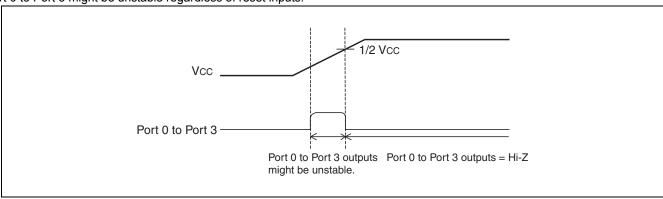
Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, also be careful not to let the analog power-supply voltage (AV $_{CC}$, AVRH) exceed the digital power-supply voltage (V $_{CC}$) .

2. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \text{ k}\Omega$.

Unused I/O pins should be set to the output state and can be left open, or the input state with the above described connection.


13. Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Retransmit the data if an error occurs because of applying the checksum to the last data in consideration of receiving wrong data due to the noise.

14. Port 0 to port 3 output during power-on (External-bus mode)

As shown below, when power is turned on in external-bus mode, there is a possibility that output signal of Port 0 to Port 3 might be unstable regardless of reset inputs.

15. Setting using CAN function

To use CAN function, please set "1" to DIRECT bit of CAN direct mode register (CDMR).

16. Flash security function

The security byte is located in the area of the Flash memory. If protection code 01_H is written in the security byte, the Flash memory is in the protected state by security.

Therefore please do not write 01_H in this address if you do not use the security function.

Please refer to following table for the address of the security byte.

Product name	Flash memory size	Address for security bit
MB90F352E(S) MB90F352TE(S) MB90F357E(S) MB90F357TE(S)	Embedded 1 Mbit Flash memory	FE0001 _H

17. Operation with $T_A = +105$ °C or more

If used exceeding $T_A = +105$ °C, please contact Cypress sales representatives for reliability limitations.

18. Low voltage/CPU operation reset circuit

The low voltage detection reset circuit is a function that monitors power supply voltage in order to detect when a voltage drops below a given voltage level. When a low voltage condition is detected, an internal reset signal is generated.

The CPU operation detection reset circuit is a 20-bit counter that uses oscillation as a count clock and generates an internal reset signal if not cleared within a given time after startup.

(1) Low voltage detection reset circuit

Detection voltage
4.0 V \pm 0.3 V

When a low voltage condition is detected, the low voltage detection flag (LVRC: LVRF) is set to "1" and an internal reset signal is output.

Because the low voltage detection reset circuit continues to operate even in stop mode, detection of a low voltage condition generates an internal reset and releases stop mode.

10. I/O Map

Address	Register	Abbreviation	Access	Resource name	Initial value
000000 _H	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXX _B
000001 _H	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXX _B
000002 _H	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXX _B
000003 _H	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXX _B
000004 _H	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXX
000005 _H	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXX _B
000006 _H	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX
000007 _H to 00000A _H		Reserve	d		•
00000B _H	Port 5 Analog Input Enable Register	ADER5	R/W	Port 5, A/D	11111111 _B
00000C _H	Port 6 Analog Input Enable Register	ADER6	R/W	Port 6, A/D	11111111 _B
00000D _H		Reserve	d		
00000E _H	Input Level Select Register 0	ILSR0	R/W	Ports	00000000 _B
00000F _H	Input Level Select Register 1	ILSR1	R/W	Ports	00000000 _B
000010 _H	Port 0 Direction Register	DDR0	R/W	Port 0	00000000 _B
000011 _H	Port 1 Direction Register	DDR1	R/W	Port 1	00000000 _B
000012 _H	Port 2 Direction Register	DDR2	R/W	Port 2	XX000000 _B
000013 _H	Port 3 Direction Register	DDR3	R/W	Port 3	00000000 _B
000014 _H	Port 4 Direction Register	DDR4	R/W	Port 4	XX000000 _B
000015 _H	Port 5 Direction Register	DDR5	R/W	Port 5	X0000000 _B
000016 _H	Port 6 Direction Register	DDR6	R/W	Port 6	00000000 _B
000017 _H to 000019 _H		Reserve	d		
00001A _H	SIN input Level Setting Register	DDRA	W	UART2, UART3	X00XXXXX _B
00001B _H		Reserve	d		•
00001C _H	Port 0 Pull-up Control Register	PUCR0	R/W	Port 0	00000000 _B
00001D _H	Port 1 Pull-up Control Register	PUCR1	R/W	Port 1	00000000 _B
00001E _H	Port 2 Pull-up Control Register	PUCR2	R/W	Port 2	00000000 _B
00001F _H	Port 3 Pull-up Control Register	PUCR3	R/W	Port 3	00000000 _B
000020 _H to 000037 _H		Reserve	d		

List of Message Buffers (DLC Registers and Data Registers)

Address	Dociotor	Abbrevietien	A 0.000	Initial Value	
CAN1	Register	Abbreviation	Access	Initial Value	
007C60 _H	DLC register 0	DLCR0	R/W	VVVVVVV	
007C61 _H	DLC register 0	DLCRU	R/VV	XXXXXXXX _B	
007C62 _H	DLC register 1	DLCR1	R/W	VVVVVVV	
007C63 _H	DLC register 1	DLCKT	F/VV	XXXXXXXX _B	
007C64 _H	DLC register 2	DLCR2	R/W	XXXXXXXX _B	
007C65 _H	DLC register 2	DLCKZ	IN/VV	~~~~~~B	
007C66 _H	DLC register 3	DLCR3	R/W	XXXXXXXX _B	
007C67 _H	DLC register 3	DLCKS	IN/VV	~~~~~~B	
007C68 _H	DLC register 4	DLCR4	R/W	XXXXXXXX _B	
007C69 _H	DLC register 4	DLCK4	IN/VV	~~~~~~B	
007C6A _H	DLC register 5	DLCR5	R/W	VVVVVVV	
007C6B _H	DLC register 5	DLCRS	F/VV	XXXXXXXX _B	
007C6C _H	DLC register 6	DLCR6	R/W	VVVVVVV	
007C6D _H	DLC register 6	DLCRO	F/VV	XXXXXXXX _B	
007C6E _H	DLC register 7	DLCR7	R/W	VVVVVVV	
007C6F _H	DLC register 7	DLCR/	R/VV	XXXXXXXX _B	
007C70 _H	DI C register 9	DLCR8	R/W	VVVVVVV	
007C71 _H	DLC register 8	DLCRo	F/VV	XXXXXXXX _B	
007C72 _H	DLC register 0	DLCR9	R/W	VVVVVVV	
007C73 _H	DLC register 9	DLCR9	F/VV	XXXXXXXX _B	
007C74 _H	DLC register 10	DLCR10	R/W	VVVVVVV	
007C75 _H	DLC register 10	DLCKIU	F/VV	XXXXXXXX _B	
007C76 _H	DLC register 11	DLCR11	R/W	XXXXXXXX _B	
007C77 _H	DLC register 11	DLORTI	F/VV	^^^^^A	
007C78 _H	DLC register 12	DI CD12	R/W	VVVVVV-	
007C79 _H	DLC register 12	DLCR12	FV/ VV	XXXXXXX _B	
007C7A _H	DI C register 13	DLCR13	R/W	YYYY VVV-	
007C7B _H	DLC register 13	DLONIS	FV/ VV	XXXXXXXX _B	
007C7C _H	DLC register 14	DLCR14	R/W	YYYYYY	
007C7D _H	DLC register 14	DLCK14	FT/VV	XXXXXXXX _B	
007C7E _H	DI C register 15	DI CP15	D/M/	YYYYYY	
007C7F _H	DLC register 15	DLCR15	R/W	XXXXXXXX _B	

12. Interrupt Factors, Interrupt Vectors, Interrupt Control Register

Interrupt cause	El ² OS	DMA ch	Interru	Interrupt vector		Interrupt control register	
·	corresponding	number	Number	Address	Number	Address	
Reset	N	_	#08	FFFFDC _H	_	_	
INT9 instruction	N	_	#09	FFFFD8 _H	_	-	
Exception	N	_	#10	FFFFD4 _H	_	-	
Reserved	N	_	#11	FFFFD0 _H	IODOO	000000	
Reserved	N	_	#12	FFFFCC _H	ICR00	0000B0 _H	
CAN 1 RX / Input Capture 6	Y1	_	#13	FFFFC8 _H	10004	0000004	
CAN 1 TX/NS / Input Capture 7	Y1	_	#14	FFFFC4 _H	ICR01	0000B1 _H	
I ² C	N	_	#15	FFFFC0 _H	IODOO	000000	
Reserved	N	_	#16	FFFFBC _H	ICR02	0000B2 _H	
16-bit Reload Timer 0	Y1	0	#17	FFFFB8 _H	IODOO	0000B3 _H	
16-bit Reload Timer 1	Y1	1	#18	FFFFB4 _H	ICR03		
16-bit Reload Timer 2	Y1	2	#19	FFFFB0 _H	- ICR04	0000004	
16-bit Reload Timer 3	Y1	_	#20	FFFFAC _H		0000B4 _H	
PPG 4/5	N	_	#21	FFFFA8 _H	ICR05	0000B5 _H	
PPG 6/7	N	_	#22	FFFFA4 _H			
PPG 8/9/C/D	N	_	#23	FFFFA0 _H	ICDOS	0000B6 _H	
PPG A/B/E/F	N	_	#24	FFFF9C _H	ICR06		
Timebase Timer	N	_	#25	FFFF98 _H	10007	000007	
External Interrupt 8 to 11	Y1	3	#26	FFFF94 _H	ICR07	0000B7 _H	
Watch Timer	N	_	#27	FFFF90 _H	IODOO	000000	
External Interrupt 12 to 15	Y1	4	#28	FFFF8C _H	- ICR08	0000B8 _H	
A/D Converter	Y1	5	#29	FFFF88 _H			
Free-run Timer 0 / free-run Timer 1	N	_	#30	FFFF84 _H	ICR09	0000B9 _H	
Input Capture 4/5	Y1	6	#31	FFFF80 _H	ICD40	000000	
Output Compare 4/5	Y1	7	#32	FFFF7C _H	ICR10	0000BA _H	
Input Capture 0/1	Y1	8	#33	FFFF78 _H	ICD44	000000	
Output Compare 6/7	Y1	9	#34	FFFF74 _H	ICR11	0000BB _H	
Reserved	N	10	#35	FFFF70 _H	ICD40	000000	
Reserved	N	11	#36	FFFF6C _H	- ICR12	0000BC _F	
UART 3 RX	Y2	12	#37	FFFF68 _H	10040	000000	
UART 3 TX	Y1	13	#38	FFFF64 _H	- ICR13	0000BD _H	

Interrupt cause	El ² OS	DMA ch number	Interrupt vector		Interrupt control register	
-	corresponding	Hallibei	Number	Address	Number	Address
UART 2 RX	Y2	14	#39	FFFF60 _H	ICR14	0000BE _H
UART 2 TX	Y1	15	#40	FFFF5C _H		
Flash Memory	N	_	#41	FFFF58 _H	ICR15	000000
Delayed Interrupt	N	_	#42	FFFF54 _H	ICKIO	0000BF _H

Y1 : Usable

Y2: Usable, with El²OS stop function

N : Unusable

Notes: •The peripheral resources sharing the ICR register have the same interrupt level.

•When the peripheral resources sharing the ICR register use extended intelligent I/O service, only one can use EI²OS at a time.

•When either of the two peripheral resources sharing the ICR register specifies El²OS, the other one cannot use interrupts.

13. Electrical Characteristics

13.1 Absolute Maximum Ratings

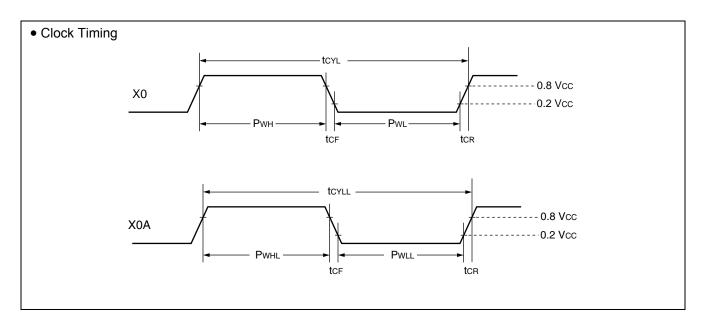
Downwoodow	C. mah al	Rating			Remarks	
Parameter	Symbol	Min	Max	Unit	Remarks	
	V _{CC}	V _{SS} - 0.3	V _{SS} + 6.0	V		
Power supply voltage*1	AV _{CC}	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{*2}$	
	AVRH	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥AVRH* ²	
Input voltage*1	V _I	V _{SS} - 0.3	V _{SS} + 6.0	V	*3	
Output voltage*1	V _O	V _{SS} - 0.3	V _{SS} + 6.0	V	*3	
Maximum Clamp Current	I _{CLAMP}	-4.0	+4.0	mA	*5	
Total Maximum Clamp Current	$\Sigma I_{CLAMP} $	_	40	mA	*5	
"L" level maximum output current	I _{OL}	_	15	mA	*4	
"L" level average output current	I _{OLAV}	_	4	mA	*4	
"L" level maximum overall output current	Σl _{OL}	_	100	mA	*4	
"L" level average overall output current	ΣI_{OLAV}	_	50	mA	*4	
"H" level maximum output current	I _{OH}	_	-15	mA	*4	
"H" level average output current	I _{OHAV}	_	-4	mA	*4	
"H" level maximum overall output current	Σl _{OH}	_	-100	mA	*4	
"H" level average overall output current	ΣI_{OHAV}	_	-50	mA	*4	
Power consumption	P _D	_	454	mW		
Operating temperature	_	-40	+105	°C		
Operating temperature	T _A	-40	+125	°C	*6	
Storage temperature	T _{STG}	-55	+150	°C		

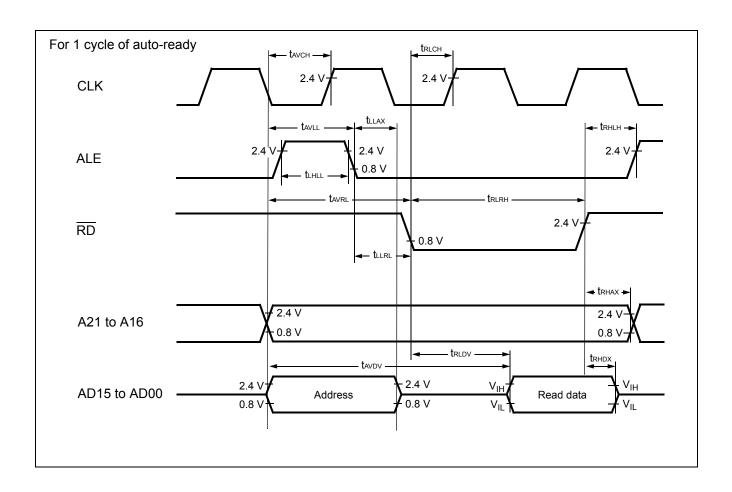
13.3 DC Characteristics

(T_A = -40 °C to +125 °C, V_{CC} = 5.0 V \pm 10%, $f_{CP} \leq$ 24 MHz, $V_{SS} = AV_{SS} = 0$ V)

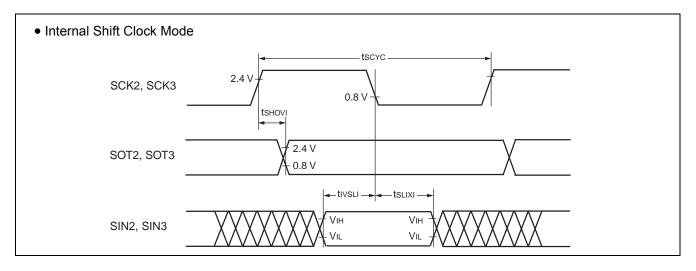
B	Value Value					1114	Damanda		
Parameter	Symbol	Pin	Condition	Min	Тур	Max	Unit	Remarks	
	V _{IHS}	_	_	0.8 V _{CC}	_	V _{CC} + 0.3	V	Pin inputs if CMOS hysteresis input levels are se- lected (except P12, P15, P44, P45, P50)	
"H" level	V _{IHA}	_	_	0.8 V _{CC}	_	V _{CC} + 0.3	V	Pin inputs if Automotive input levels are selected	
input voltage	V _{IHT}	_	_	2.0	_	V _{CC} + 0.3	V	Pin inputs if TTL input levels are selected	
(At V _{CC} = 5 V ± 10%)	V _{IHS}	_	_	0.7 V _{CC}	_	V _{CC} + 0.3	٧	P12, P15, P50 inputs if CMOS input levels are selected	
	V _{IHI}	_	_	0.7 V _{CC}	_	V _{CC} + 0.3	٧	P44, P45 inputs if CMOS hysteresis input levels are selected	
	V _{IHR}	_	_	0.8 V _{CC}	ĺ	V _{CC} + 0.3	>	RST input pin (CMOS hysteresis)	
	V _{IHM} –		_	V _{CC} - 0.3	1	V _{CC} + 0.3	V	MD input pin	
	V _{ILS}	_	_	V _{SS} – 0.3	_	0.2 V _{CC}	٧	Pin inputs if CMOS hysteresis input levels are se- lected (except P12, P15, P44, P45, P50)	
"L" level	V _{ILA}	_	_	V _{SS} – 0.3	_	0.5 V _{CC}	٧	Pin inputs if Automotive input levels are selected	
input voltage	V _{ILT}	_	_	V _{SS} - 0.3	_	0.8	V	Pin inputs if TTL input levels are selected	
(At V _{CC} = 5 V ± 10%)	V _{ILS}	_	_	V _{SS} - 0.3	_	0.3 V _{CC}	٧	P12, P15, P50 inputs if CMOS input levels are selected	
	V _{ILI}	_	_	V _{SS} – 0.3	_	0.3 V _{CC}	٧	P44, P45 inputs if CMOS hysteresis input levels are selected	
	V _{ILR}		_	V _{SS} - 0.3	_	0.2 V _{CC}	V	RST input pin (CMOS hysteresis)	
	V _{ILM}	_	_	V _{SS} - 0.3	_	V _{SS} + 0.3	V	MD input pin	
Output "H" voltage	V _{OH}	Normal out- puts	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -4.0 \text{ mA}$	V _{CC} - 0.5	ı	_	٧		
Output "H" voltage	V _{OHI}	I ² C current outputs	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -3.0 \text{ mA}$	V _{CC} - 0.5			V		

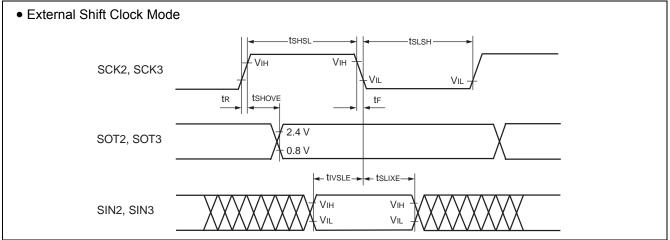
(T_A = -40°C to +125°C, V_{CC} = 5.0 V \pm 10%, $f_{CP} \leq$ 24 MHz, $V_{SS} = AV_{SS} = 0$ V)


D	Sym-	5.	0 !!!!		Value		11.24		
Parameter	bol	Pin	Condition	Min	Тур	Max	Unit	Remarks	
	V 00	V _{CC} = 5.0 V, Internal frequency: 8 kHz, During stopping clock supervisor, At watch mode T _A = +25°C	_	10	35	μА	MB90351E MB90F351E MB90352E MB90F352E MB90356E MB90F356E MB907357E		
		V _{CC} = 5.0 V, Internal frequency: 8 kHz, During operating clock supervi- sor, At watch mode T _A = +25°C		25	150	μА	MB90356E MB90F356E MB90357E MB90F357E		
		$V_{CC} = 5.0 \text{ V},$ Internal CR oscillation/ 4 division, At watch mode $T_A = +25^{\circ}C$			_	25	150	μА	MB90356ES MB90F356ES MB90357ES MB90F357ES
Power supply current			V _{CC} = 5.0 V, Internal frequency: 8 kHz, During stopping clock supervisor, At watch mode T _A = +25°C	_	60	140	μА	MB90351TE MB90F351TE MB90352TE MB90F352TE MB90F356TE MB90F356TE MB90F357TE	
		V_{CC} = 5.0 V, Internal frequency: 8 kHz, During operating clock supervisor, At watch mode T_A = +25°C	_	80	250	μА	MB90356TE MB90F356TE MB90357TE MB90F357TE		
			V _{CC} = 5.0 V, Internal CR oscillation/ 4 division, At watch mode T _A = +25°C	_	80	250	μА	MB90356TES MB90F356TES MB90357TES MB90F357TES	
			V _{CC} = 5.0 V, At stop mode,	_	7	25	μА	Devices without "T"-suffix	
	Іссн		$T_A = +25^{\circ}C$	_	60	130	μА	Devices with "T"-suffix	
Input capacity	C _{IN}	Other than C, AV _{CC} , AV _{SS} , AVRH, V _{CC} , V _{SS}	_	_	5	15	pF		

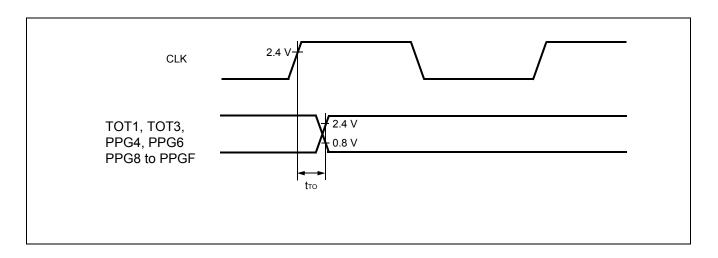

(T_A = -40°C to +125°C,
$$V_{CC} = 5.0~V \pm 10\%, \, f_{CP} \le 24~MHz, \, V_{SS} = AV_{SS} = 0~V)$$

Parameter	Cumbal	Pin		Value		Unit	Remarks
Faranietei	Symbol	FIII	Min	Тур	Max		Remarks
Internal operating clock fre-	f _{CP}	1	1.5	1	24	MHz	When using main clock
(machine clock)	f_{CPL}	-	_	8.192	50	kHz	When using sub clock
Internal operating clock cy-	t _{CP}	Ī	41.67	ı	666	ns	When using main clock
cle time (machine clock)	t _{CPL}	_	20	122.1	_	μS	When using sub clock


^{*:} The limitation is in the range of the clock frequency when PLL is used. Use within the range in graph of "· PLL guaranteed operation range External clock frequency and internal operation clock frequency".



■ Bit setting: ESCR:SCES = 0, ECCR:SCDE = 1


(T_A = $-40^{\circ}C$ to $+125^{\circ}C,~V_{CC}$ = 5.0 V \pm 10%, $f_{CP} \leq$ 24 MHz, V_{SS} = 0 V)

Parameter	Symbol	Pin	Condition	Va	Unit	
raiailletei	Syllibol	FIII	Condition	Min	Max	Oille
Serial clock cycle time	t _{SCYC}	SCK2, SCK3		5 t _{CP}	_	ns
$SCK \uparrow \rightarrow SOT$ delay time	t _{SHOVI}	SCK2, SCK3 SOT2, SOT3		-50	+50	ns
Valid SIN → SCK ↓	t _{IVSLI}	SCK2, SCK3 SIN2, SIN3	Internal clock operation output pins are	t _{CP} + 80	_	ns
$SCK \downarrow \to Valid \; SIN \; hold \; time$	t _{SLIXI}	SCK2, SCK3 SIN2, SIN3	CL = 80 pF + 1 TTL.	0	_	ns
$SOT \to SCK \downarrow delay time$	t _{SOVLI}	SCK2, SCK3 SOT2, SOT3		3 t _{CP} - 70	_	ns

Notes : \bullet C_L is load capacity value of pins when testing.

 \bullet $t_{\mbox{\footnotesize{CP}}}$ is internal operating clock cycle time (machine clock) . Refer to "Clock Timing".

13.4.13 I²C Timing

 $(T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ \text{MHz}, \ V_{SS} = AV_{SS} = 0 \ \text{V})$

Parameter	Symbol	Condition	Standar	d-mode	Fast-m	Unit	
r di dilletei	Symbol	Condition	Min	Max	Min	Max	Oille
SCL clock frequency	f _{SCL}		0	100	0	400	kHz
Hold time for (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	_	0.6	_	μS
"L" width of the SCL clock	t _{LOW}		4.7	_	1.3	_	μS
"H" width of the SCL clock	t _{HIGH}		4.0	_	0.6	_	μS
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t_{SUSTA} $R = 1.7 k\Omega$.		4.7	_	0.6	_	μS
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}	C = 50 pF*1	0	3.45* ²	0	0.9*3	μS
Data set-up time SDA ↓ ↑ → SCL ↑	t _{SUDAT}		250* ⁵	_	100* ⁵	_	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	t _{susто}		4.0	_	0.6	_	μS
Bus free time between STOP condition and START condition	t _{BUS}		4.7	_	1.3	_	μS

*1: R,C: Pull-up resistor and load capacitor of the SCL and SDA lines.

 $^{\star}2$: The maximum t_{HDDAT} has to meet at least that the device does not exceed the "L" width (t_{LOW}) of the SCL signal.

*3 : A Fast-mode I^2C -bus device can be used in a Standard-mode I^2C -bus system, but the requirement $t_{SUDAT} \ge 250$ ns must be met.

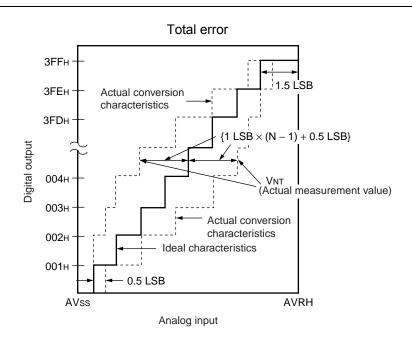
*4: For use at over 100 kHz, set the machine clock to at least 6 MHz.

*5: Refer to "• Note of SDA, SCL set-up time".

13.6 Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.

Non linearity : Deviation between a line across zero-transition line ("00 0000 0000" ← → "00 0000 0001") and


full-scale transition line ("11 1111 1110" \leftarrow \rightarrow "11 1111 1111") and actual conversion characteristics.

Differential linearity error

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

Total error : Difference between an actual value and a theoretical value. A total error includes zero

transition error, full-scale transition error, and linear error.

Total error of digital output "N" =
$$\frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}}{1 \text{ LSB}} \text{ [LSB]}$$

$$1 \text{ LSB (Ideal value)} = \frac{AVRH - AV_{SS}}{1024} \text{ [V]}$$

N : A/D converter digital output value V_{OT} (Ideal value) = $AV_{SS} + 0.5$ LSB [V] V_{FST} (Ideal value) = AVRH - 1.5 LSB [V]

 V_{NT} : A voltage at which digital output transits from (N - 1) H to NH.

Part number	Package	Remarks		
MB90F351EPMC1				
MB90F351ESPMC1				
MB90F351TEPMC1				
MB90F351TESPMC1	64-pin plastic LQFP	Flash memory products		
MB90F356EPMC1	FPT-64P-M24 10.0 mm , 0.50 mm pitch	(64 Kbytes)		
MB90F356ESPMC1	10.0 mm, 0.50 mm pitch			
MB90F356TEPMC1				
MB90F356TESPMC1				
MB90F352EPMC1				
MB90F352ESPMC1				
MB90F352TEPMC1				
MB90F352TESPMC1	64-pin plastic LQFP FPT-64P-M24	Dual operation		
MB90F357EPMC1	10.0 mm , 0.50 mm pitch	Flash memory products (128 Kbytes)		
MB90F357ESPMC1				
MB90F357TEPMC1				
MB90F357TESPMC1				
MB90351EPMC1				
MB90351ESPMC1				
MB90351TEPMC1	64-pin plastic LQFP FPT-64P-M24 10.0 mm			
MB90351TESPMC1		MASK ROM products		
MB90356EPMC1		(64 Kbytes)		
MB90356ESPMC1				
MB90356TEPMC1				
MB90356TESPMC1				
MB90352EPMC1				
MB90352ESPMC1				
MB90352TEPMC1				
MB90352TESPMC1	64-pin plastic LQFP FPT-64P-M24	MASK ROM products		
MB90357EPMC1	10.0 mm , 0.50 mm pitch	(128 Kbytes)		
MB90357ESPMC1				
MB90357TEPMC1				
MB90357TESPMC1				
MB90V340E-101CR				
MB90V340E-102CR	299-pin ceramic PGA	Device for evaluation		
MB90V340E-103CR	PGA-299C-A01	Device for evaluation		
MB90V340E-104CR				

15. Major Changes

Page	Section	Change Results
_	_	The following names are changed. UART → LIN-UART 16-bit I/O timer → 16-bit free-run timer
26	Handling Devices	Added the section "13. Serial Communication".
51	Electrical Characteristics Absolute Maximum Ratings	Changed the maximum value of power consumption.
63	Electrical Characteristics AC Characteristics	Changed the "(4) Clock Output Timing". Changed the Minimum value of cycle time. (41.76 → 41.67)
69 to 73		Changed the notation of "(9) LIN-UART".
78	A/D Converter	Changed the notation of "Zero reading voltage" and "full scale reading voltage".
85	Ordering Information	Changed the part number; MB90V340E-101 → MB90V340E-101CR MB90V340E-102 → MB90V340E-102CR MB90V340E-103 → MB90V340E-103CR MB90V340E-104 → MB90V340E-104CR

NOTE: Please see "Document History" about later revised information.

Document History

	Document Title: MB90350E Series F ² MC-16LX 16-bit Microcontrollers Document Number: 002-04493						
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	_	AKIH		Migrated to Cypress and assigned document number 002-04993. No change to document contents or format.			
*A	5193077	AKIH	04/07/2016	Updated to Cypress template			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Lighting & Power Control

Memory

PSoC

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/powerpsoc

cypress.com/pesoc

cypress.com/psoc

Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless/RF cypress.com/wireless

PSoC® Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.