

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, EBI/EMI, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	47
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x16b; D/A 1x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51mm256clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Features

The following table provides a cross-comparison of the features of the MCF51MM256/128 according to package.

Feature		MCF51M	MCF51MM128				
FLASH Size (bytes)		2621	44		131072		
RAM Size (bytes)		32k	(32K		
Pin Quantity	104	100	81	80	81	80	
Programmable Analog Comparator (PRACMP)	yes	yes	yes	yes	yes	yes	
Debug Module (DBG)	yes	yes	yes	yes	yes	yes	
Multipurpose Clock Generator (MCG)	yes	yes	yes	yes	yes	yes	
Inter-Integrated Communication (IIC)	yes	yes	yes	yes	yes	yes	
Interrupt Request Pin (IRQ)	yes	yes	yes	yes	yes	yes	
Keyboard Interrupt (KBI)	16	16	16	16	16	16	
Digital General Purpose I/O ¹	69	65	48	47	48	47	
Dedicated Analog Input Pins	14	14	14	14	14	14	
Power and Ground Pins	8	8	8	8	8	8	
Time Of Day (TOD)	yes	yes	yes	yes	yes	yes	
Serial Communications (SCI1)	yes	yes	yes	yes	yes	yes	
Serial Communications (SCI2)	yes	yes	yes	yes	yes	yes	
Serial Peripheral Interface (SPI1(FIFO))	yes	yes	yes	yes	yes	yes	
Serial Peripheral Interface(SPI2)	yes	yes	yes	yes	yes	yes	
Carrier Modulator Timer Pin (IRO)	yes	yes	yes	yes	yes	yes	
TPM Input Clock Pin (TPMCLK)	yes	yes	yes	yes	yes	yes	
TPM1 Channels	4	4	4	4	4	4	
TPM2 Channels	4	4	4	4	4	4	
XOSC1	yes	yes	yes	yes	yes	yes	
XOSC2	yes	yes	yes	yes	yes	yes	
USB On-the-Go	yes	yes	yes	yes	yes	yes	
Mini-FlexBus	yes	yes	DATA ²	DATA ²	DATA ²	DATA ²	
Rapid GPIO	16	16	9	9	9	9	
MEASU	JREMENT E	NGINE					
Programmable Delay Block (PDB)	yes	yes	yes	yes	yes	yes	
16-Bit SAR ADC Differential Channels ³	4	4	4	4	4	4	
16-Bit SAR ADC Single-Ended Channels	8	8	8	8	8	8	
DAC Ouput Pin (DACO)	yes	yes	yes	yes	yes	yes	
Voltage Reference Output Pin (VREFO)	yes	yes	yes	yes	yes	yes	
General Purpose Operational Amplifier (OPAMP)	yes	yes	yes	yes	yes	yes	
Trans-Impedance Amplifier (TRIAMP)	yes	yes	yes	yes	yes	yes	

Table 1. MCF51MM256/128 Features by MCU and Package

¹ Port I/O count does not include BLMS, BKGD and IRQ. BLMS and BKGD are Output only, IRQ is input only.

² The 80/81 pin packages contain the Mini-FlexBus data pins to support an 8-bit data bus interface to external peripherals.

³ Each differential channel is comprised of 2 pin inputs.

Features

Table 2. MCF5 IMM256/128 Functional Units (continued)

Unit	Function
SCI1, SCI2 (Serial Communications Interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols.
SIM (system integration unit)	
SPI1 (FIFO), SPI2 (Serial Peripheral Interfaces)	SPI1 and SPI2 provide standard master/slave capability. SPI contains a FIFO buffer in order to increase the throughput for this peripheral.
TPM1, TPM2 (Timer/PWM Module)	Timer/PWM module can be used for a variety of generic timer operations as well as pulse-width modulation.
VREG (Voltage Regulator)	Controls power management across the device.
XOSC1 and XOSC2 (Crystal Oscillators)	These devices incorporate redundant crystal oscillators. One is intended primarily for use by the TOD, and the other by the CPU and other peripherals.

2.2 100-Pin LQFP

The following figure shows the 100-pin LQFP pinout configuration.

MCF51MM256/128, Rev. 5

Pinouts and Pin Assignments

	Pac	kage						
104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
J1	30	G1	25	DADP0	—	—	—	DADP0
J2	31	H1	26	DADM0	_	—	_	DADM0
L4	32	G5	27	VREFO	_	_	_	VREFO
K3	33	H3	28	DADP1	_	_		DADP1
L3	34	H2	29	DADM1	_	—	_	DADM1
L5	35	JЗ	30	VREFH	_	—	_	VREFH
L6	36	J4	31	VDDA	_	—		VDDA
H6	37	F4	32	VSS2	_	—		VSS2
L8	38	J5	33	PTB2	EXTAL1	—		PTB2/EXTAL1
L7	39	J6	34	PTB3	XTAL1	—		PTB3/XTAL1
D6	40	E4	35	VDD2	_	—		VDD2
L11	41	J8	36	PTB4	EXTAL2	—		PTB4/EXTAL2
L10	42	J9	37	PTB5	XTAL2	—	—	PTB5/XTAL2
K5	43	G6	38	PTB6	KBI1P3	RGPIOP0	FB_AD17	PTB6/KBI1P3/RGPIOP0/FB_AD17
K6	44	F7	39	PTB7	KBI1P4	RGPIOP1	FB_AD0	PTB7/KBI1P4/RGPIOP1/FB_AD0
J7	45	_	—	PTH2	RGPIOP2	FB_D7	—	PTH2/RGPIOP2/FB_D7
J6	46	_	—	PTH3	RGPIOP3	FB_D6		PTH3/RGPIOP3/FB_D6
J5	47		—	PTH4	RGPIOP4	FB_D5	_	PTH4/RGPIOP4/FB_D5
K4	48	_	—	PTH5	RGPIOP5	FB_D4	—	PTH5/RGPIOP5/FB_D4
J4	49	_	—	PTH6	RGPIOP6	FB_D3		PTH6/RGPIOP6/FB_D3
J3	50	_	—	PTH7	RGPIOP7	FB_D2		PTH7/RGPIOP7/FB_D2
J10	51	G7	40	PTC0	MOSI2	FB_OE	FB_CS0	PTC0/MOSI2/FB_OE/FB_CS0
J11	52	G8	41	PTC1	MISO2	FB_D0	FB_AD1	PTC1/MISO2/FB_D0/FB_AD1
J9	53	G9	42	PTC2	KBI1P5	SPSCK2	ADP6	PTC2/KBI1P5/SPSCK2/ADP6
K7	54	H5	43	PTC3	KBI1P6	SS2	ADP7	PTC3/KBI1P6/SS2/ADP7
K9	55	H6	44	PTC4	KBI1P7	CMPP0	ADP8	PTC4/KBI1P7/CMPP0/ADP8
K10	56	H8	45	PTC5	KBI2P0	CMPP1	ADP9	PTC5/KBI2P0/CMPP1/ADP9
K11	57	H9	46	PTC6	KBI2P1	PRACMPO	ADP10	PTC6/KBI2P1/PRACMPO/ADP10
F8	58	F8	47	PTC7	KBI2P2	CLKOUT	ADP11	PTC7/KBI2P2/CLKOUT/ADP11
L9	59	H7	48	PTD0	BKGD	MS	—	PTD0/BKGD/MS
K8	60	J7	49	PTD1	CMPP2	RESET	—	PTD1/CMPP2/RESET

Table 3. Package Pin Assignments (continued)

MCF51MM256/128, Rev. 5

Pinouts and Pin Assignments

	Pac	kage						
104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
A8	88	_		FB_AD12	—		—	FB_AD12
A7	89	A8	69	PTF3	SCL	FB_D5	FB_AD11	PTF3/SCL/FB_D5/FB_AD11
A6	90	A7	70	PTF4	SDA	FB_D4	FB_AD10	PTF4/SDA/FB_D4/FB_AD10
B5	91	B5	71	PTF5	KBI2P7	FB_D3	FB_AD9	PTF5/KBI2P7/FB_D3/FB_AD9
A5	92	A6	72	VUSB33	—		_	VUSB33
A4	93	B4	73	USB_DM	—		_	USB_DM
A3	94	A4	74	USB_DP	_	_		USB_DP
B4	95	A5	75	VBUS	_		_	VBUS
H4	96	F6	76	VSS1	—		_	VSS1
D4	97	E6	77	VDD1	—	_	—	VDD1
A1	98	A3	78	PTF6	MOSI1		_	PTF6/MOSI1
A2	99	B1	79	PTF7	MISO1	_	—	PTF7/MISO1
B1	100	A2	80	PTG0	SPSCK1	_	—	PTG0/SPSCK1
F4	_	A1	_	PTG1	USB_ SESSEND	_	_	PTG1/USB_SESSEND
C4	_		_	PTG2	USB_DM_ DOWN	_	_	PTG2/USB_DM_DOWN
B3	_	_	_	PTG3	USB_DP_ DOWN	_	_	PTG3/USB_DP_DOWN
C2	—	_	—	PTG4	USB_SESSVLD	_	_	PTG4/USB_SESSVLD

Table 3. Package Pin Assignments (continued)

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	_
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	_
Lateb up	Minimum input voltage limit	—	-2.5	V
Laton-up	Maximum input voltage limit	_	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8. ESD and Latch-Up Protection Characteristics

#	Rating	Symbol	Min	Max	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000		V	Т
2	Machine Model (MM)	V _{MM}	±200		V	Т

Num	Symbol	Charac	teristic	Condition	Min	Typ ¹	Мах	Unit	С
7	V _{IL}	Input low voltage	all digital inputs						
				$V_{DD} > 2.7 \ V$	—	_	0.35 x V _{DD}	V	Ρ
				V _{DD} >1.8 V	_	_	0.30 x V _{DD}	V	С
8	V _{hys}	Input hysteresis	all digital inputs	—	$0.06 \times V_{DD}$			mV	С
9	ll _{ini}	Input leakage current	all input only pins (Per pin)	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	_	0.5	μA	Ρ
10	II _{OZI}	Hi-Z (off-state) leakage current ³	all digital input/output (per pin)	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	0.003	0.5	μA	Ρ
11	R _{PU}	Pull-up resistors	all digital inputs, when enabled	—	17.5	Ι	52.5	kΩ	Ρ
12	R _{PD}	Internal pull-down resistors ⁴		—	17.5	_	52.5	kΩ	Ρ
13	I _{IC}	DC injection current ^{5, 6, 7}	Single pin limit						
				$V_{SS} > V_{IN} > V_{DD}$	-0.2		0.2	mA	D
			Total MCU limit, i	ncludes sum of a	Il stressed pins	6			
				$V_{SS} > V_{IN} > V_{DD}$	-5		5	mA	D
14	C _{In}	Input Capacitance	e, all pins	—		_	8	pF	С
15	V_{RAM}	RAM retention vol	tage	—	—	0.6	1.0	V	С
16	V _{POR}	POR re-arm voltage	ge ⁸	—	0.9	1.4	1.79	V	С
17	t _{POR}	POR re-arm time		—	10	—		μs	D
18	V _{LVDH} 9	Low-voltage detection threshold — high range	V _{DD} falling						
				—	2.11	2.16	2.22	V	Р
			V_{DD} rising						
				—	2.16	2.21	2.27	V	Р
19	V _{LVDL}	Low-voltage detection threshold — low range ⁹	V _{DD} falling						
					1.80	1.82	1.91	V	Р
			V _{DD} rising						
				—	1.86	1.90	1.99	V	Р

Table 9. DC Characteristics (continued)

Num	Symbol	Charac	teristic	Condition	Min	Typ ¹	Max	Unit	С
20	V _{LVWH}	Low-voltage warning threshold — high range ⁹	V _{DD} falling						
				_	2.36	2.46	2.56	V	Р
			V_{DD} rising						
				—	2.36	2.46	2.56	V	Р
21	V _{LVWL}	Low-voltage warning threshold — low range ⁹	V _{DD} falling						
				_	2.11	2.16	2.22	V	Р
			V_{DD} rising						
				—	2.16	2.21	2.27	V	Р
22	V _{hys}	Low-voltage inhib reset/recoverhyst	it eresis ¹⁰	_		50	_	mV	С
23	V_{BG}	Bandgap Voltage	Reference ¹¹	—	1.110	1.17	1.230	V	Р

Table 9. DC Characteristics (continued)

¹ Typical values are measured at 25°C. Characterized, not tested

² As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL} .

³ Does not include analog module pins. Dedicated analog pins should not be pulled to V_{DD} or V_{SS} and should be left floating when not used to reduce current leakage.

⁴ Measured with $V_{In} = V_{DD}$.

 5 All functional non-supply pins are internally clamped to $\rm V_{SS}$ and $\rm V_{DD}$ except PTD1.

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

⁸ Maximum is highest voltage that POR is guaranteed.

⁹ Run at 1 MHz bus frequency

¹⁰ Low voltage detection and warning limits measured at 1 MHz bus frequency.

 11 Factory trimmed at V_DD = 3.0 V, Temp = 25°C

3.6 Supply Current Characteristics

Table 10.	Supply	Current	Characteristics
-----------	--------	---------	-----------------

#	Symbol	Parameter	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)	С
1	RI _{DD}	Run supply current FEI mode;	all modules	ON ²					
			25.165 MHz	3	44	48	mA	-40 to 25	Ρ
			25.165 MHz	3	44	48	mA	105	Р
			20 MHz	3	32.3	_	mA	-40 to 105	Т
			8 MHz	3	16.4	_	mA	-40 to 105	Т
			1 MHz	3	2.9	_	mA	-40 to 105	Т
2	RI _{DD}	Run supply current FEI mode;	all modules	OFF ³					
			25.165 MHz	3	29	29.6	mA	-40 to 105	С
			20 MHz	3	25.4	_	mA	-40 to 105	Т
			8 MHz	3	12.7	_	mA	-40 to 105	Т
			1 MHz	3	2.4	_	mA	-40 to 105	Т
3	RI _{DD}	Run supply current LPR=0; all	modules OF	F ³					
			16 kHz FBI	3	232	280	μA	-40 to 105	т
			16 kHz FBE	3	231	296	μΑ	-40 to 105	Т
4	RI _{DD}	Run supply current LPR=1, all	modules OF	F ³					
			16 kHz BLPE	3	74	75	μΑ	0 to 70	Т
			16 kHz BLPE	3	74	120	μΑ	-40 to 105	Т

#	Symbol	Parameter	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)	С
5	WI _{DD}	Wait mode supply current	, all modules	OFF ³				·	
			25.165 MHz	3	16.5	_	mA	-40 to 105	С
			20 MHz	3	10.3	_	mA	-40 to 105	Т
			8 MHz	3	6.6	_	mA	-40 to 105	Т
			1 MHz	3	1.7	—	mA	-40 to 105	Т
6	LPWI _{DD}	Low-Power Wait mode supply current							
			16 KHz	3	28	62	μA	-40 to 105	Т
7	S2I _{DD}	Stop2 mode supply current ⁴							
			N/A	3	0.410	1.00	μΑ	-40 to 25	Р
			N/A	3	3.7	10	μA	70	С
			N/A	3	10	20	μA	85	С
			N/A	3	21	31.5	μA	105	Р
			N/A	2	0.410	0.640	μΑ	-40 to 25	С
			N/A	2	3.4	9	μA	70	С
			N/A	2	9.5	18	μA	85	С
			N/A	2	20	30	μA	105	С

Table 10. Supply Current Characteristics (continued)

#	Symbol	Parameter	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Тетр (°С)	с
	631	Stop3 mode supply current ⁴ No clocks active	n/a		0.750	1.3		-40 to 25	Ρ
				3	8.5	18		70	С
					20	28		85	С
8					53	63	μΑ	105	Ρ
Ŭ	DD			2	0.400	0.900		-40 to 25	С
					8.2	16	-	70	С
				2	18	26		85	С
					47	59		105	С

Table 10. Supply Current Characteristics (continued)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² ON = System Clock Gating Control registers turn on system clock to the corresponding modules.

³ OFF = System Clock Gating Control registers turn off system Clock to the corresponding modules.

⁴ All digital pins must be configured to a known state to prevent floating pins from adding current. Smaller packages may have some pins that are not bonded out; however, software must still be configured to the largest pin package available so that all pins are in a known state. Otherwise, floating pins that are not bonded in the smaller packages may result in a higher current draw. NOTE: I/O pins are configured to output low; input-only pins are configured to pullup-enabled. IRO pin connects to ground. FB_AD12 pin is pullup-enabled. TRIAMPx, OPAMPx, DACO, and VREFO pins are at reset state and unconnected.

#	Baramotor	Condition			Unite	C			
#	Farameter	Condition	-40	25	70	85	105	Units	
1	LPO	—	50	75	100	150	250	nA	D
2	EREFSTEN	RANGE = HGO = 0	600	650	750	850	1000	nA	D
3	IREFSTEN ¹	_	—	73	80	93	125	μΑ	Т
4	TOD	Does not include clock source current	50	75	100	150	250	nA	D
5	LVD ¹	LVDSE = 1	116	117	126	132	172	μΑ	Т
6	PRACMP ¹	Not using the bandgap (BGBE = 0)	17	18	24	35	74	μΑ	Т
7	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	190	195	210	220	260	μΑ	т
g		High-Power mode; no load on DACO	339	345	346	346	360	μΑ	Т
0	DAG	Low-Power mode	41	43	43	44	50	μΑ	Т
٩		High-Power mode	276	350	370	376	390	μΑ	Т
5		Low-Power mode	42	49	57	58	68	μΑ	Т
10		High-Power mode	420	432	433	438	478	μΑ	Т
10	I KIAMP'	Low-Power mode	52	52	52	55	60	μΑ	Т

Table 11. Typical Stop Mode Adders

¹ Not available in stop2 mode.

#	Symb	Characteristic	Conditions	Min	Typ ¹	Max	Unit	С	Comment	
5	V _{REFL}	Ref Voltage Low		V _{SSA}	V _{SSA}	V _{SSA}	V	D		
6	V _{ADIN}	Input Voltage		V _{REFL}	—	V_{REFH}	V	D		
7	C _{ADIN}	Input Capacitance	16-bit modes 8/10/12-bit modes	_	8 4	10 5	pF	Т		
8	R _{ADIN}	Input Resistance			2	5	kΩ	Т		
9	R _{AS}	Analog Source Resistance							External to MCU Assumes ADLSMP=0	
		16-bit mode	f _{ADCK} > 8 MHz	—	_	0.5	kΩ	т		
			4 MHz < f _{ADCK} < 8 MHz	—	_	1	kΩ	Т		
			f _{ADCK} < 4 MHz	—	—	2	kΩ	Т		
		13/12-bit mode	f _{ADCK} > 8 MHz	_	_	1	kΩ	Т		
		_	4 MHz < f _{ADCK} < 8 MHz	—	_	2	kΩ	Т		
			f _{ADCK} < 4 MHz		—	5	kΩ	Т		
		11/10-bit mode	11/10-bit mode	f _{ADCK} > 8 MHz	_	_	2	kΩ	Т	
			4 MHz < f _{ADCK} < 8 MHz	_	_	5	kΩ	т		
			f _{ADCK} < 4 MHz	_	—	10	kΩ	Т		
		9/8-bit mode	f _{ADCK} > 8 MHz	_	_	5	kΩ	Т		
			f _{ADCK} < 8 MHz	_	_	10	kΩ	Т		
10	f _{ADCK}	ADC Conversion Frequency	Clock							
		ADLPC=0, ADHS	6C=1	1.0	_	8.0	MHz	D		
		ADLPC=0, ADHS	DLPC=0, ADHSC=0		_	5.0	MHz	D		
		ADLPC=1, ADHS	;C=0	1.0	_	2.5	MHz	D		

Table 15. 16-Bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ² DC potential difference.

Table 16. 16-Bit SAR ADC Characteristics full operating ran	ge
(V _{REFH} = V _{DDA} , > 1.8, V _{REFL} = V _{SSA} \leq 8 MHz, –40 to 85 °C)	

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	С	Comment		
		ADLPC=1, ADHSC=0		_	215	_					
1	Supply Current	ADLPC=0, ADHSC=0		_	470	_		_	ADLSMP =0		
		ADLPC=0, ADHSC=1	IDDAD		610	_	μA	1	ADCO=1		
2	Supply Current	Stop, Reset, Module Off	I _{DDAD}		0.01	_	μA	Т			
	ADC	ADLPC=1, ADHSC=0		—	2.4	_					
3	Asynchronous	ADLPC=0, ADHSC=0		_	5.2	_]	с	tadack =		
	Clock Source	ADLPC=0, ADHSC=1	[†] ADACK	_	6.2	_	MHZ		1/f _{ADACK}		
4	Sample Time	See Reference Manual for	sample tim	nes							
5	Conversion Time	See Reference Manual for	See Reference Manual for conversion times								
6	Total Unadjusted Error	16-bit differential mode 16-bit single-ended mode	TUE		±16 ±20	+48/ -40 +56/ -28	LSB ³	т	32x Hardware Averaging (AVGE = %1 AVGS = %11)		
		13-bit differential mode 12-bit single-ended mode		_	±1.5 ±1.75	±3.0 ±3.5		Т			
		11-bit differential mode 10-bit single-ended mode		_	±0.7 ±0.8	±1.5 ±1.5		Т			
		9-bit differential mode 8-bit single-ended mode		_	±0.5 ±0.5	±1.0 ±1.0		Т			
7	Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	DNL	_	±2.5 ±2.5	+5/–3 +5/–3	LSB ²	Т			
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±1 ±1		Т			
		11-bit differential mode 10-bit single-ended mode		_	±0.5 ±0.5	±0.75 ±0.75		Т			
		9-bit differential mode 8-bit single-ended mode		_	±0.2 ±0.2	±0.5 ±0.5		Т			

Table 16. 16-Bit SAR ADC Characteristics full operating range (V_{REFH} = V_{DDA}, > 1.8, V_{REFL} = V_{SSA} \leq 8 MHz, –40 to 85 °C) (continued)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Мах	Unit	С	Comment
14	Total Harmonic	16-bit differential mode Avg=32	тно	_	-91.5	-74.3		С	F _{in} =
	Distortion	16-bit single-ended mode Avg=32		_	-85.5	_	dB	D	0
15	Spurious Free	16-bit differential mode Avg=32	SEDB	75.0	92.2	_	dB	С	F _{in} = F _{sample} /10 0
	Range	16-bit single-ended mode Avg=32	SI DI	_	86.2	_	db	D	
16	Input Leakage Error	all modes	E _{IL}	I _{In} * R _{AS}		mV	D	I _{In} = leakage current (refer to DC characteri stics)	
17	Temp Sensor	–40°C − 25°C	m	_	1.646	_	mV/x	С	
	Slope	25°C – 125°C		_	1.769	_	C		
18	Temp Sensor Voltage	25°C	V _{TEMP2} 5	_	718.2	_	mV	С	

 $^1\,$ All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}

² Typical values assume $V_{DDA} = 3.0V$, Temp = 25°C, $f_{ADCK}=2.0MHz$ unless otherwise stated. Typical values are for reference only and are not tested in production.

³ 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^N$

- ² This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- ³ This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- ⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁵ 625 ns represents 5 time quanta for CAN applications, under worst-case conditions of 8 MHz CAN bus clock, 1 Mbps CAN Bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- ⁶ Below D_{lock} minimum, the MCG is guaranteed to enter lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- ⁷ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

#	Chara	acteristic	Symbol	Min	Typ ¹	Max	Unit	С
		• Low range (RANGE = 0)	f _{lo}	32	_	38.4	kHz	D
		 High range (RANGE = 1), FEE or FBE mode ² 	f _{hi-fll}	1	_	5	MHz	D
1	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)	 High range (RANGE = 1), PEE or PBE mode ³ 	f _{hi-pll}	1	_	16	MHz	D
		 High range (RANGE = 1), High gain (HGO = 1), BLPE mode 	f _{hi-hgo}	1	_	16	MHz	D
		 High range (RANGE = 1), Low power (HGO = 0), BLPE mode 	f _{hi-lp}	1 — 8		8	MHz	D
2	Load capacitors		C ₁ C ₂	See crystal or resonator manufacturer's recommendation.			D	
3	Feedback resistor	• Low range (32 kHz to 38.4 kHz)			10	_	мо	D
0		High range (1 MHz to 16 MHz)	_		1	_	10122	D
4	Series resistor — Low range	• Low Gain (HGO = 0)	P	_	0	_	ŀO	D
4		• High Gain (HGO = 1)	ns	_	100	_	K22	D
		 Low Gain (HGO = 0) 		_	0	_		D
		• High Gain (HGO = 1)						D
5	Series resistor — High range	≥ 8 MHz	R _S	—	0	0	kΩ	D
		4 MHz			0	10	1	D
		1 MHz		—	0	20		D

Table 19. XOSC (Temperature Range = -40 to 105°C Ambient)

Figure 10. Mini-FlexBus Write Timing

3.12.2 TPM Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

#	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
2		External clock period	t _{TPMext}	4		t _{cyc}
3	D	External clock high time	t _{clkh}	1.5		t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Figure 13. Timer External Clock

Figure 14. Timer Input Capture Pulse

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

MCF51MM256/128, Rev. 5

3.16 VREF Electrical Specifications

#	Characteristic	Symbol	Min	Мах	Unit	С
1	Supply voltage	V _{DDA}	1.80	3.6	V	С
2	Operating temperature range	T _A	-40	105	°C	С
3	Output Load Capacitance	CL	—	100	nF	D
4	Maximum Load		—	10	mA	—
5	Voltage Reference Output with Factory Trim. $V_{DD} = 3 \text{ V}$ at 25 °C	V _{out}	1.145	1.153	V	Р
6	Temperature Drift (V _{min} —V _{max} across the full temperature range)	Tdrift	—	25	mV ¹	Т
7	Aging Coefficient ²	A _C	—	60	μV/year	С
8	Powered down Current (Off Mode, VREFEN=0, VRSTEN=0)	I	—	0.10	μΑ	С
9	Bandgap only (Mode_LV[1:0] = 00)	I	—	75	μA	Т
10	Low-Power buffer (MODE_LV[1:0] = 01)	I	—	125	μA	Т
11	Tight-Regulation buffer (MODE_LV[1:0] = 10)	I	_	1.1	mA	Т
12	Load Regulation MODE_LV = 10	_	—	100	μV/mA	С
13	Line Regulation MODE = 1:0, Tight Regulation $V_{DD} < 2.3$ V, Delta $V_{DDA} = 100$ mV, VREFH = 1.2 V driven externally with VREFO disabled. (Power Supply Rejection)	DC	70	_	dB	С

Table 26. VREF Electrical Specifications

¹ See typical chart that follows (Figure 20).

² Linear reliability model (1008 hours stress at 125°C = 10 years operating life) used to calculate Aging μV/year. VREF0 data recorded per month.

#	Characteristic	Symbol	Min	Мах	Unit	С
1	Voltage Reference Output with Factory Trim (Temperature range from 0°C to 50 °C)	V _{out}	1.149	1.152	mV	т
2	Temperature Drive (V _{min} —V _{max} Temperature range from 0 °C to 50 °C)	T _{drift}	_	3	mV ¹	т

¹ See typical chart that follows (Figure 20).

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF51MM256 Rev. 5 07/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2012. All rights reserved.

