

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, EBI/EMI, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	48
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x16b; D/A 1x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-LBGA
Supplier Device Package	81-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51mm256cmb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Features

The following table provides a cross-comparison of the features of the MCF51MM256/128 according to package.

Feature		MCF51M	MCF51MM128					
FLASH Size (bytes)		262144				131072		
RAM Size (bytes)		32k	ζ		32K			
Pin Quantity	104	100	81	80	81	80		
Programmable Analog Comparator (PRACMP)	yes	yes	yes	yes	yes	yes		
Debug Module (DBG)	yes	yes	yes	yes	yes	yes		
Multipurpose Clock Generator (MCG)	yes	yes	yes	yes	yes	yes		
Inter-Integrated Communication (IIC)	yes	yes	yes	yes	yes	yes		
Interrupt Request Pin (IRQ)	yes	yes	yes	yes	yes	yes		
Keyboard Interrupt (KBI)	16	16	16	16	16	16		
Digital General Purpose I/O ¹	69	65	48	47	48	47		
Dedicated Analog Input Pins	14	14	14	14	14	14		
Power and Ground Pins	8	8	8	8	8	8		
Time Of Day (TOD)	yes	yes	yes	yes	yes	yes		
Serial Communications (SCI1)	yes	yes	yes	yes	yes	yes		
Serial Communications (SCI2)	yes	yes	yes	yes	yes	yes		
Serial Peripheral Interface (SPI1(FIFO))	yes	yes	yes	yes	yes	yes		
Serial Peripheral Interface(SPI2)	yes	yes	yes	yes	yes	yes		
Carrier Modulator Timer Pin (IRO)	yes	yes	yes	yes	yes	yes		
TPM Input Clock Pin (TPMCLK)	yes	yes	yes	yes	yes	yes		
TPM1 Channels	4	4	4	4	4	4		
TPM2 Channels	4	4	4	4	4	4		
XOSC1	yes	yes	yes	yes	yes	yes		
XOSC2	yes	yes	yes	yes	yes	yes		
USB On-the-Go	yes	yes	yes	yes	yes	yes		
Mini-FlexBus	yes	yes	DATA ²	DATA ²	DATA ²	DATA ²		
Rapid GPIO	16	16	9	9	9	9		
MEASU	JREMENT E	NGINE						
Programmable Delay Block (PDB)	yes	yes	yes	yes	yes	yes		
16-Bit SAR ADC Differential Channels ³	4	4	4	4	4	4		
16-Bit SAR ADC Single-Ended Channels	8	8	8	8	8	8		
DAC Ouput Pin (DACO)	yes	yes	yes	yes	yes	yes		
Voltage Reference Output Pin (VREFO)	yes	yes	yes	yes	yes	yes		
General Purpose Operational Amplifier (OPAMP)	yes	yes	yes	yes	yes	yes		
Trans-Impedance Amplifier (TRIAMP)	yes	yes	yes	yes	yes	yes		

Table 1. MCF51MM256/128 Features by MCU and Package

¹ Port I/O count does not include BLMS, BKGD and IRQ. BLMS and BKGD are Output only, IRQ is input only.

² The 80/81 pin packages contain the Mini-FlexBus data pins to support an 8-bit data bus interface to external peripherals.

³ Each differential channel is comprised of 2 pin inputs.

Features

Table 2. MCF5 IMM256/128 Functional Units (continued)

Unit	Function				
SCI1, SCI2 (Serial Communications Interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols.				
SIM (system integration unit)					
SPI1 (FIFO), SPI2 (Serial Peripheral Interfaces)	SPI1 and SPI2 provide standard master/slave capability. SPI contains a FIFO buffer in order to increase the throughput for this peripheral.				
TPM1, TPM2 (Timer/PWM Module)	Timer/PWM module can be used for a variety of generic timer operations as well as pulse-width modulation.				
VREG (Voltage Regulator)	Controls power management across the device.				
XOSC1 and XOSC2 (Crystal Oscillators)	These devices incorporate redundant crystal oscillators. One is intended primarily for use by the TOD, and the other by the CPU and other peripherals.				

Pinouts and Pin Assignments

2.4 80-Pin LQFP

The following figure shows the 80-pin LQFP pinout configuration.

Pinouts and Pin Assignments

Package								
104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
A8	88	_		FB_AD12	—		—	FB_AD12
A7	89	A8	69	PTF3	SCL	FB_D5	FB_AD11	PTF3/SCL/FB_D5/FB_AD11
A6	90	A7	70	PTF4	SDA	FB_D4	FB_AD10	PTF4/SDA/FB_D4/FB_AD10
B5	91	B5	71	PTF5	KBI2P7	FB_D3	FB_AD9	PTF5/KBI2P7/FB_D3/FB_AD9
A5	92	A6	72	VUSB33	—		_	VUSB33
A4	93	B4	73	USB_DM	—		_	USB_DM
A3	94	A4	74	USB_DP	_	_		USB_DP
B4	95	A5	75	VBUS	_		_	VBUS
H4	96	F6	76	VSS1	—		_	VSS1
D4	97	E6	77	VDD1	—	_	—	VDD1
A1	98	A3	78	PTF6	MOSI1		_	PTF6/MOSI1
A2	99	B1	79	PTF7	MISO1	_	—	PTF7/MISO1
B1	100	A2	80	PTG0	SPSCK1	_	—	PTG0/SPSCK1
F4	_	A1	_	PTG1	USB_ SESSEND	_	_	PTG1/USB_SESSEND
C4	_		_	PTG2	USB_DM_ DOWN	_	_	PTG2/USB_DM_DOWN
B3	_	_	_	PTG3	USB_DP_ DOWN	_	_	PTG3/USB_DP_DOWN
C2	—	_	—	PTG4	USB_SESSVLD	_	_	PTG4/USB_SESSVLD

Table 3. Package Pin Assignments (continued)

This section contains electrical specification tables and reference timing diagrams for the MCF51MM256/128 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

3.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Ρ	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 4. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

#	Symbol	Rating	Value	Unit	
1	T _A	Operating temperature range (packaged):		°C
		MCF5	51MM256	-40 to 105	
		MCF5	51MM128	-40 to 105	
2	T _{JMAX}	Maximum junction temperature		135	°C
3	θ_{JA}	Thermal resistance ^{1,2,3,4} Sing		°C/W	
		104-р	in MBGA	67	
		100-р	in LQFP	53	
		81-pir	n MBGA	67	
		80-pir	1 LQFP	53	
4	θ_{JA}	Thermal resistance ^{1, 2, 3, 4} Fou	ır-layer board — 2s2p		°C/W
		104-p	in MBGA	39	
		100-р	in LQFP	41	
		81-pir	n MBGA	39	
		80-pir	1 LQFP	39	

0	33	DD		5	
Table 6.	Thermal	Characte	ristics		

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

³ 1s — Single layer board, one signal layer

⁴ 2s2p — Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

$$\begin{split} T_A &= \text{Ambient temperature, °C} \\ \theta_{JA} &= \text{Package thermal resistance, junction-to-ambient, °C/W} \\ P_D &= P_{int} + P_{I/O} \\ P_{int} &= I_{DD} \times V_{DD}, \text{Watts } \text{--- chip internal power} \\ P_{I/O} &= \text{Power dissipation on input and output pins } \text{--- user determined} \end{split}$$

MCF51MM256/128, Rev. 5

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	_
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	_
Lateb up	Minimum input voltage limit	—	-2.5	V
Laton-up	Maximum input voltage limit	_	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8. ESD and Latch-Up Protection Characteristics

#	Rating	Symbol	Min	Max	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000		V	Т
2	Machine Model (MM)	V _{MM}	±200		V	Т

Num	Symbol	Characteristic		Condition	Min	Typ ¹	Мах	Unit	С
7	V _{IL}	Input low voltage	all digital inputs						
				$V_{DD} > 2.7 \ V$	—	_	0.35 x V _{DD}	V	Ρ
				V _{DD} >1.8 V	_	_	0.30 x V _{DD}	V	С
8	V _{hys}	Input hysteresis	all digital inputs	—	$0.06 \times V_{DD}$			mV	С
9	ll _{ini}	Input leakage current	all input only pins (Per pin)	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	_	0.5	μA	Ρ
10	II _{OZI}	Hi-Z (off-state) leakage current ³	all digital input/output (per pin)	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	0.003	0.5	μA	Ρ
11	R _{PU}	Pull-up resistors	all digital inputs, when enabled	—	17.5	Ι	52.5	kΩ	Ρ
12	R _{PD}	Internal pull-down resistors ⁴		—	17.5	_	52.5	kΩ	Ρ
13	I _{IC}	DC injection current ^{5, 6, 7}	Single pin limit						
				$V_{SS} > V_{IN} > V_{DD}$	-0.2		0.2	mA	D
			Total MCU limit, i	ncludes sum of a	Il stressed pins	6			
				$V_{SS} > V_{IN} > V_{DD}$	-5		5	mA	D
14	C _{In}	Input Capacitance	e, all pins	—		_	8	pF	С
15	V_{RAM}	RAM retention vol	tage	—	—	0.6	1.0	V	С
16	V _{POR}	POR re-arm voltage	ge ⁸	—	0.9	1.4	1.79	V	С
17	t _{POR}	POR re-arm time		—	10	—		μs	D
18	V _{LVDH} 9	Low-voltage detection threshold — high range	V _{DD} falling						
				—	2.11	2.16	2.22	V	Р
			V_{DD} rising						
				—	2.16	2.21	2.27	V	Р
19	V _{LVDL}	Low-voltage detection threshold — V _{DD} falling low range ⁹							
					1.80	1.82	1.91	V	Р
			V _{DD} rising						
				—	1.86	1.90	1.99	V	Р

Table 9. DC Characteristics (continued)

#	Symbol	Parameter	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)	С
5	WI _{DD}	Wait mode supply current	, all modules	OFF ³				·	
			25.165 MHz	3	16.5	_	mA	-40 to 105	С
			20 MHz	3	10.3	_	mA	-40 to 105	Т
			8 MHz	3	6.6	_	mA	-40 to 105	Т
			1 MHz	3	1.7	—	mA	-40 to 105	Т
6	LPWI _{DD}	Low-Power Wait mode supply current							
			16 KHz	3	28	62	μA	-40 to 105	Т
7	S2I _{DD}	Stop2 mode supply current ⁴							
			N/A	3	0.410	1.00	μΑ	-40 to 25	Р
			N/A	3	3.7	10	μA	70	С
			N/A	3	10	20	μA	85	С
			N/A	3	21	31.5	μA	105	Р
			N/A	2	0.410	0.640	μΑ	-40 to 25	С
			N/A	2	3.4	9	μA	70	С
			N/A	2	9.5	18	μA	85	С
			N/A	2	20	30	μA	105	С

Table 10. Supply Current Characteristics (continued)

#	Symb	Characteristic	Conditions	Min	Typ ¹	Мах	Unit	С	Comment
5	V _{REFL}	Ref Voltage Low		V _{SSA}	V _{SSA}	V _{SSA}	V	D	
6	V _{ADIN}	Input Voltage		V _{REFL}	—	V_{REFH}	V	D	
7	C _{ADIN}	Input Capacitance	16-bit modes 8/10/12-bit modes	_	8 4	10 5	pF	Т	
8	R _{ADIN}	Input Resistance			2	5	kΩ	Т	
9	R _{AS}	Analog Source Resistance							External to MCU Assumes ADLSMP=0
		16-bit mode	f _{ADCK} > 8 MHz	_	_	0.5	kΩ	Т	
			4 MHz < f _{ADCK} < 8 MHz	_	_	1	kΩ	Т	
			f _{ADCK} < 4 MHz	—	—	2	kΩ	Т	
		13/12-bit mode	f _{ADCK} > 8 MHz	_	_	1	kΩ	Т	
			4 MHz < f _{ADCK} < 8 MHz	—	_	2	kΩ	Т	
			f _{ADCK} < 4 MHz	—	—	5	kΩ	Т	
		11/10-bit mode	f _{ADCK} > 8 MHz	_	_	2	kΩ	т	
			4 MHz < f _{ADCK} < 8 MHz	_	_	5	kΩ	т	
			f _{ADCK} < 4 MHz		—	10	kΩ	Т	
		9/8-bit mode	f _{ADCK} > 8 MHz	_	_	5	kΩ	Т	
			f _{ADCK} < 8 MHz		_	10	kΩ	Т	
10	f _{ADCK}	ADC Conversion Frequency	Clock						
		ADLPC=0, ADHS	6C=1	1.0	_	8.0	MHz	D	
		ADLPC=0, ADHS	;C=0	1.0	_	5.0	MHz	D	
		ADLPC=1, ADHS	;C=0	1.0	_	2.5	MHz	D	

Table 15. 16-Bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ² DC potential difference.

Table 16. 16-Bit SAR ADC Characteristics full operating ran	ge
(V _{REFH} = V _{DDA} , > 1.8, V _{REFL} = V _{SSA} \leq 8 MHz, –40 to 85 °C)	

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	С	Comment
		ADLPC=1, ADHSC=0		_	215	_			
1	Supply Current	ADLPC=0, ADHSC=0		_	470			_	ADLSMP =0
		ADLPC=0, ADHSC=1	IDDAD		610	_	μA	I	ADCO=1
2	Supply Current	Stop, Reset, Module Off	I _{DDAD}		0.01	_	μA	Т	
	ADC	ADLPC=1, ADHSC=0		—	2.4	—			
3	Asynchronous	ADLPC=0, ADHSC=0		_	5.2	—		с	tadack =
	Clock Source	ADLPC=0, ADHSC=1	[†] ADACK	_	6.2	—	MHZ		1/f _{ADACK}
4	Sample Time	See Reference Manual for	sample tim	nes					
5	Conversion Time	See Reference Manual for	conversior	i times					
6	Total Unadjusted Error	16-bit differential mode 16-bit single-ended mode	TUE		±16 ±20	+48/ -40 +56/ -28	LSB ³	т	32x Hardware Averaging (AVGE = %1 AVGS = %11)
		13-bit differential mode 12-bit single-ended mode		_	±1.5 ±1.75	±3.0 ±3.5		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.7 ±0.8	±1.5 ±1.5		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.5 ±0.5	±1.0 ±1.0		Т	
7	Differential Non-Linearity	16-bit differential mode 16-bit single-ended mode	DNL	_	±2.5 ±2.5	+5/–3 +5/–3	LSB ²	Т	
		13-bit differential mode 12-bit single-ended mode		_	±0.7 ±0.7	±1 ±1		Т	
		11-bit differential mode 10-bit single-ended mode		_	±0.5 ±0.5	±0.75 ±0.75		Т	
		9-bit differential mode 8-bit single-ended mode		_	±0.2 ±0.2	±0.5 ±0.5		Т	

Table 16. 16-Bit SAR ADC Characteristics full operating range (V_{REFH} = V_{DDA}, > 1.8, V_{REFL} = V_{SSA} \leq 8 MHz, –40 to 85 °C) (continued)

#	Characteristic	Conditions ¹	Symb	Min	Typ ²	Мах	Unit	С	Comment
14	Total Harmonic	16-bit differential mode Avg=32	тно	_	-91.5	-74.3		С	F _{in} =
	Distortion	16-bit single-ended mode Avg=32		_	-85.5	_	dB	D	sample/10 0
15	Spurious Free	Spurious Free Avg=32 7		75.0	92.2	_	dB	С	F _{in} =
	Range	16-bit single-ended mode Avg=32	SI DI	_	86.2	_	db	D	0 of sample
16	Input Leakage Error	all modes	E _{IL}		I _{In} * R _{AS}		mV	D	I _{In} = leakage current (refer to DC characteri stics)
17	Temp Sensor	–40°C − 25°C	m	_	1.646	_	mV/x	С	
	Slope	25°C – 125°C		_	1.769	_	C		
18	Temp Sensor Voltage	25°C	V _{TEMP2} 5	_	718.2	_	mV	С	

 $^1\,$ All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}

² Typical values assume $V_{DDA} = 3.0V$, Temp = 25°C, $f_{ADCK}=2.0MHz$ unless otherwise stated. Typical values are for reference only and are not tested in production.

³ 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^N$

3.10 MCG and External Oscillator (XOSC) Characteristics

#	Rating		Symbol	Min	Typical	Max	Unit	С
1	Internal reference startup time		t _{irefst}	—	55	100	μs	D
2	Average internal reference frequency	factory trimmed at VDD=3.0 V and temp=25°C	f _{int_ft}	_	31.25	_	kHz	С
		user trimmed		31.25	—	39.0625		С
3	DCO output frequency range —	Low range (DRS=00)	files	16	_	20	MH-2	С
	trimmed	Mid range (DRS=01)	'dco_t	32	_	40	1011 12	С
		High range ¹ (DRS=10)		40	_	60		С
	Resolution of trimmed DCO	with FTRIM		—	± 0.1	± 0.2	0/1	С
4	output frequency at fixed voltage and temperature	without FTRIM	∆f _{dco_res_t}	—	± 0.2	± 0.4	%f _{dco}	С
	Total deviation of trimmed DCO	over voltage and temperature		—	±1.0	±2		Ρ
5	output frequency over voltage and temperature	over fixed voltage and temp range of 0 – 70 °C	∆f _{dco_t}	_	± 0.5	± 1	%f _{dco}	С
6	Acquisition time	FLL ²	t _{fll_acquire}	_		1		С
0		PLL ³	t _{pll_acquire} —		—	1	ms	D
7	Long term Jitter of DCO output clo 2mS interval) ⁴	ock (averaged over	C _{Jitter}	_	0.02	0.2	%f _{dco}	С
8	VCO operating frequency		f _{vco}	7.0	—	55.0	MHz	D
9	PLL reference frequency range		f _{pll_ref}	1.0	—	2.0	MHz	D
10	Jitter of PLL output clock measured over 625ns ⁵	Long term	f _{pll_jitter_625} ns	_	0.566 ⁴	—	%f _{pll}	D
		Entry ⁶	D _{lock}	± 1.49		± 2.98	0/	D
11	Lock frequency tolerance	Exit ⁷	D _{unl}	± 4.47	—	± 5.97	%	D
		FLL	t _{fll_lock}	_	_	t _{fII_acquire+} 1075(1/ ^f int_t)		D
12	Lock time	PLL	t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_re f)	S	D
13	Loss of external clock minimum fre 0	equency - RANGE =	f _{loc_low}	(3/5) x f _{int_t}	_	_	kHz	D
14	Loss of external clock minimum frequency - RANGE = 4		f _{loc_high}	(16/5) x f _{int_t}	_	_	kHz	D

Table 18. MCG (Temperature Range = -40 to 105°C Ambient)

¹ This should not exceed the maximum CPU frequency for this device which is 50.33 MHz.

MCF51MM256/128, Rev. 5

3.12 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

3.12.1 Control Timing

#	Symbol	Parameter		Min	Typical ¹	Max	С	Unit
1	f _{Bus}	Bus frequency $(t_{cyc} = 1/f_{Bus})$						MHz
			$V_{DD} \ge 1.8 \text{ V}$	dc	_	10	D	
			V _{DD} > 2.1 V	dc	_	20	D	
			V _{DD} > 2.4 V	dc	_	25.165	D	
2	t _{LPO}	Internal low-power oscillator period		700	1000	1300	Р	μs
3	t _{extrst}	External reset pulse width ² ($t_{cyc} = 1/f_{Self_reset}$)		100	_	_	D	ns
4	t _{rstdrv}	Reset low drive		66 x t _{cyc}		—	D	ns
5	t _{MSSU}	Active background debug mode latch setup time		500	_	_	D	ns
6	t _{MSH}	Active background debug mode latch hold time		100	_	_	D	ns
7	t _{ILIH,} t _{IHIL}	 IRQ pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cyc}	_	_	D	ns
8	t _{ILIH,} t _{IHIL}	 KBIPx pulse width Asynchronous path² Synchronous path³ 		100 1.5 x t _{cvc}		_	D	ns

Table 21. Control Timing

3.12.2 TPM Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

#	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
2		External clock period	t _{TPMext}	4		t _{cyc}
3	D	External clock high time	t _{clkh}	1.5		t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Figure 13. Timer External Clock

Figure 14. Timer Input Capture Pulse

1. Not defined, but normally MSB of character just received

3.14 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory chapter in the Reference Manual for this device (MCF51MM256RM).

#	Characteristic	Symbol	Min Typical Max			Unit	С
1	Supply voltage for program/erase -40°C to 105°C	V _{prog/erase}	1.8	1.8 — 3.6			D
2	Supply voltage for read operation	V _{Read}	1.8	—	3.6	V	D
3	Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz	D
4	Internal FCLK period (1/FCLK)	t _{Fcyc}	5 — 6.67			μS	D
5	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}	Р
6	Byte program time (burst mode) ²	t _{Burst}		4		t _{Fcyc}	Р
7	Page erase time ²	t _{Page}		4000		t _{Fcyc}	Р
8	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}	Р
9	Program/erase endurance ³ T _L to T _H = -40° C to + 105°C T = 25°C		10,000		_	cycles	С
10	Data retention ⁴	t _{D_ret}	15	100	—	years	С

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

³ **Typical endurance for flash** was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.

⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

3.15 USB Electricals

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

If the Freescale USB On-the-Go implementation has electrical characteristics that deviate from the standard or require additional information, this space would be used to communicate that information.

#	Characteristic	Symbol	Min	Тур	Max	Unit	С
1	Regulator operating voltage	V _{regin}	3.9		5.5	V	С
2	VREG output	V _{regout}	3	3.3	3.75	V	Р
3	V _{USB33} input with internal VREG disabled	V _{usb33in}	3	3.3	3.6	V	С
4	VREG Quiescent Current	I _{VRQ}	—	0.5	_	mA	С

 Table 25. Internal USB 3.3 V Voltage Regulator Characteristics

5 Revision History

This section lists major changes between versions of the MCF51MM256 Data Sheet.

Table 32. Revision History

Revision	Date	Description
0	March/April 2009	Initial Draft
1	July 2009	 Revised to follow standard template. Removed extraneous headings from the TOC. Corrected units for Monotonocity to be blank in for the DAC specification. Updated ADC characteristic tables to include 16-Bit SAR in headings.
2	July 2009	 Changed MCG (XOSC) Electricals Table - Row 2, Average Internal Reference Frequency typical value from 32.768 to 31.25.
3	April 2010	 Updated Thermal Characteristics table. Reinserted the 81 and 104 MapBGA devices. Revised the ESD and Latch-Up Protection Characteristic description to read: Latch-up Current at TA = 125°C. Changed Table 9. DC Characteristics rows 2 and 4, to 1.8 V, ILoad = -600 mA conditions to 1.8 V, ILoad = 600µA respectively. Corrected the 16-bit SAR ADC Operating Condition table Ref Voltage High Min value to be 1.13 instead of 1.15. Updated the ADC electricals. Inserted the Mini-FlexBus Timing Specifications. Added a Temp Drift parameter to the VREF Electrical Specifications. Removed the S08 Naming Convention diagram. Updated the Orderable Part Number Summary to include the Freescale Part Number suffixes. Completed the 80LQFP package drawing from 98ARL10530D to 98ASS23174W. Updated electrical characteristic data.
4	October 2010	Updated with the latest characteristic data. Added several figures. Added the ADC Typical Operation table.
5	July 2012	 In "Supply current characteristics" table, For S3I_{DD}, the maximum value for the first row at 1μA is changed to 1.3 μA and the typical value 0.65 μA is changed to 0.75μA. For parameter 3, changed "LPS" to "LPR", "FBILP" to "FBI" and "FBELP" to "FBE". For parameter 4, changed "LPS" to "LPR", and "FBELP" to "BLPE" in both instances.