

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

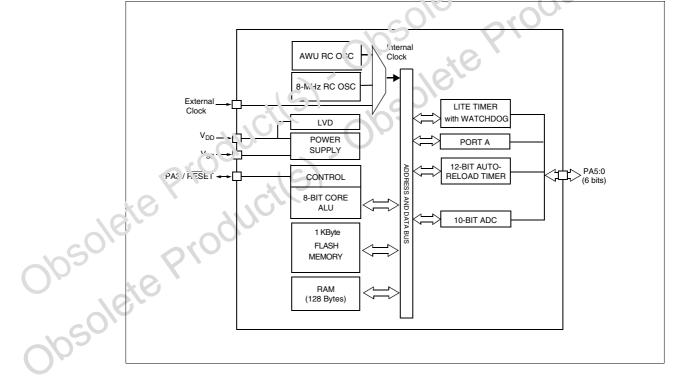
Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	
Peripherals	LVD, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st7fliteus2m6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

The ST7LITEUS2 and ST7LITEUS5 are members of the ST7 microcontroller family. All ST7 devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set.

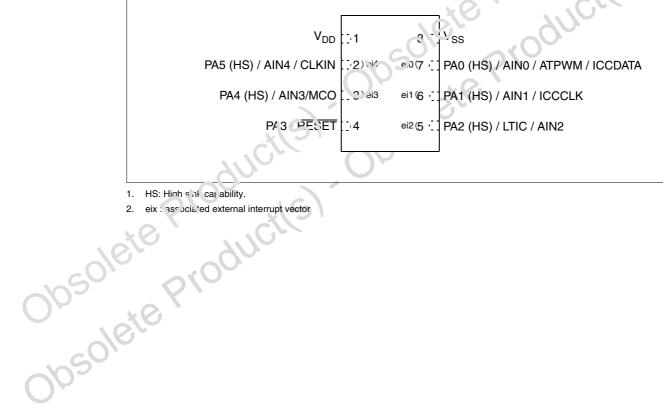

The ST7LITEUS2 and ST7LITEUS5 feature FLASH memory with byte-by-byte In-Circuit Programming (ICP) and In-Application Programming (IAP) capability.

Under software control, the ST7LITEUS2 and ST7LITEUS5 can be placed in Wait, Slow, or Halt mode, reducing power consumption when the application is in idle or standby state.

The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.

For easy reference, all parametric data are located in Section 12 on page 22.

The devices feature an on-chip debug module (DM) to support in cliculit debugging (ICD). For a description of the DM registers, refer to the ST7 I²C protocol reference manual.


Figure 1. General block diagram

5

Pin description 2

- eix : as scieted external interrupt vector

Address	Block	Register label	Register name	Reset status	Remark
0049h 004Ah	AWU	AWUPR AWUCSR	AWU Prescaler register AWU Control/Status register	FFh 00h	R/W R/W
004Bh 004Ch 004Dh 004Eh 004Fh 0050h	DM ⁽⁴⁾	DMCR DMSR DMBK1H DMBK1L DMBK2H DMBK2L	DM Control register DM Status register DM Breakpoint register 1 High DM Breakpoint register 1 Low DM Breakpoint register 2 High DM Breakpoint register 2 Low	00h 00h 00h 00h 00h 00h	R/W R/W R/W R/W R/W
0051h to 007Fh			Reserved area (47 bytes)		16)
			olete	duc	
	ter	produ	ct(s) obsolete	produc	

Hardware register map (continued)⁽¹⁾ Table 3.

the I^2C protocol routine. This routine enables the ST7 to receive bytes from the I^2C interface.

- Download ICP driver code in RAM from the ICCDATA pin
- Execute ICP driver code in RAM to program the FLASH memory

Depending on the ICP driver code downloaded in RAM, FLASH memory programming can be fully customized (number of bytes to program, program locations, or selection of the serial communication interface for downloading).

4.3.2 In application programming (IAP)

This mode uses an IAP driver program previously programmed in Sector 0 by the user (in ICP mode).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored etc).

IAP mode can be used to program any memory areas except Sector 9, which is write/erase protected to allow recovery in case errors occur during the programming operation.

4.4 I²C interface

ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These pins are:

- RESET: device reset
- V_{SS}: device power supply ground
- ICCCLK: I²C output sector clock pin
- ICCDATA: I²C input serial data pin-
- CLKIN: main clock input for external source
- V_{DD}: application board power supply

Refer to *Figure 6* for a description of the I²C interface.

C the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the programming tool is plugged to the board, even if an I²C session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to be implemented in case another device forces the signal. Refer to the programming tool documentation for recommended resistor values.

During the ICP session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5 mA at high level (push pull output or pull-up resistor<1 k Ω). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R>1 k Ω or a reset management IC with open drain output and pull-up resistor>1 k Ω , no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the I²C session.

The use of Pin 7 of the I²C connector depends on the programming tool architecture. This pin must be connected when using most ST programming tools (it is used to monitor the application power supply). Please refer to the programming tool manual.

4.7 **Register description**

4.7.1 Flash Control/Status register (FCSR)

This register controls the XFlash erasing and programming using ICP, IAP or other programming methods.

1st RASS Key: 0101 0110 (56h)

2nd RASS Key: 1010 1110 (AEh)

When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys are sent automatically.

Reset value: 000 0000 (00h)

Table 4. FLASH register map and reset values

		LASIII	egister	map and	I IESEL VO	alues			CN	
	Address (Hex.)	Register Label	7	6	5	OP	3	20	S ₁	0
	002Fh	FCSR Reset value	0	0	0	0	0	OPT 0	LAT 0	PGM 0
			ctle)	705					
	Q	rodu		5) -)						
ole	,e `	du	CL							
Obsole Obsole	teP									
obsolt										
05										

6.3.2 **RC Control register (RCCR)**

Reset value: 1111 1111 (FFh)

7							0
CR9	CR8	CR7	CR6	CR5	CR4	CR3	CR2
			Read	/ Write			

Bits 7:0 CR[9:2] RC Oscillator Frequency Adjustment Bits

These bits, as well as CR[1:0] bits in the SICSR register must be written immediately after reset to adjust the RC oscillator frequency and to obtain the required accuracy. The application can store the correct value for each voltage range in Flash memory and write it to this register at startup. 00h = maximum available frequency

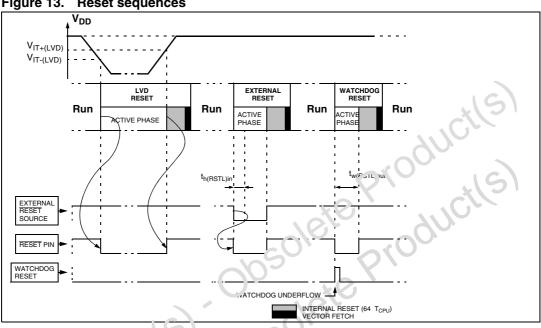
- FFh = lowest available frequency
- Note: To tune the oscillator, write a series of different value; in, the register until the correct frequency is reached. The fastest method is to use a dichotomy starting with 80h.

6.3.3 System Integrity (SI) Control/status register SICSR)

Reset value: 0000 0x00 (0xh)

7				P ⁻			0
0	CR1	CR0	2	0	LVDRF	AVDF	AVDIE
		*19		Read / Write			

Bit 7 Reserved, must be kept cleared.


Bits 2:0 System Integrity bits. Refer to Section 7.4 on page 43. These bits, as well as CR[9:2] bits in the RCCR register must be written immediately after reset to adjust the RC oscillator frequency and to obtain the

6.4.5 Internal watchdog reset

The reset sequence generated by a internal watchdog counter overflow is shown in Figure 13.

Starting from the watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least tw(RSTL)out.

6.5 Register description

6.5.1 Multionexed I/O Reset Control register 1 (MUXCR1)

Resot value: 0000 0000 (00h)

10	7							0
	MIR15	MIR14	MIR13	MIR12	MIR11	MIR10	MIR9	MIR8
	xe`	·		Read / Writ	e once			

6.5.2

Multiplexed I/O Reset Control register 0 (MUXCR0)

Reset value: 0000 0000 (00h)

7							0
MIR7	MIR6	MIR5	MIR4	MIR3	MIR2	MIR1	MIR0
			Read / Wr	ite once			

Bits 15:0 MIR[15:0]

7.2 **External interrupts**

External interrupt vectors can be loaded into the PC register if the corresponding external interrupt occurred and if the I bit is cleared. These interrupts allow the processor to leave the Halt low power mode.

The external interrupt polarity is selected through the miscellaneous register or interrupt register (if available).

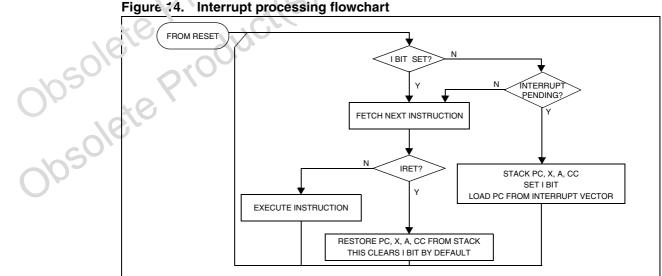
An external interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.

Caution: The type of sensitivity defined in the Miscellaneous or Interrupt register (if available) applies to the ei source. In case of a NANDed source (as described in the I/O ports section), a low level on an I/O pin, configured as input with interrupt, masks the interrupt request even in case of rising-edge sensitivity.

7.3 **Peripheral interrupts**

Different peripheral interrupt flags in the status register are able to cause an interrupt when they are active if both:

- The I bit of the CC register is cleared.
- The corresponding enable bit is set in the control register.


If any of these two conditions is false, the interrupt is latched and thus remains pending.

Clearing an interrupt request is done by:

- Writing "0" to the corresponding bit in the status register or
- Access to the status rejuster while the flag is set followed by a read or write of an associated register.

Note:

The clearing security resets the internal latch. A pending interrupt (that is, waiting for being enabled) will therefore be lost if the clear sequence is executed.

Interrupt processing flowchart Figure 14.

Bit 2 LVDRF LVD reset flag

This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared when read. See WDGRF flag description in *Section 10.1.6 on page 69* for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined.

- Note: If the selected clock source is one of the two internal ones, and if V_{DD} remains below the selected LVD threshold during less than T_{AWU} (33us typ.), the LVDRF flag cannot be set even if the device is reset by the LVD. If the selected clock source is the external clock (CLKIN), the flag is never set if the reset occurs during Halt mode. In run mode the flag is set only if f_{CLKIN} is greater than 10 MHz.
- Bit 1 **AVDF** *Voltage Detector flag* This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit is set. Refer to *Figure 17* for additional details 0: V_{DD} over AVD threshold

1: V_{DD} under AVD threshold

Bit 0 AVDIE Voltage Detector interrupt enable This bit is set and cleared by software. It enables an marrupt to be generated when the AVDF flag is set. The pending interrupt information is automatically cleared when software enters the AVD interrupt routine. 0: AVD interrupt disabled 1: AVD interrupt enabled

AVD Threshold Selection register (MVDTHCR)

Refer to Section 6.3.4: AVD Threshold' Selection register (AVDTHCR) for a full description of this register.

Application notes

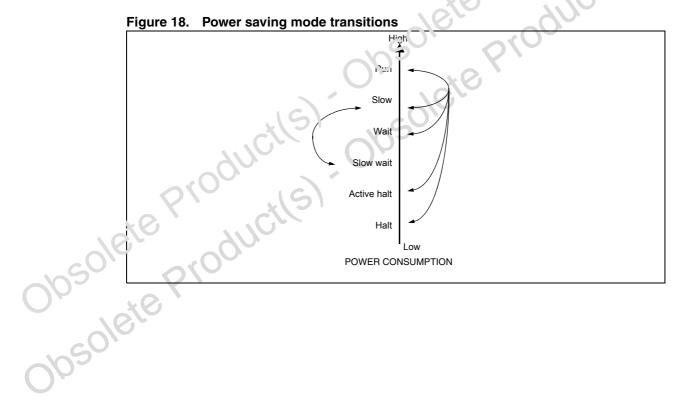
The LVDRF flag is not cleared when another reset type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure.

In this case, a watchdog reset can be detected by software while an external reset can not.

	10.013 10.	System	integrity	register	map an	u reser	values			
cole	Address (Hex.)	Register label	7	6	5	4	3	2	1	0
0/05	003Ah	SICSR reset value	0	1	1	0	0	LVDRF x	AVDF 0	AVDIE 0
00501	003Eh	AVDTHCR reset value	CK2 0	CK1 0	СК0 0	0	0	0	AVD1 1	AVD2 1

Table 15. System integrity register map and reset values

8 Power saving modes


8.1 Introduction

To give a large measure of flexibility to the application in terms of power consumption, four main power saving modes are implemented in the ST7 (see *Figure 18*):

- Slow
- Wait (and Slow-wait)
- Active-halt
- Auto-wakeup from Halt (AWUFH)
- Halt

After a reset the normal operating mode is selected by default (Run mode). This incle drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency (f_{OSC}).

From Run mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

AWUPR[7:0]	Dividing factor
00h	Forbidden
01h	1
FEh	254
FFh	255

Table 15. Configuring the dividing factor

In AWU mode, the period that the MCU stays in Halt Mode (t_{AWU} in *Figure 26*) is defined by

$$t_{AWU} = 64 \times AWUPR \times \frac{1}{f_{AWURC}} + t_{RCSTRT}$$

This prescaler register can be programmed to modify the time that the MCU stays in Halt mode before waking up automatically.

Note: If 00h is written to AWUPR, depending on the product, an inter upt is generated immediately after a HALT instruction, or the AWUPR remains unchanged.

Table 16. AWU register map and reset values

	Address (Hex.)	Register label	7	6	5	4	3	2	1	0
	0049h	AWUPR Reset value	AWUP R7	AW'JP R6 1	AWUP R5 1	AWUP R4 1	AWUP R3 1	AWUP R2 1	AWUP R1 1	AWUP R0 1
	004Ah	AWUCSR Reset Vถิ่นจ	0	0	0	0	0	AWUF	AWUM	AWUE N
opsole	, eP	rodu	ctle)						
Obsole Obsole										

10.1.6 Register description

Lite timer control/status register (LTCSR)

Reset value: 0000 0x00 (0xh)

ICIE	ICF	ТВ	TBIE	TBF			
				IDF	WDGR	WDGE	WDGD
			Read /	' Write			
	This bi 0: Inpu 1: Inpu t 6 ICF In This bi Writing 0: No i 1: An in	It Capture (IC at Capture (IC aput Capture t is set by ha to this bit do nput capture nput capture	leared by sof) interrupt dis) interrupt en <i>Flag.</i> rdware and c pes not chang	sabled pabled leared by so ge the bit val			(5)
Bit	This bi 0: Time 1: Time t 4 TBIE 7 This 5: 0: Time t 3 TBF 7 This bi Writing 0: No c	nebase perio t is set and c ebase period ebase period t is set and c ebase (TB) ir cebase (TB) ir cimebase (TB) ir cimebase Inte t is set by ha g to this bit ha counter overfi	lea ed t y sof $= t_{OSC} * 800$ $= t_{OSC} * 160$ leared by sof hterrupt disab hterrupt disab hterrupt Flag. rdware and c as no effect.	0 (1 ms @ 8 00 (2 ms @ tware. led ed leared by so	8 MHz)	ng the LTCSF	t register.

ST7LITEUS2, ST7LITEUS5

	Mode		Syntax	Destination/ source	Pointer address	Pointer size	Length (bytes)
Long	Indirect	Indexed	ld A,([\$10.w],X)	0000FFFF	00FF	word	+ 2
Relative	Direct		jrne loop	PC-128/PC+127 ¹⁾			+ 1
Relative	Indirect		jrne [\$10]	PC-128/PC+127 ¹⁾	00FF	byte	+ 2
Bit	Direct		bset \$10,#7	00FF			+ 1
Bit	Indirect		bset [\$10],#7	00FF	00FF	byte	+ 2
Bit	Direct	Relative	btjt \$10,#7,skip	00FF			+ 2
Bit	Indirect	Relative	btjt [\$10],#7,skip	00FF	00FF	byte	+3

Table 36. ST7 addressing mode overview (continued) ⁽

1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.

11.1.1 Inherent mode

All Inherent instructions consist of a single byte. The opcode (u) y specifies all the required information for the CPU to process the operation.

Inherent instruction	Function
NOP	I 'o operation
TRAP	S/W Interrupt
WFI	Wait For Interrupt (low power mode)
HALT	Halt Oscillator (lowest power mode)
RET	Subroutine return
IRET	Interrupt subroutine return
SIM	Set interrupt mask
RM	Reset interrupt mask
ISCF	Set carry flag
RCF	Reset carry flag
RSP	Reset stack pointer
LD	Load
CLR	Clear
PUSH/POP	Push/Pop to/from the stack
INC/DEC	Increment/Decrement
TNZ	Test Negative or Zero
CPL, NEG	1 or 2 complement
MUL	Byte multiplication
SLL, SRL, SRA, RLC, RRC	Shift and rotate operations
SWAP	Swap nibbles

 Table 37.
 Instructions supporting inherent addressing mode

11.1.2 Immediate

Immediate instructions have 2 bytes, the first byte contains the opcode, the second byte contains the operand value.

Table 38.	Instructions supporting inherent immediate addressing mode
-----------	--

Immediate instruction	Function
LD	Load
СР	Compare
BCP	Bit compare
AND, OR, XOR	Logical operations
ADC, ADD, SUB, SBC	Arithmetic operations

11.1.3 Direct

In Direct instructions, the operands are referenced by their memory ac dress.

The direct addressing mode consists of two submodes:

Direct (short) addressing mode

the address is a byte, thus requires only 1 byte offer the opcode, but only allows 00 - FF addressing space.

Direct (long) addressing mode

The address is a word, thus allo ving 64 Kbyte addressing space, but requires 2 bytes after the opcode.

11.1.4 Indexed morie (no offset, short, long)

In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset.

indirect addressing mode consists of three submodes:

Indexed mode (no offset)

There is no offset (no extra byte after the opcode), and allows 00 - FF addressing space.

Indexed mode (short)

The offset is a byte, thus requires only 1 byte after the opcode and allows 00 - 1FE addressing space.

Indexed mode (long)

The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode.

ار بر

	. (,						
Shift and rotates	SLL	SRL	SRA	RLC	RRC	SWAP	SLA	
Unconditional jump or call	JRA	JRT	JRF	JP	CALL	CALLR	NOP	RET
Conditional branch	JRxx							
Interruption management	TRAP	WFI	HALT	IRET				
Condition code flag modification	SIM	RIM	SCF	RCF				

Table 41. ST7 instruction set (continued)

Using a prebyte

The instructions are described with 1 to 4 bytes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

PC-2 End of previous instruction

PC-1 Prebyte

PC Opcode

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y on a.

PIX 92 Replace an instruction using direct, direct bit or direct relative addressing mode to an instruction using the corresponding indirect addressing mode.

It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.

P.V 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

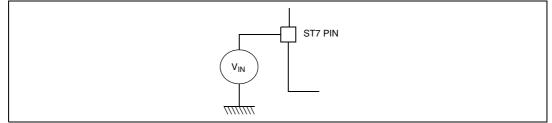
11.2.1 hlegal opcode reset

In order to provide enhanced robustness to the device against unexpected behavior, a system of illegal opcode detection is implemented. If a code to be executed does not correspond to any opcode or prebyte value, a reset is generated. This, combined with the watchdog, allows the detection and recovery from an unexpected fault or interference.

Note:

A valid prebyte associated with a valid opcode forming an unauthorized combination does not generate a reset.

Mnemo	Description	Function/example	Dst	Src	Н	I	N	Z	С
ADC	Add with carry	A=A+M+C	А	М	Н	-	Ν	Z	С
ADD	Addition	A=A+M	А	М	Н	-	Ν	Z	С
AND	Logical and	A = A . M	А	М	-	-	Ν	Z	-
BCP	Bit compare A, Memory	tst (A . M)	А	М	-	-	Ν	Z	-

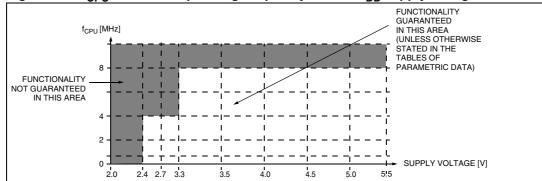

Table 42.Illegal opcode detection

12.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 38*.

Figure 38. Pin input voltage

12.2 Absolute maximum ratings


Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

1. Directly connecting the I/O pins to V_{DD} or $V_{SS}\, \mbox{could Gamage the device if an unexpected}$ change of the I/O configuration occurs (for example due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 10 k Ω for I/Os). Unused 1/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration

	Symbol	Ratings	Maximum value	Unit
	V _{DD} - V _{SS}	S. upply voltage	7.0	V
	VIN	Input voltage on any pin ⁽¹⁾	$V_{SS}\mbox{-}0.3$ to $V_{DD}\mbox{+}0.3$	v
	VELTD(HBM)	Electrostatic discharge voltage (Human Body Model)	see Section 12	2.7.2
016	V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	see Section 12	2.7.2
Obsole	 I_{INJ(PIN)} must never cannot be respecte injection is induced 	be exceeded. This is implicitly insured if V_{IN} maximum d, the injection current must be limited externally to the by V_{IN} > V_{DD} while a negative injection is induced by V_{I}	is respected. If V _{IN} max I _{INJ(PIN)} value. A positiv N <v<sub>SS.</v<sub>	imum e

Voltage characteristics Table 43.

12.3.2 Operating conditions with low voltage detector (LVD)

Operati	ing conditions with low	v voltage detector (LVD)			5
T _A = -40 t Table 47 .	o 125 °C, unless otherwise s Operating characteristic			90		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IT+(LVD)}	Reset release threshold (V _{DD} rise)	High thresho'd Med. threshold Low threshold	3.9 3.2 2.5	4.2 3.5 2.7	4.5 3.8 3.0	V
V _{IT-(LVD)}	Reset generation threshold (V _{DD} fall)	r ligh threshold Med. threshold Low threshold	3.7 3.0 2.4	4.0 3.3 2.6	4.3 3.6 2.9	V
V _{hys}	LVD voltage thresho'd hysteresis	V _{IT+(LVD)} -V _{IT-(LVD)}		150		mV
V _{tPOR}	V _{DD} rise ime rate (1)(2)	30-	20			μs/V
I _{DD(LVD)}	LV'フレベベ5 current consumption	V _{DD} = 5 V		220		μA

Not tested in production. The V_{DD} rise time rate condition is needed to ensure a correct device power-on and LVD reset release. When the V_{DD} slope is outside these values, the LVD may not release properly the reset of the MCU

red in productic ...ease. When the V_{DL}
2. Use of LVD with capac recommended to pull V_L page 114.
3. Not tested in production. Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur in the application, it is recommended to pull V_{DD} down to 0V to ensure optimum restart conditions. Refer to circuit example in *Figure 61 on page 114*.

57

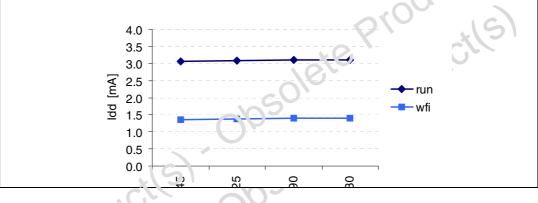
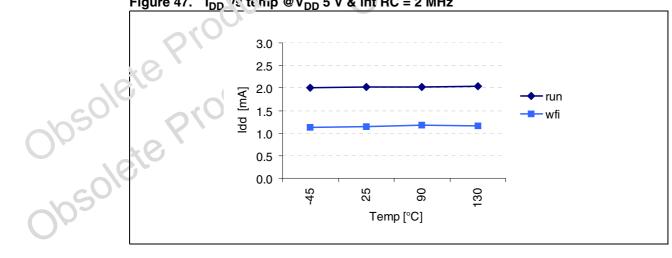




Figure 45. I_{DD} vs temp @V_{DD} 5 V & int RC = 8 MHz

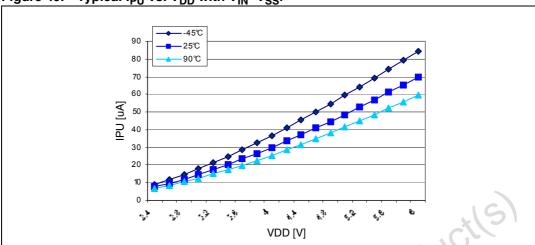


Figure 49. Typical I_{PU} vs. V_{DD} with $V_{IN}=V_{SS}I$

12.8.2 Output driving current characteristics

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A , nless otherwise specified.

Symbol	Parameter	C	Conditions	Min	Max	Unit
	Output low level voltage for PA3/RESET star Jar	D	I _{IO} = +5 mA,T _A ≤ 125 °C		1200	
V _{OL} ⁽¹⁾	I/O pin (see <i>Figure 52</i>)		I _{IO} = +2 mA,T _A ≤ 125 °C		400	
VOL 1	Output low level voltage for a high sink I/O pin	_5 <	I_{IO} =+20 mA, T_A ≤ 125 °C		1300	
	when 4 pins are sunk at same time (see Figure 55)	VDD	I _{IO} = +8 mA,T _A ≤ 125 °C		750	
V _{OH} ⁽²⁾	Output high level voltane for an I/O pin when 4 pins		I _{IO} = -5 mA,T _A ≤ 125 °C	V _{DD} -1500		
∙он	are sourced at same tin e (see Figure 58)		I_{IO} = -2 mA, $T_A \le$ 125 °C	V _{DD} -800		
(1)(2)	Output lov' le vei voltage for PA3/RESET standard I/O pin (see <i>Figure 51</i>)		I _{IO} = +2 mA,T _A ≤ 125 °C		500	
V _{OL} ⁽¹⁾⁽³⁾	Orbet low level voltage for a high sink I/O pin	=3 V	I_{IO} = +2 mA, $T_A \le$ 125 °C		180	mV
~0	when 4 pins are sunk at same time (see <i>Figure 54</i>)	VDD	I _{IO} = +8 mA,T _A ≤ 125 °C		600	
V. (2)(3)	Output high level voltage for an I/O pin when 4 pins are sourced at same time (see <i>Figure 57</i>)		I _{IO} = -2 mA,T _A ≤ 125 °C	V _{DD} -800		
(1)(3)	Output low level voltage for PA3/RESET standard I/O pin (see <i>Figure 53</i>)	>	I _{IO} = +2 mA,T _A ≤ 125 °C		700	
V _{OL} ⁽¹⁾⁽³⁾	Output low level voltage for a high sink I/O pin	2.4 \	I_{IO} = +2 mA, $T_A \le$ 125 °C		200	
· · · · · · · · · · · · · · · · · · ·	when 4 pins are sunk at same time (see <i>Figure 53</i>)	V _{DD} =	I _{IO} =+8 mA,T _A ≤ 125 °C		800	
V _{OH} (2)(3)	Output high level voltage for an I/O pin when 4 pins are sourced at same time (see <i>Figure 56</i>)		I _{IO} =-2 mA,T _A ≤ 125 °C	V _{DD} -900		

Table 64. Output driving current characteristics

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 52* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 52* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} . True open drain I/O pins do not have V_{OH} .

3. Not tested in production, based on characterization results.

Identification	Description			
AN1044	Multiple interrupt sources management for ST7 MCUs			
AN1045	ST7 S/W implementation of I ² C bus master			
AN1046	UART emulation software			
AN1047	Managing reception errors with the ST7 SCI peripherals			
AN1048	ST7 software LCD driver			
AN1078	PWM duty cycle switch implementing true 0% & 100% duty cycle			
AN1082	Description of the ST72141 motor control peripherals registers			
AN1083	72141 BLDC motor control software and flowchart example			
AN1105	ST7 pCAN peripheral driver			
AN1129	PWM management for BLDC motor drives using the ST72141			
AN1130	An introduction to sensorless brushless DC motor drive applications with the ST72141			
AN1148	Using the ST7263 for designing a USB mouse			
AN1149	Handling Suspend mode on a USB mouse			
AN1180	Using the ST7263 Kit to implement a USB game La			
AN1276	BLDC motor start routine for the ST72141 nucrocontroller			
AN1321	Using the ST72141 motor control NCU it. sensor mode			
AN1325	Using the ST7 USB low-speed firmware V4.x			
AN1445	Emulated 16-bit slave SP;			
AN1475	Developing an ST72t5x mass storage application			
AN1504	Starting a P.V.1 signal directly at high level using the ST7 16-bit timer			
AN1602	16-bit ti nin g operations using ST7262 or ST7263B ST7 USB MCUs			
AN1633	Lovice firmware upgrade (DFU) implementation in ST7 non-USB applications			
AN1712	Generating a high resolution sinewave using ST7 PWMART			
AN1713	SMBus slave driver for ST7 I2C peripherals			
AN 1750	Software UART using 12-bit ART			
∆ №1947	ST7MC PMAC sine wave motor control software library			
General purpose				
AN1476	Low cost power supply for home appliances			
AN1526	ST7FLITE0 quick reference note			
AN1709	EMC design for ST Microcontrollers			
AN1752	ST72324 quick reference note			
Product evaluation	n			
AN 910	Performance benchmarking			
AN 990	ST7 benefits vs industry standard			

Table 81. ST7 application notes (continued)

