

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.25К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/t89c51cc01ca-slsim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Power Supply: 3V to 5.5V
- Temperature Range: Industrial (-40° to +85°C)
- Packages: VQFP44, PLCC44

Description

The T89C51CC01 is the first member of the CANary[™] family of 8-bit microcontrollers dedicated to CAN network applications.

In X2 mode a maximum external clock rate of 20 MHz reaches a 300 ns cycle time.

Besides the full CAN controller T89C51CC01 provides 32K Bytes of Flash memory including In-System-Programming (ISP), 2K Bytes Boot Flash Memory, 2K Bytes EEPROM and 1.2-Kbyte RAM.

Special attention is paid to the reduction of the electro-magnetic emission of T89C51CC01.

Block Diagram

Notes: 1. 8 analog Inputs/8 Digital I/O

2. 2-Bit I/O Port

Pin Configuration

SFR Mapping

The Special Function Registers (SFRs) of the T89C51CC01 fall into the following categories:

Table 2. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator	_	-	-	_	-	_	-	_
В	F0h	B Register	_	-	-	_	-	_	-	_
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer	_	-	-	_	-	_	-	_
DPL	82h	Data Pointer Low byte LSB of DPTR	-	_	_	-	-	-	_	-
DPH	83h	Data Pointer High byte MSB of DPTR	_	_	_	_	_	_	_	_

Table 3. I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P0	80h	Port 0	-	-	_	_	-	-	-	-
P1	90h	Port 1	-	-	_	_	-	-	-	-
P2	A0h	Port 2	-	-	_	_	-	-	-	-
P3	B0h	Port 3	-	-	_	_	-	-	-	-
P4	C0h	Port 4 (x2)	-	-	-	-	-	-	-	-

Table 4. Timers SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
тно	8Ch	Timer/Counter 0 High byte	_	_	-	_	_	_	-	_
TLO	8Ah	Timer/Counter 0 Low byte	-	_	_	_	_	-	_	_
TH1	8Dh	Timer/Counter 1 High byte	-	_	_	_	_	-	_	_
TL1	8Bh	Timer/Counter 1 Low byte	I	_	_	_	_	I	_	_
TH2	CDh	Timer/Counter 2 High byte	-	_	_	_	_	-	_	_
TL2	CCh	Timer/Counter 2 Low byte	I	_	_	_	_	I	_	_
TCON	88h	Timer/Counter 0 and 1 control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO
TMOD	89h	Timer/Counter 0 and 1 Modes	GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00

Table 10. Other SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
FCON	D1h	Flash Control	FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
EECON	D2h	EEPROM Contol	EEPL3	EEPL2	EEPL1	EEPL0	-	_	EEE	EEBUSY

Table 11. SFR Mapping

	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B 0000 0000		ADCLK xxx0 0000	ADCON x000 0000	ADDL 0000 0000	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00x0 0000	CMOD 00xx x000	CCAPM0 x000 0000	CCAPM1 x000 0000	CCAPM2 x000 0000	CCAPM3 x000 0000	CCAPM4 x000 0000		DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000	CANEN1 x000 0000	CANEN2 0000 0000	CFh
C0h	P4 xxxx xx11	CANGIE 1100 0000	CANIE1 x000 0000	CANIE2 0000 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000	CANSIT1 x000 0000	CANSIT2 0000 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 0000 0000	CANSTCH xxxx xxxx	CANCONCH xxxx xxxx	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 ×000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA 1010 0000	CANGCON 0000 0000	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL xxxx xxxx	CANSTMPH xxxx xxxx	AFh
A0h	P2 1111 1111	CANTCON 0000 0000	AUXR1 xxxx 00x0	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000			9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR x00x 1100	CKCON 0000 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00x1 0000	87h
	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	J

Reserved

Note: 1. These registers are bit-addressable.

Sixteen addresses in the SFR space are both byte-addressable and bit-addressable. The bit-addressable SFR's are those whose address ends in 0 and 8. The bit addresses, in this area, are 0x80 through to 0xFF.

EEPROM Data Memory	The 2-Kbyte on-chip EEPROM memory block is located at addresses 0000h to 07FFh of the XRAM/XRAM memory space and is selected by setting control bits in the EECON register. A read in the EEPROM memory is done with a MOVX instruction.
	A physical write in the EEPROM memory is done in two steps: write data in the column latches and transfer of all data latches into an EEPROM memory row (programming).
	The number of data written on the page may vary from 1 up to 128 Bytes (the page size). When programming, only the data written in the column latch is programmed and a ninth bit is used to obtain this feature. This provides the capability to program the whole memory by Bytes, by page or by a number of Bytes in a page. Indeed, each ninth bit is set when the writing the corresponding byte in a row and all these ninth bits are reset after the writing of the complete EEPROM row.
Write Data in the Column Latches	Data is written by byte to the column latches as for an external RAM memory. Out of the 11 address bits of the data pointer, the 4 MSBs are used for page selection (row) and 7 are used for byte selection. Between two EEPROM programming sessions, all the addresses in the column latches must stay on the same page, meaning that the 4 MSB must no be changed.
	 The following procedure is used to write to the column latches: Save and disable interrupt. Set bit EEE of EECON register Load DPTR with the address to write Store A register with the data to be written Execute a MOVX @DPTR, A If needed loop the three last instructions until the end of a 128 Bytes page Restore interrupt. Note: The last page address used when loading the column latch is the one used to select the page address of the page.
Programming	 page programming address. The EEPROM programming consists of the following actions: writing one or more Bytes of one page in the column latches. Normally, all Bytes must belong to the same page; if not, the last page address will be latched and the others discarded. launching programming by writing the control sequence (50h followed by A0h) to the EECON register. EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress and that the EEPROM segment is not available for reading. The end of programming is indicated by a hardware clear of the EEBUSY flag. Note: The sequence 5xh and Axh must be executed without instructions between then otherwise the programming is aborted.
Read Data	 The following procedure is used to read the data stored in the EEPROM memory: Save and disable interrupt Set bit EEE of EECON register Load DPTR with the address to read Execute a MOVX A, @DPTR Restore interrupt

A/T89C51CC01 30

Registers

FCON RegisterFCON (S:D1h)

Flash Control Register

7	6	5	4	3	2	1	0
FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
Bit Number	Bit Mnemonic	Description					
7-4	FPL3:0	Programmin Write 5Xh fol (see Table 20	g Launch Co lowed by AXh ס)	ommand Bits to launch the	programming	according to	FMOD1:0
3	FPS	Flash Map P Set to map th Clear to re-m	rogram Spac le column lato ap the data m	ce ch space in the nemory space.	e data memor	y space.	
2-1	FMOD1:0	Flash Mode See Table 25	or Table 26.				
0	FBUSY	Flash Busy Set by hardw Clear by hard Can not be c	are when pro Iware when p hanged by so	gramming is in rogramming is ftware.	n progress. s done.		

Reset Value = 0000 0000b

Sharing Instructions Table 29. Instructions shared

Action	RAM	XRAM ERAM	EEPROM DATA	Boot FLASH	FM0	Hardware Byte	XROW
Read	MOV	MOVX	MOVX	MOVC	MOVC	MOVC	MOVC
Write	MOV	MOVX	MOVX	-	by cl	by cl	by cl

by cl: using Column Latch Note:

Table 30. Read MOVX A, @DPTR

EEE bit in EECON Register	FPS in FCON Register	ENBOOT	EA	XRAM ERAM	EEPROM DATA	Flash Column Latch
0	0	Х	х	OK		
0	1	Х	Х	OK		
1	0	Х	Х		OK	
1	1	Х	Х	OK		

Table 31. Write MOVX @DPTR,A

EEE bit in EECON Register	FPS bit in FCON Register	ENBOOT	EA	XRAM ERAM	EEPROM Data	Flash Column Latch
0	0	х	Х	OK		
0	1	~	1			OK
0	I	~	0	OK		
1	0	Х	Х		OK	
1	1	~	1			OK
Ι	I	~	0	OK		

Serial I/O Port

The T89C51CC01 I/O serial port is compatible with the I/O serial port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as a Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

Figure 27. Serial I/O Port Block Diagram

Framing Error Detection Framing bit error detection is provided for the three asynchronous modes. To enable the framing bit error detection feature, set SMOD0 bit in PCON register.

Figure 28. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register bit is set.

The software may examine the FE bit after each reception to check for data errors. Once set, only software or a reset clears the FE bit. Subsequently received frames with valid stop bits cannot clear the FE bit. When the FE feature is enabled, RI rises on the stop bit instead of the last data bit (See Figure 29. and Figure 30.).

	 ACK Errors As already mentioned frames received are acknowledged by all receivers through positive acknowledgement. If no acknowledgement is received by the transmitter of the message an ACK error is indicated.
Error at Bit Level	 Monitoring The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each node which transmits also observes the bus level and thus detects differences between the bit sent and the bit received. This permits reliable detection of global errors and errors local to the transmitter.
	 Bit Stuffing The coding of the individual bits is tested at bit level. The bit representation used by CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit coding. The synchronization edges are generated by means of bit stuffing.
Error Signalling	If one or more errors are discovered by at least one node using the above mechanisms, the current transmission is aborted by sending an "error flag". This prevents other nodes accepting the message and thus ensures the consistency of data throughout the network. After transmission of an erroneous message that has been aborted, the sender automatically re-attempts transmission.
CAN Controller	The CAN Controller accesses are made through SFR.
CAN Controller Description	 The CAN Controller accesses are made through SFR. Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing).
CAN Controller Description	 The CAN Controller accesses are made through SFR. Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 15 independent message objects are implemented, a pagination system manages their accesses.
CAN Controller Description	 The CAN Controller accesses are made through SFR. Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 15 independent message objects are implemented, a pagination system manages their accesses. Any message object can be programmed in a reception buffer block (even non-consecutive buffers). For the reception of defined messages one or several receiver message objects can be masked without participating in the buffer feature. An IT is generated when the buffer is full. The frames following the buffer-full interrupt will not be taken into account until at least one of the buffer message objects is re-enabled in reception. Higher priority of a message object for reception or transmission is given to the lower message object number.
CAN Controller Description	 The CAN Controller accesses are made through SFR. Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 15 independent message objects are implemented, a pagination system manages their accesses. Any message object can be programmed in a reception buffer block (even non-consecutive buffers). For the reception of defined messages one or several receiver message objects can be masked without participating in the buffer feature. An IT is generated when the buffer is full. The frames following the buffer-full interrupt will not be taken into account until at least one of the buffer message objects is re-enabled in reception. Higher priority of a message object for reception or transmission is given to the lower message object number. The programmable 16-bit Timer (CANTIMER) is used to stamp each received and sent message in the CANSTMP register. This timer starts counting as soon as the CAN controller is enabled by the ENA bit in the CANGCON register.

CAN Autobaud and Listening Mode

To activate the Autobaud feature, the AUTOBAUD bit in the CANGCON register must be set. In this mode, the CAN controller is only listening to the line without acknowledging the received messages. It cannot send any message. The error flags are updated. The bit timing can be adjusted until no error occurs (good configuration find).

In this mode, the error counters are frozen.

To go back to the standard mode, the AUTOBAUD bit must be cleared.

Figure 52. Autobaud Mode

Routines Examples

1. Init of CAN macro

```
// Reset the CAN macro
CANGCON = 01h;
// Disable CAN interrupts
ECAN = 0;
ETIM = 0;
// Init the Mailbox
for num_page =0; num_page <15; num_page++</pre>
{
    CANPAGE = num_channel << 4;
    CANCONCH = 00h
    CANSTCH = 00h;
    CANIDT1 = 00h;
    CANIDT2 = 00h;
    CANIDT3 = 00h;
    CANIDT4 = 00h;
    CANIDM1 = 00h;
    CANIDM2 = 00h;
   CANIDM3 = 00h;
   CANIDM4 = 00h;
    for num_data =0; num_data <8; num_data++)</pre>
      {
      CANMSG = 00h;
      }
}
// Configure the bit timing
CANBT1 = xxh
CANBT2 = xxh
CANBT3 = xxh
```

92 A/T89C51CC01

Table 59. CANGSTA Register

CANGSTA (S:AAh Read Only) CAN General Status Register

7	6	5	4	3	2	1	0			
-	OVFG	-	TBSY	RBSY	ENFG	BOFF	ERRP			
Bit Number	Bit Mnemonic	Description	on							
7	-	Reserved The value	Reserved The values read from this bit is indeterminate. Do not set this bit.							
6	OVFG	Overload This status is sent. This flag c	Overload Frame Flag This status bit is set by the hardware as long as the produced overload frame is sent. This flag does not generate an interrupt							
5	-	Reserved The value	s read from th	nis bit is indete	rminate. Do n	ot set this bit.				
4	TBSY	Transmitt This status generates bit is also This flag c	er Busy s bit is set by a frame (rem active during loes not gene	the hardware ote, data, over an InterFrame rate an interru	as long as the rload or error t Spacing if a t pt.	e CAN transmi frame) or an a frame must be	itter ck field. This ∋ sent.			
3	RBSY	Receiver This status monitors a This flag c	Receiver Busy This status bit is set by the hardware as long as the CAN receiver acquires or monitors a frame. This flag does not generate an interrupt.							
2	ENFG	Enable O Because a bit gives th This flag c	Enable On-chip CAN Controller Flag Because an enable/disable command is not effective immediately, this status bit gives the true state of a chosen mode. This flag does not generate an interrupt.							
1	BOFF	Bus Off M see Figur	Bus Off Mode see Figure 49							
0	ERRP	Error Pas see Figur	sive Mode e 49							

Reset Value = x0x0 0000b

Table 87. CANIDM4 Register for V2.0 part A

CANIDM4 for V2.0 part A (S:C7h) CAN Identifier Mask Registers 4

7	6	5	4	3	2	1	0				
-	-	-	-	-	RTRMSK	-	IDEMSK				
Bit Number	Bit Mnemoni	c Descripti	Description								
7-3	-	Reserved The value	Reserved The values read from these bits are indeterminate. Do not set these bits.								
2	RTRMSK	Remote 1 0 - compa 1 - bit con	Remote Transmission Request Mask Value 0 - comparison true forced. 1 - bit comparison enabled.								
1	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	IDEMSK	IDentifier 0 - compa 1 - bit con	IDentifier Extension Mask Value 0 - comparison true forced. 1 - bit comparison enabled.								

Note: The ID Mask is only used for reception.

No default value after reset.

Table 88. CANIDM1 Register for V2.0 part B

CANIDM1 for V2.0 part B (S:C4h) CAN Identifier Mask Registers 1

7	6	5	4	3	2	1	0
IDMSK 28	IDMSK 27	IDMSK 26	IDMSK 25	IDMSK 24	IDMSK 23	IDMSK 22	IDMSK 21
Bit Number	Bit Mnemoni	c Descripti	Description				
7-0	IDMSK28:21	IDentifier 0 - compa 1 - bit com See Figur	Mask Value rison true forc parison enab e 50.	ed. led.			

Note: The ID Mask is only used for reception.

No default value after reset.

Table 89. CANIDM2 Register for V2.0 part B

CANIDM2 for V2.0 part B (S:C5h) CAN Identifier Mask Registers 2

7	6	5	4	3	2	1	0
IDMSK 20	IDMSK 19	IDMSK 18	IDMSK 17	IDMSK 16	IDMSK 15	IDMSK 14	IDMSK 13
Bit Number	Bit Mnemoni	c Descripti	Description				
7-0	IDMSK20:13	B 1 - compa 1 - bit com See Figur	Mask Value rison true forc aparison enab e 50.	ed. led.			

Note: The ID Mask is only used for reception.

No default value after reset.

Table 90. CANIDM3 Register for V2.0 part B

CANIDM3 for V2.0 part B (S:C6h) CAN Identifier Mask Registers 3

7	6	5	4	3	2	1	0	
IDMSK 12	IDMSK 11	IDMSK 10	IDMSK 9	IDMSK 8	IDMSK 7	IDMSK 6	IDMSK 5	
Bit Number	Bit Mnemoni	c Descriptio	Description					
7-0	IDMSK12:5	IDentifier 0 - compa 1 - bit com See Figure	Mask Value rison true forc aparison enable 50.	ed. led.				

Note: The ID Mask is only used for reception.

No default value after reset.

Figure 53. PCA Timer/Counter

The CMOD register includes three additional bits associated with the PCA.

- The CIDL bit which allows the PCA to stop during idle mode.
- The WDTE bit which enables or disables the Watchdog function on module 4.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF in CCON register to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer and each module.

- The CR bit must be set to run the PCA. The PCA is shut off by clearing this bit.
- The CF bit is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in CMOD register is set. The CF bit can only be cleared by software.
- The CCF0:4 bits are the flags for the modules (CCF0 for module0...) and are set by hardware when either a match or a capture occurs. These flags also can be cleared by software.

PCA Modules

Each one of the five compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator.

In addition module 4 can be used as a Watchdog Timer.

Table 116. IEN1 Register

IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	ETIM	EADC	ECAN	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.		
6	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
2	ETIM	Timer Overr Clear to disa Set to enable	Timer Overrun Interrupt Enable bit Clear to disable the timer overrun interrupt. Set to enable the timer overrun interrupt.					
1	EADC	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.						
0	ECAN	CAN Interru Clear to disa Set to enable	CAN Interrupt Enable bit Clear to disable the CAN interrupt. Set to enable the CAN interrupt.					

Reset Value = xxxx x000b bit addressable

Table 117. IPL0 Register

IPL0 (S:B8h) Interrupt Enable Register

7	6	5	4	3	2	1	0			
-	PPC	PT2	PS	PT1	PX1	PT0	PX0			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value re	ad from this b	it is indetermir	nate. Do not s	et this bit.				
6	PPC	PCA Interru Refer to PPC	pt Priority bi CH for priority	t level						
5	PT2	Timer 2 Ove Refer to PT2	Timer 2 Overflow Interrupt Priority bit Refer to PT2H for priority level.							
4	PS	Serial Port I Refer to PSH	Priority bit I for priority le	evel.						
3	PT1	Timer 1 Ove Refer to PT1	r flow Interru H for priority I	pt Priority bit level.						
2	PX1	External Internation Refer to PX1	External Interrupt 1 Priority bit Refer to PX1H for priority level.							
1	PT0	Timer 0 Overflow Interrupt Priority bit Refer to PT0H for priority level.								
0	PX0	External Internation Refer to PXC	External Interrupt 0 Priority bit Refer to PX0H for priority level.							

Reset Value = X000 0000b bit addressable

External Program Memory Characteristics

Table 123. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction Float After PSEN
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 124. AC Parameters for a Fix Clock (F = 40 MHz)

Symbol	Min	Мах	Units
Т	25		ns
T _{LHLL}	40		ns
T _{AVLL}	10		ns
T _{LLAX}	10		ns
T _{LLIV}		70	ns
T _{LLPL}	15		ns
T _{PLPH}	55		ns
T _{PLIV}		35	ns
T _{PXIX}	0		ns
T _{PXIZ}		18	ns
T _{AVIV}		85	ns
T _{PLAZ}		10	ns

External Data Memory Write Cycle

External Data Memory Read Cycle

Serial Port Timing – Shift Register Mode

Table 129. Symbol Description (F = 40 MHz)

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Symbol	Min	Мах	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T _{XHQX}	30		ns
T _{XHDX}	0		ns
T _{XHDV}		117	ns

Table 130. AC Parameters for a Fix Clock (F = 40 MHz)

Table 131. AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	Units
T _{XLXL}	Min	12 T	6 T		ns
T _{QVHX}	Min	10 T - x	5 T - x	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	ns
T _{XHDX}	Min	х	х	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	ns

Shift Register Timing Waveforms

External Clock Drive Characteristics (XTAL1)

Table 132. AC Parameters

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

Flash/EEPROM Memory

Table 133. Timing Symbol Definitions

Signals		
S (Hardware condition)	PSEN#,EA	
R	RST	
В	FBUSY flag	

Conditions			
L	Low		
V	Valid		
Х	No Longer Valid		

Table 134. Memory AC Timing

VDD = 3V to 5.5V, TA = -40 to +85°C

Symbol	Parameter	Min	Тур	Max	Unit
T _{SVRL}	Input PSEN# Valid to RST Edge	50			ns
T _{RLSX}	Input PSEN# Hold after RST Edge	50			ns
т.	Flash/EEPROM Internal Busy (Programming) Time (2.7 V)		14	21	ms
^I BHBL	Flash/EEPROM Internal Busy (Programming) Time (3.3 V)		10	15	ms
N _{FCY}	Number of Flash/EEPROM Erase/Write Cycles	100 000			cycles
T _{FDR}	Flash/EEPROM Data Retention Time	10			years

Figure 68. Flash Memory – ISP Waveforms

Figure 69. Flash Memory – Internal Busy Waveforms

A/D Converter

Table 135. AC Parameters for A/D Conversion

Symbol	Parameter	Min	Тур	Max	Unit
T _{SETUP}		4			μs
ADC Clock Frequency			700		KHz