

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LFBGA, CSPBGA
Supplier Device Package	64-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/t89c51cc01ua-7ctim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Configurations Each Port SFR operates via type-D latches, as illustrated in Figure 1 for Ports 3 and 4. A CPU "write to latch" signal initiates transfer of internal bus data into the type-D latch. A CPU "read latch" signal transfers the latched Q output onto the internal bus. Similarly, a "read pin" signal transfers the logical level of the Port pin. Some Port data instructions activate the "read latch" signal while others activate the "read pin" signal. Latch instructions are referred to as Read-Modify-Write instructions. Each I/O line may be independently programmed as input or output.

Port 1, Port 3 and Port 4 Figure 1 shows the structure of Ports 1 and 3, which have internal pull-ups. An external source can pull the pin low. Each Port pin can be configured either for general-purpose I/O or for its alternate input output function.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 1,3 or 4). To use a pin for general-purpose input, set the bit in the Px register. This turns off the output FET drive.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, the "alternate output function" signal controls the output level (see Figure 1). The operation of Ports 1, 3 and 4 is discussed further in the "quasi-Bidirectional Port Operation" section.

Note: The internal pull-up can be disabled on P1 when analog function is selected.

Port 0 and Port 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, shown in Figure 3, differs from the other Ports in not having internal pull-ups. Figure 3 shows the structure of Port 2. An external source can pull a Port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 0 or 2). To use a pin for general-purpose input, set the bit in the Px register to turn off the output driver FET.

4 A/T89C51CC01

	Instruction	Description	Example			
	ANL	logical AND	ANL P1, A			
	ORL	logical OR	ORL P2, A			
	XRL	logical EX-OR	XRL P3, A			
	JBC	jump if bit = 1 and clear bit	JBC P1.1, LABEL			
	CPL	complement bit	CPL P3.0			
	INC	increment	INC P2			
	DEC	decrement	DEC P2			
	DJNZ	decrement and jump if not zero	DJNZ P3, LABEL			
	MOV Px.y, C	move carry bit to bit y of Port x	MOV P1.5, C			
	CLR Px.y	clear bit y of Port x	CLR P2.4			
	SET Px.y	set bit y of Port x	SET P3.3			
Quasi-Bidirectional Port Operation	 These instructions read the port (all 8 bits), modify the specifically addressed write the new byte back to the latch. These Read-Modify-Write instructions are to the latch rather than the pin in order to avoid possible misinterpretation or (and therefore, logic) levels at the pin. For example, a Port bit used to drive the an external bipolar transistor can not rise above the transistor's base-emitter voltage (a value lower than VIL). With a logic one written to the bit, attempts by to read the Port at the pin are misinterpreted as logic zero. A read of the latch than the pins returns the correct logic-one value. Port 1, Port 2, Port 3 and Port 4 have fixed internal pull-ups and are referr "quasi-bidirectional" Ports. When configured as an input, the pin impedance ap logic one and sources current in response to an external logic zero condition. P "true bidirectional" pin. The pins float when configured as input. Resets write log all Port latches. If logical zero is subsequently written to a Port latch, it can be to input conditions by a logical one written to the latch. Note: Port latch values change near the end of Read-Modify-Write instruction cycle buffers (and therefore the pin state) update early in the instruction after Read vite instruction cycle. Logical zero-to-one transitions in Port 1, Port 2, Port 3 and Port 4 use an additiu up (p1) to aid this logic transition (see Figure 4.). This increases switch spe extra pull-up sources 100 times normal internal circuit current during 2 oscilla 					
	ups consist of three logical zero and o oscillator periods i one at the Port pin and pFET pair form on whenever the a vention. Current st	e p-channel FET (pFET) devices. A ff when the gate senses logical o mmediately after a zero-to-one tra turns on pFET #3 (a weak pull-up n a latch to drive logical one. pFET ssociated nFET is switched off. Th rengths are 1/10 that of pFET #3.	A pFET is on when the gate senses one. pFET #1 is turned on for two ansition in the Port latch. A logical) through the inverter. This inverter #2 is a very weak pull-up switched his is traditional CMOS switch con-			

Table 1. Read-Modify-Write Instruction	ons
--	-----

Data Memory

The T89C51CC01 provides data memory access in two different spaces:

- 1. The internal space mapped in three separate segments:
- the lower 128 Bytes RAM segment.
- the upper 128 Bytes RAM segment.
- the expanded 1024 Bytes RAM segment (XRAM).
- 2. The external space.

A fourth internal segment is available but dedicated to Special Function Registers, SFRs, (addresses 80h to FFh) accessible by direct addressing mode.

Figure 11 shows the internal and external data memory spaces organization.

A/T89C51CC01

Mode 2 (8-bit Timer with Auto-Reload)

Mode 2 configures Timer 0 as an 8-bit Timer (TL0 register) that automatically reloads from TH0 register (see Figure 33). TL0 overflow sets TF0 flag in TCON register and reloads TL0 with the contents of TH0, which is preset by software. When the interrupt request is serviced, hardware clears TF0. The reload leaves TH0 unchanged. The next reload value may be changed at any time by writing it to TH0 register.

Figure 33. Timer/Counter x (x = 0 or 1) in Mode 2

Mode 3 (Two 8-bit Timers)

Mode 3 configures Timer 0 such that registers TL0 and TH0 operate as separate 8-bit Timers (see Figure 34). This mode is provided for applications requiring an additional 8-bit Timer or Counter. TL0 uses the Timer 0 control bits C/T0# and GATE0 in TMOD register, and TR0 and TF0 in TCON register in the normal manner. TH0 is locked into a Timer function (counting F_{PER} /6) and takes over use of the Timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of Timer 1 is restricted when Timer 0 is in mode 3.

Figure 34. Timer/Counter 0 in Mode 3: Two 8-bit Counters

Timer 1	 Timer 1 is identical to Timer 0 excepted for Mode 3 which is a hold-count mode. The following comments help to understand the differences: Timer 1 functions as either a Timer or event Counter in three modes of operation. Figure 31 to Figure 33 show the logical configuration for modes 0, 1, and 2. Timer 					
	 Timer 1 is controlled by the four high-order bits of TMOD register (see Figure 41) and bits 2, 3, 6 and 7 of TCON register (see Figure 40). TMOD register selects the method of Timer gating (GATE1), Timer or Counter operation (C/T1#) and mode of operation (M11 and M01). TCON register provides Timer 1 control functions: overflow flag (TF1), run control bit (TR1), interrupt flag (IE1) and interrupt type control bit (IT1). 					
	• Timer 1 can serve as the Baud Rate Generator for the Serial Port. Mode 2 is best suited for this purpose.					
	 For normal Timer operation (GATE1 = 0), setting TR1 allows TL1 to be incremented by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control Timer operation. 					
	• Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag generating an interrupt request.					
	• When Timer 0 is in mode 3, it uses Timer 1's overflow flag (TF1) and run control bit (TR1). For this situation, use Timer 1 only for applications that do not require an interrupt (such as a Baud Rate Generator for the Serial Port) and switch Timer 1 in and out of mode 3 to turn it off and on.					
	It is important to stop Timer/Counter before changing mode.					
Mode 0 (13-bit Timer)	Mode 0 configures Timer 1 as a 13-bit Timer, which is set up as an 8-bit Timer (TH1 reg- ister) with a modulo-32 prescaler implemented with the lower 5 bits of the TL1 register (see Figure 31). The upper 3 bits of TL1 register are ignored. Prescaler overflow incre- ments TH1 register.					
Mode 1 (16-bit Timer)	Mode 1 configures Timer 1 as a 16-bit Timer with TH1 and TL1 registers connected in cascade (see Figure 32). The selected input increments TL1 register.					
Mode 2 (8-bit Timer with Auto- Reload)	Mode 2 configures Timer 1 as an 8-bit Timer (TL1 register) with automatic reload from TH1 register on overflow (see Figure 33). TL1 overflow sets TF1 flag in TCON register and reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1 unchanged.					
Mode 3 (Halt)	Placing Timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt Timer 1 when TR1 run control bit is not available i.e. when Timer 0 is in mode 3.					
Interrupt	Each Timer handles one interrupt source that is the timer overflow flag TF0 or TF1. This flag is set every time an overflow occurs. Flags are cleared when vectoring to the Timer interrupt routine. Interrupts are enabled by setting ETx bit in IEN0 register. This assumes interrupts are globally enabled by setting EA bit in IEN0 register.					

Registers

Table 46. T2CON Register

T2CON (S:C8h) Timer 2 Control Register

7	6	5	4	3	2	1	0			
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#			
Bit Number	Bit Mnemonic	Description								
7	TF2	Timer 2 Ove TF2 is not se Must be clea Set by hardw	Timer 2 Overflow Flag TF2 is not set if RCLK=1 or TCLK = 1. Must be cleared by software. Set by hardware on timer 2 overflow.							
6	EXF2	Timer 2 Externation Set when a contract of EXEN2=1. Set to cause is enabled. Must be clear	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. Set to cause the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software.							
5	RCLK	Receive Clo Clear to use Set to use tir	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.							
4	TCLK	Transmit Cle Clear to use Set to use tir	Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.							
3	EXEN2	Timer 2 Exte Clear to igno Set to cause detected, if ti	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.							
2	TR2	Timer 2 Run Clear to turn Set to turn of	Timer 2 Run Control bit Clear to turn off timer 2. Set to turn on timer 2.							
1	C/T2#	Timer/Coun Clear for time Set for count	ter 2 Select b er operation (i er operation (hit nput from inte input from T2	rnal clock sys input pin).	tem: F _{OSC}).				
0	CP/RL2#	Timer 2 Cap If RCLK=1 of timer 2 overf Clear to auto EXEN2=1. Set to captur	Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow. Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1.							

Reset Value = 0000 0000b Bit addressable

Table 49. TL2 Register

TL2 (S:CCh) Timer 2 Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		Low Byte of	Timer 2.				

Reset Value = 0000 0000b Not bit addressable

Table 50. RCAP2H Register

RCAP2H (S:CBh) Timer 2 Reload/Capture High Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		High Byte of	Timer 2 Reloa	ad/Capture.			

Reset Value = 0000 0000b Not bit addressable

Table 51. RCAP2L Register

RCAP2L (S:CAH) TIMER 2 Reload/Capture Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		Low Byte of	Timer 2 Reloa	d/Capture.			

Reset Value = 0000 0000b Not bit addressable

Watchdog Timer

T89C51CC01 contains a powerful programmable hardware Watchdog Timer (WDT) that automatically resets the chip if it software fails to reset the WDT before the selected time interval has elapsed. It permits large Time-Out ranking from 16ms to 2s @Fosc = 12MHz in X1 mode.

This WDT consists of a 14-bit counter plus a 7-bit programmable counter, a Watchdog Timer reset register (WDTRST) and a Watchdog Timer programming (WDTPRG) register. When exiting reset, the WDT is -by default- disable.

To enable the WDT, the user has to write the sequence 1EH and E1H into WDTRST register no instruction in between. When the Watchdog Timer is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $96xT_{OSC}$, where $T_{OSC}=1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset

Note: When the Watchdog is enable it is impossible to change its period.

Figure 38. Watchdog Timer

number of following data bytes in the "Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following "Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a dominant bit by the receivers which have at this time received the data correctly. Correct messages are acknowledged by the receivers regardless of the result of the acceptance test. The end of the message is indicated by "End Of Frame (EOF)". The "Intermission Frame Space (IFS)" is the minimum number of bits separating consecutive messages. If there is no following bus access by any node, the bus remains idle.

CAN Extended Frame

A message in the CAN extended frame format is likely the same as a message in CAN standard frame format. The difference is the length of the identifier used. The identifier is made up of the existing 11-bit identifier (base identifier) and an 18-bit extension (identifier extension). The distinction between CAN standard frame format and CAN extended frame format is made by using the IDE bit which is transmitted as dominant in case of a frame in CAN standard frame format, and transmitted as recessive in the other case.

Format Co-existence	As the two formats have to co-exist on one bus, it is laid down which message has higher priority on the bus in the case of bus access collision with different formats and the same identifier / base identifier: The message in CAN standard frame format always has priority over the message in extended format.						
	There are three different types of CAN modules available:						
	 2.0A - Considers 29 bit ID as an error 2.0B Passive - Ignores 29 bit ID messages 2.0B Active - Handles both 11 and 29 bit ID Messages 						
Bit Timing	To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize throughout the entire frame. This is done at the beginning of each message with the fall- ing edge SOF and on each recessive to dominant edge.						
Bit Construction	One CAN bit time is specified as four non-overlapping time segments. Each segment is constructed from an integer multiple of the Time Quantum. The Time Quantum or TQ is the smallest discrete timing resolution used by a CAN node.						

Figure 43. CAN Controller Block Diagram

CAN Controller Mailbox and Registers Organization

The pagination allows management of the 321 registers including 300(15x20) Bytes of mailbox via 34 SFR's.

All actions on the message object window SFRs apply to the corresponding message object registers pointed by the message object number find in the Page message object register (CANPAGE) as illustrate in Figure 44.

A/T89C51CC01

message object Window SFRs

A/T89C51CC01

Acceptance Filter

Upon a reception hit (i.e., a good comparison between the ID+RTR+RB+IDE received and an ID+RTR+RB+IDE specified while taking the comparison mask into account) the ID+RTR+RB+IDE received are written over the ID TAG Registers.

ID => IDT0-29

RTR => RTRTAG

RB => RB0-1TAG

IDE => IDE in CANCONCH register

Figure 50. Acceptance filter block diagram

example: To accept only ID = 318h in part A. ID MSK = 111 1111 1111 b ID TAG = 011 0001 1000 b

4. Interrupt routine

// Save the current CANPAGE

// Find the first message object which generate an interrupt in CANSIT1 and CANSIT2 $% \left(\mathcal{A}_{\mathrm{CANSIT2}}^{\mathrm{T}}\right) =0$

// Select the corresponding message object

 $\ensuremath{\prime\prime}\xspace$ Analyse the CANSTCH register to identify which kind of interrupt is generated

// Manage the interrupt

// Clear the status register CANSTCH = 00h;

// if it is not a channel interrupt but a general interrupt

// Manage the general interrupt and clear CANGIT register

 $//\ {\rm restore}$ the old CANPAGE

Table 61. CANTEC Register

CANTEC (S:9Ch Read Only) CAN Transmit Error Counter

7	6	5	4	3	2	1	0
TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
Dit							
Number	Bit Mnemonic	Descripti	on				
7-0	TEC7:0	Transmit see Figur	Error Counte e 49	er			

Reset Value = 00h

Table 62. CANREC Register

CANREC (S:9Dh Read Only) CAN Reception Error Counter

7	6	5	4	3	2	1	0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
		1					
Bit Number	Bit Mnemonic	Descriptio	on				
7-0	REC7:0	Reception see Figur	n Error Count e 49	ter			

Reset Value = 00h

Table 67. CANSIT2 Register

CANSIT2 (S:BBh Read Only)

CAN Status Interrupt Message Object Registers 2

7	6	5	4	3	2	1	0			
SIT7	SIT6	SIT5	SIT4	SIT3	SIT2	SIT1	SIT0			
Bit Number	Bit Mnemonic	Descripti	Description							
7-0	SIT7:0	Status of 0 - no inte 1 - IT turn SIT7:0 = 0 see Figure	Status of Interrupt by Message Object 0 - no interrupt. 1 - IT turned on. Reset when interrupt condition is cleared by user. SIT7:0 = 0b 0000 1001 -> IT's on message objects 3 and 0 see Figure 46.							

Reset Value = 0000 0000b

Table 68. CANIE1 Register

CANIE1 (S:C2h) CAN Enable Interrupt Message Object Registers 1

7	6	5	4	3	2	1	0			
-	IECH14	IECH13	IECH12	IECH11	IECH10	IECH9	IECH8			
Bit Number	Bit Mnemonic	Descriptio	Description							
7	-	Reserved The values read from this bit is indeterminate. Do not set this bit.								
6-0	IECH14:8	Enable interrupt by Message Object 0 - disable IT. 1 - enable IT. IECH14:8 = 0b 0000 1100 -> Enable IT's of message objects 11 and 10. see Figure 46.								

Reset Value = x000 0000b

Table 82. CANIDT3 Register for V2.0 part B

CANIDT3 for V2.0 part B (S:BEh) CAN Identifier Tag Registers 3

7	6	5	4	3	2	1	0
IDT 12	IDT 11	IDT 10	IDT 9	IDT 8	IDT 7	IDT 6	IDT 5
Bit Number	Bit Mnemonic	Descriptio	on				
7-0	IDT12:5	IDentifier See Figure	Tag Value e 50.				

No default value after reset.

Table 83. CANIDT4 Register for V2.0 part B

CANIDT4 for V2.0 part B (S:BFh) CAN Identifier Tag Registers 4

7	6	5	4	3	2	1	0
IDT 4	IDT 3	IDT 2	IDT 1	IDT 0	RTRTAG	RB1TAG	RB0TAG

Bit Number	Bit Mnemonic	Description
7-3	IDT4:0	IDentifier Tag Value See Figure 50.
2	RTRTAG	Remote Transmission Request Tag Value
1	RB1TAG	Reserved bit 1 Tag Value
0	RB0TAG	Reserved bit 0 Tag Value

No default value after reset.

Table 84. CANIDM1 Register for V2.0 part A

CANIDM1 for V2.0 part A (S:C4h) CAN Identifier Mask Registers 1

7	6	5	4	3	2	1	0
IDMSK 10	IDMSK 9	IDMSK 8	IDMSK 7	IDMSK 6	IDMSK 5	IDMSK 4	IDMSK 3
Bit Number	Bit Mnemonic	Descriptio	on				
7-0	IDTMSK10:3	IDentifier 0 - compa 1 - bit com See Figure	mask value rison true forc Iparison enabl e 50.	ed. led.			

No default value after reset.

Table 85. CANIDM2 Register for V2.0 part A

CANIDM2 for V2.0 part A (S:C5h) CAN Identifier Mask Registers 2

7	6	5	4	3	2	1	0		
IDMSK 2	IDMSK 1	IDMSK 0	-	-	-	-	-		
Bit Number	Bit Mnemonic	Descripti	on						
7-5	IDTMSK2:0	IDentifier 0 - compa 1 - bit com See Figur	IDentifier Mask Value 0 - comparison true forced. 1 - bit comparison enabled. See Figure 50.						
4-0	-	Reserved The value	s read from th	ese bits are ir	ndeterminate.	Do not set the	ese bits.		

No default value after reset.

Table 86. CANIDM3 Register for V2.0 part A

CANIDM3 for V2.0 part A (S:C6h) CAN Identifier Mask Registers 3

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	-	-			
Bit Number	Bit Mnemonio	Descripti	Description							
7-0	-	Reserved The value	s read from th	iese bits are ir	ndeterminate.					

No default value after reset.

A/T89C51CC01

Figure 55. PCA Capture Mode

16-bit Software Timer Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.

Figure 56. PCA 16-bit Software Timer and High Speed Output Mode

Table 101. CCON Register

CCON (S:D8h) PCA Counter Control Register

7	6	5	4	3	2	1	0			
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0			
Bit Number	Bit Mnemonic	Description								
7	CF	PCA Timer/0 Set by hardw interrupt requ Must be clea	PCA Timer/Counter Overflow flag Set by hardware when the PCA Timer/Counter rolls over. This generates a PCA nterrupt request if the ECF bit in CMOD register is set. Must be cleared by software.							
6	CR	PCA Timer/ Clear to turn Set to turn th	PCA Timer/Counter Run Control bit Clear to turn the PCA Timer/Counter off. Set to turn the PCA Timer/Counter on.							
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
4	CCF4	PCA Module Set by hardw interrupt requ Must be clea	PCA Module 4 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 4 bit in CCAPM 4 register is set. Must be cleared by software.							
3	CCF3	PCA Module Set by hardw interrupt requ Must be clea	PCA Module 3 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 3 bit in CCAPM 3 register is set. Must be cleared by software.							
2	CCF2	PCA Module Set by hardw interrupt requ Must be clea	PCA Module 2 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 2 bit in CCAPM 2 register is set. Must be cleared by software.							
1	CCF1	PCA Module Set by hardw interrupt requ Must be clea	PCA Module 1 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 1 bit in CCAPM 1 register is set. Must be cleared by software.							
0	CCF0	PCA Module Set by hardw interrupt requ Must be clea	PCA Module 0 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 0 bit in CCAPM 0 register is set. Must be cleared by software.							

Reset Value = 00X0 0000b

Registers

Table 115. IEN0 Register

IEN0 (S:A8h) Interrupt Enable Register

7	6	5	4	3	2	1	0			
EA	EC	ET2	ES	ET1	EX1	ET0	EX0			
Bit Number	Bit Mnemonic	Description								
7	EA	Enable All In Clear to disa Set to enable If EA=1, eac clearing its in	Enable All Interrupt bit Clear to disable all interrupts. Set to enable all interrupts. f EA=1, each interrupt source is individually enabled or disabled by setting or clearing its interrupt enable bit.							
6	EC	PCA Interru Clear to disa Set to enable	PCA Interrupt Enable Dlear to disable the PCA interrupt. Set to enable the PCA interrupt.							
5	ET2	Timer 2 Ove Clear to disa Set to enable	Timer 2 Overflow Interrupt Enable bit Clear to disable Timer 2 overflow interrupt. Set to enable Timer 2 overflow interrupt.							
4	ES	Serial Port I Clear to disa Set to enable	Serial Port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.							
3	ET1	Timer 1 Ove Clear to disa Set to enable	Timer 1 Overflow Interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.							
2	EX1	External Internation Clear to disa Set to enable	External Interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.							
1	ET0	Timer 0 Ove Clear to disa Set to enable	rflow Interru ble timer 0 ov e timer 0 over	pt Enable bit erflow interrup flow interrupt.	ot.					
0	EX0	External Internation Clear to disa Set to enable	External Interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.							

Reset Value = 0000 0000b bit addressable