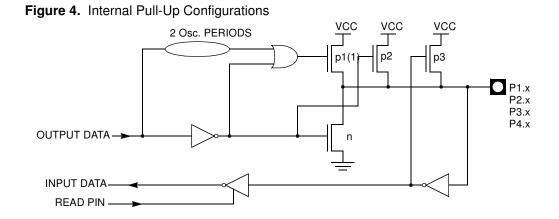


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

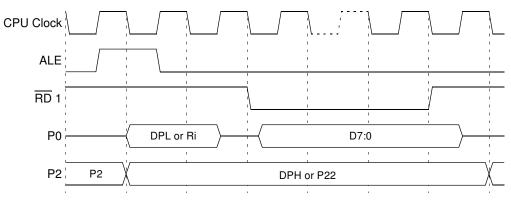

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/t89c51cc01ua-rltim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Note: Port 2 p1 assists the logic-one output for memory bus cycles.

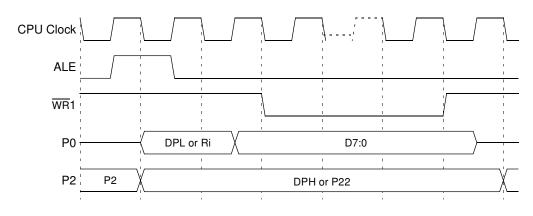


Figure 14. External Data Read Waveforms

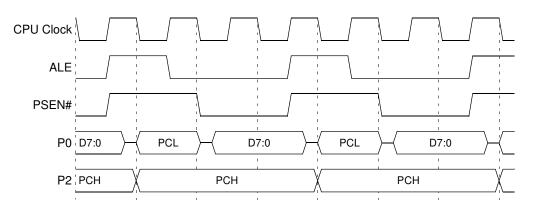
- Notes: 1. RD signal may be stretched using M0 bit in AUXR register.
 - 2. When executing MOVX @Ri instruction, P2 outputs SFR content.

Figure 15. External Data Write Waveforms

Notes: 1. WR signal may be stretched using M0 bit in AUXR register.
2. When executing MOVX @Ri instruction, P2 outputs SFR content.

```
Examples
                       ;* NAME: api_rd_eeprom_byte
                       ;* DPTR contain address to read.
                       ;* Acc contain the reading value
                       ;* NOTE: before execute this function, be sure the EEPROM is not BUSY
                       api_rd_eeprom_byte:
                       ; Save and clear EA
                       MOV EECON, #02h; map EEPROM in XRAM space
                       MOVX A, @DPTR
                       MOV EECON, #00h; unmap EEPROM
                       ; Restore EA
                       ret
                       ;* NAME: api_ld_eeprom_cl
                       ;* DPTR contain address to load
                       ;* Acc contain value to load
                       ;* NOTE: in this example we load only 1 byte, but it is possible upto
                       ;* 128 Bytes.
                       ;* before execute this function, be sure the EEPROM is not BUSY
                       *****
                       api_ld_eeprom_cl:
                       ; Save and clear EA
                       MOV EECON, #02h ; map EEPROM in XRAM space
                       MOVX @DPTR, A
                       MOVEECON, #00h; unmap EEPROM
                       ; Restore EA
                       ret
                       ;* NAME: api_wr_eeprom
                       ;* NOTE: before execute this function, be sure the EEPROM is not BUSY
                       api_wr_eeprom:
                       ; Save and clear EA
                       MOV EECON, #050h
                       MOV EECON, #0A0h
                       ; Restore EA
                       ret
```


Registers


Table 21. EECON Register

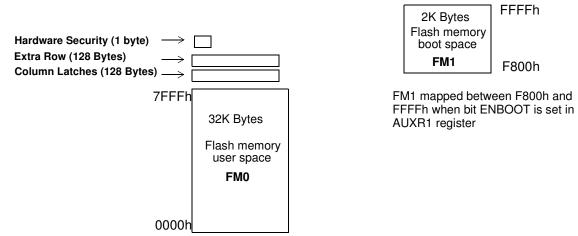
EECON (S:0D2h) EEPROM Control Register

7	6	5	4	3	2	1	0			
EEPL3	EEPL2	EEPL1	EEPL0	-	-	EEE	EEBUSY			
Bit Number	Bit Mnemonic	Descriptio	Description							
7-4	EEPL3-0	•	Programming Launch command bits Write 5Xh followed by AXh to EEPL to launch the programming.							
3	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.							
2	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.							
1	EEE	Set to map latches)	Enable EEPROM Space bit Set to map the EEPROM space during MOVX instructions (Write in the column latches) Clear to map the XRAM space during MOVX.							
0	EEBUSY	Set by hard Cleared by	hardware wh	g rogramming is en programmi d by software.	ng is done.					

Reset Value = XXXX XX00b Not bit addressable

Figure 19. External Code Fetch Waveforms

Flash Memory Architecture


T89C51CC01 features two on-chip Flash memories:

- Flash memory FM0:
 - containing 32K Bytes of program memory (user space) organized into 128 byte pages,
- Flash memory FM1: 2K Bytes for boot loader and Application Programming Interfaces (API).

The FM0 can be program by both parallel programming and Serial In-System-Programming (ISP) whereas FM1 supports only parallel programming by programmers. The ISP mode is detailed in the "In-System-Programming" section.

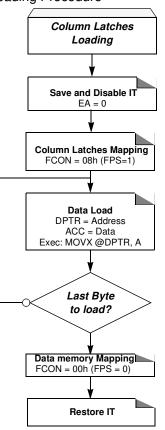

All Read/Write access operations on Flash Memory by user application are managed by a set of API described in the "In-System-Programming" section.

Figure 20. Flash Memory Architecture

Note: The last page address used when loading the column latch is the one used to select the page programming address.

Programming the Flash Spaces

User

The following procedure is used to program the User space and is summarized in Figure 22:

- Load up to one page of data in the column latches from address 0000h to 7FFFh.
- Save then disable the interrupts.
- Launch the programming by writing the data sequence 50h followed by A0h in FCON register (only from FM1).
- The end of the programming indicated by the FBUSY flag cleared.
- Restore the interrupts.

Extra Row

The following procedure is used to program the Extra Row space and is summarized in Figure 22:

- Load data in the column latches from address FF80h to FFFFh.
- Save then disable the interrupts.
- Launch the programming by writing the data sequence 52h followed by A2h in FCON register. This step of the procedure must be executed from FM1. The end of the programming indicated by the FBUSY flag cleared. The end of the programming indicated by the FBUSY flag cleared.
- Restore the interrupts.

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Registers

Table 35. SCON Register

SCON (S:98h) Serial Control Register

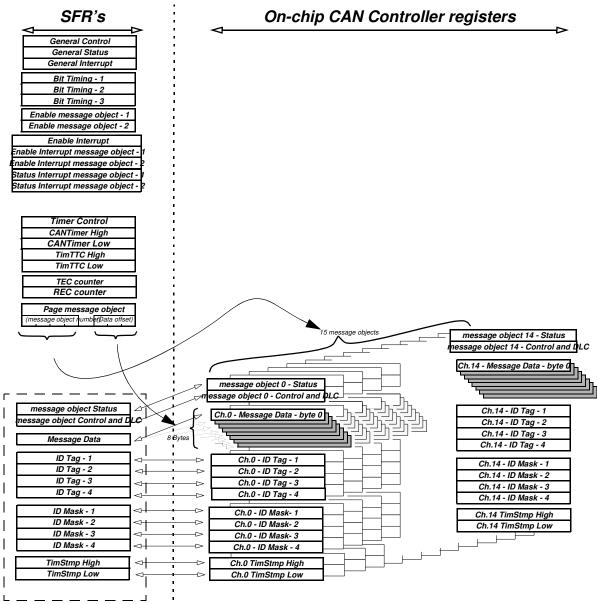
7	6	5	4	3	2	1	0				
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI				
Bit Number	Bit Mnemonic	Description	Description								
7	FE	Clear to rese	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected.								
	SM0		Iode bit 0 (SI I for serial por	,	ion.						
6	SM1										
5	SM2	Clear to disa	Serial port Mode 2 bit/Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3.								
4	REN		nable bit ble serial rece e serial recept								
3	TB8	Clear to trans	Bit 8/Ninth b smit a logic 0 nit a logic 1 in	in the 9th bit.	in modes 2 a	ind 3					
2	RB8	Cleared by h	t 8/Ninth bit r ardware if 9th vare if 9th bit r	bit received i							
1	TI	Clear to ackr Set by hardw	Transmit Interrupt flagClear to acknowledge interrupt.Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the othermodes.								
0	RI	Set by hardw	nowledge inter	d of the 8th bi	t time in mode	0, see Figure	29. and				

Reset Value = 0000 0000b Bit addressable

Registers

Table 46. T2CON Register

T2CON (S:C8h) Timer 2 Control Register

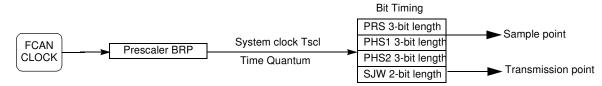

7	6	5	4	3	2	1	0					
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#					
Bit Number	Bit Mnemonic	Description	Description									
7	TF2	TF2 is not se Must be clea	Fimer 2 Overflow Flag FF2 is not set if RCLK=1 or TCLK = 1. Must be cleared by software. Set by hardware on timer 2 overflow.									
6	EXF2	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. Set to cause the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software.										
5	RCLK	Clear to use	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.									
4	TCLK		timer 1 overfl	ow as transmi v as transmit c								
3	EXEN2	Clear to igno Set to cause	a capture or	bit T2EX pin for ti reload when a used to clock ti	negative tran		X pin is					
2	TR2	Timer 2 Run Clear to turn Set to turn of	off timer 2.									
1	C/T2#	Clear for time		bit nput from inte input from T2		tem: F _{osc}).						
0	CP/RL2#	If RCLK=1 or timer 2 overf Clear to auto EXEN2=1.	low. p-reload on tim	bit //RL2# is ignor ner 2 overflows transitions or	s or negative t	transitions on						

Reset Value = 0000 0000b Bit addressable

	 ACK Errors As already mentioned frames received are acknowledged by all receivers through positive acknowledgement. If no acknowledgement is received by the transmitter of the message an ACK error is indicated.
Error at Bit Level	 Monitoring The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each node which transmits also observes the bus level and thus detects differences between the bit sent and the bit received. This permits reliable detection of global errors and errors local to the transmitter.
	 Bit Stuffing The coding of the individual bits is tested at bit level. The bit representation used by CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit coding. The synchronization edges are generated by means of bit stuffing.
Error Signalling	If one or more errors are discovered by at least one node using the above mechanisms, the current transmission is aborted by sending an "error flag". This prevents other nodes accepting the message and thus ensures the consistency of data throughout the network. After transmission of an erroneous message that has been aborted, the sender automatically re-attempts transmission.
CAN Controller	The CAN Controller accesses are made through SFR.
CAN Controller Description	Several operations are possible by SFR:arithmetic and logic operations, transfers and program control (SFR is accessible by
	Several operations are possible by SFR:
	 Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 15 independent message objects are implemented, a pagination system manages
	 Several operations are possible by SFR: arithmetic and logic operations, transfers and program control (SFR is accessible by direct addressing). 15 independent message objects are implemented, a pagination system manages their accesses. Any message object can be programmed in a reception buffer block (even non-consecutive buffers). For the reception of defined messages one or several receiver message objects can be masked without participating in the buffer feature. An IT is generated when the buffer is full. The frames following the buffer-full interrupt will not be taken into account until at least one of the buffer message objects is re-enabled in reception. Higher priority of a message object for reception or transmission is given to the lower

message object Window SFRs

Bit Timing and Baud Rate


FSM's (Finite State Machine) of the CAN channel need to be synchronous to the time quantum. So, the input clock for bit timing is the clock used into CAN channel FSM's.

Field and segment abbreviations:

- BRP: Baud Rate Prescaler.
- TQ: Time Quantum (output of Baud Rate Prescaler).
- SYNS: SYNchronization Segment is 1 TQ long.
- PRS: PRopagation time Segment is programmable to be 1, 2, ..., 8 TQ long.
- PHS1: PHase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.
- PHS2: PHase Segment 2 is programmable to be superior or equal to the INFORMATION PROCESSING TIME and inferior or equal to TPHS1.
- INFORMATION PROCESSING TIME is 2 TQ.
- SJW: (Re) Synchronization Jump Width is programmable to be minimum of PHS1 and 4.

The total number of TQ in a bit time has to be programmed at least from 8 to 25.

Figure 47. Sample And Transmission Point

The baud rate selection is made by Tbit calculation:

Tbit = Tsyns + Tprs + Tphs1 + Tphs2

- 1. Tsyns = Tscl = (BRP[5..0] + 1)/Fcan = 1TQ.
- 2. Tprs = (1 to 8) * Tscl = (PRS[2..0]+ 1) * Tscl
- 3. Tphs1 = (1 to 8) * Tscl = (PHS1[2..0]+ 1) * Tscl
- 4. Tphs2 = (1 to 8) * Tscl = (PHS2[2..0]+ 1) * Tscl Tphs2 = Max of (Tphs1 and 2TQ)
- 5. Tsjw = (1 to 4) * Tscl = (SJW[1..0]+ 1) * Tscl

The total number of Tscl (Time Quanta) in a bit time must be comprised between **8 to 25**.

Table 59. CANGSTA Register

CANGSTA (S:AAh Read Only) CAN General Status Register

7	6	5	4	3	2	1	0			
-	OVFG	-	TBSY	RBSY	ENFG	BOFF	ERRP			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value	Reserved The values read from this bit is indeterminate. Do not set this bit.							
6	OVFG	This statu is sent.	Overload Frame Flag This status bit is set by the hardware as long as the produced overload frame is sent. This flag does not generate an interrupt							
5	-	Reserved The value	teserved he values read from this bit is indeterminate. Do not set this bit.							
4	TBSY	This status generates bit is also	Transmitter Busy This status bit is set by the hardware as long as the CAN transmitter generates a frame (remote, data, overload or error frame) or an ack field. This bit is also active during an InterFrame Spacing if a frame must be sent. This flag does not generate an interrupt.							
3	RBSY	monitors a	s bit is set by a frame.	the hardware rate an interru	as long as the ıpt.	CAN receive	r acquires or			
2	ENFG	Because a bit gives the	Enable On-chip CAN Controller Flag Because an enable/disable command is not effective immediately, this status bit gives the true state of a chosen mode. This flag does not generate an interrupt.							
1	BOFF		Bus Off Mode see Figure 49							
0	ERRP	Error Pas see Figur	sive Mode e 49							

Reset Value = x0x0 0000b

Table 69. CANIE2 Register

CANIE2 (S:C3h) CAN Enable Interrupt Message Object Registers 2

7	6	5	4	3	2	1	0			
IECH 7	IECH 6	IECH 5	IECH 4	IECH 3	IECH 2	IECH 1	IECH 0			
Bit Number	Bit Mnemonic	Description	Description							
7-0	IECH7:0	0 - disable 1 - enable	e IT. IT.	essage Objec 0 -> Enable IT	t ∵s of message	e objects 3 and	d 2.			

Reset Value = 0000 0000b

Table 70. CANBT1 Register

CANBT1 (S:B4h) CAN Bit Timing Registers 1

7	6	5	4	3	2	1	0			
-	BRP 5	BRP 4	BRP 3	BRP 2	BRP 1	BRP 0	-			
Bit Number	Bit Mnemonic	Descripti	Description							
7	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6-1	BRP5:0	The period	Baud rate prescaler The period of the CAN controller system clock Tscl is programmable and determines the individual bit timing. BRP[50] + 1 Tscl = $\frac{BRP[50] + 1}{Fcan}$							
0	-		Reserved The value read from this bit is indeterminate. Do not set this bit.							

Note: The CAN controller bit timing registers must be accessed only if the CAN controller is disabled with the ENA bit of the CANGCON register set to 0. See Figure 48.

No default value after reset.

Table 93. CANTCON Register

CANTCON (S:A1h) CAN Timer ClockControl

7	6	5	4	3	2	1	0		
TPRESC 7	TPRESC 6	TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0		
Bit Number	Bit Mnemon	ic Descripti	Description						
7-0	TPRESC7:	This roois	to 255.	N Timer aler for the ma	in timer upper	counter			

Reset Value = 00h

Table 94. CANTIMH Register

CANTIMH (S:ADh) CAN Timer High

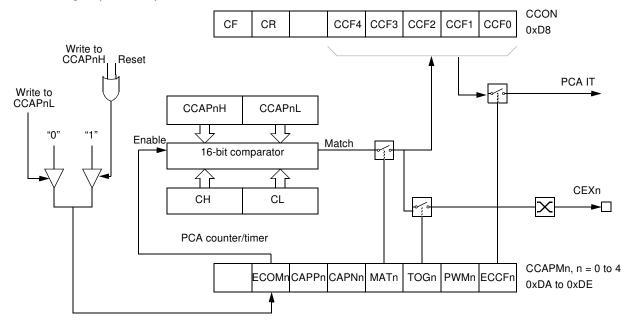
7	6		5	4	3	2	1	0
CANGTIM 15	CANGTIM 14	CA	NGTIM 13	CANGTIM 12	CANGTIM 11	CANGTIM 10	CANGTIM 9	CANGTIM 8
Bit Number	Bit Mnemo	nic	Description					
7-0	CANGTIM1	5:8	High by See Fig	yte of Messag jure 51.	ge Timer			

Reset Value = 0000 0000b

Table 95. CANTIML Register

CANTIML (S:ACh) CAN Timer Low

7	6	5	4	3	2	1	0		
CANGTIM 7	CANGTIM 6	CANGTIM 5	CANGTIM 4	CANGTIM 3	CANGTIM 2	CANGTIM 1	CANGTIM 0		
Bit									
Number	Bit Mnemonio	Description	Description						
7-0	CANGTIM7:0	Low byte See Figur	of Message ⁻ e 51.	Timer					


Reset Value = 0000 0000b

High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set.

Figure 57. PCA High Speed Output Mode

Pulse Width Modulator Mode

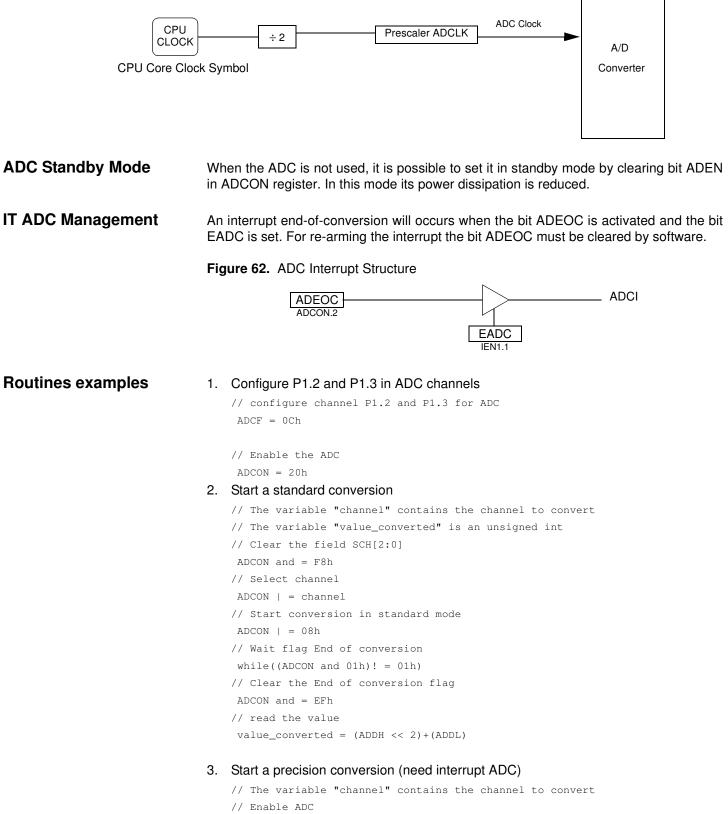
All the PCA modules can be used as PWM outputs. The output frequency depends on the source for the PCA timer. All the modules will have the same output frequency because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than it, the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. the allows the PWM to be updated without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Table 104. CCAPMn Registers

CCAPM0 (S:DAh) CCAPM1 (S:DBh) CCAPM2 (S:DCh) CCAPM3 (S:DDh) CCAPM4 (S:DEh) PCA Compare/Capture Module n Mode registers (n=0..4)

7	6	5	4	3	2	1	0					
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn					
Bit Number	Bit Mnemonic	Description	Description									
7	-	Reserved The Value re	Reserved The Value read from this bit is indeterminate. Do not set this bit.									
6	ECOMn	Clear to disa Set to enable The Compare	Enable Compare Mode Module x bit Clear to disable the Compare function. Set to enable the Compare function. The Compare function is used to implement the software Timer, the high-speed output, the Pulse Width Modulator (PWM) and the Watchdog Timer (WDT).									
5	CAPPn	Clear to disa	Capture Mode (Positive) Module x bit Clear to disable the Capture function triggered by a positive edge on CEXx pin. Set to enable the Capture function triggered by a positive edge on CEXx pin									
4	CAPNn	Clear to disa	ble the Captu) Module x bit re function trig function trigge	gered by a ne							
3	MATn		natch of the F	PCA Counter w r, flagging an i		are/Capture re	egister sets					
2	TOGn		node is config natch of the F	ured by setting PCA Counter w								
1	PWMn	Set to config	Pulse Width Modulation Module x Mode bit Set to configure the module x as an 8-bit Pulse Width Modulator with output waveform on CEXx pin.									
0	ECCFn	Clear to disa		it n CCON regis CCON registe								

Reset Value = X000 0000b



Analog-to-Digital Converter (ADC)	This section describes the on-chip 10 bit analog-to-digital converter of the T89C51CC01. Eight ADC channels are available for sampling of the external sources AN0 to AN7. An analog multiplexer allows the single ADC converter to select one from the 8 ADC channels as ADC input voltage (ADCIN). ADCIN is converted by the 10-bit cascaded potentiometric ADC.			
	Two modes of conversion are available: - Standard conversion (8 bits). - Precision conversion (10 bits).			
	For the precision conversion, set bit PSIDLE in ADCON register and start conversion. The device is in a pseudo-idle mode, the CPU does not run but the peripherals are always running. This mode allows digital noise to be as low as possible, to ensure high precision conversion.			
	For this mode it is necessary to work with end of conversion interrupt, which is the only way to wake the device up.			
	If another interrupt occurs during the precision conversion, it will be served only after this conversion is completed.			
Features	 8 channels with multiplexed inputs 10-bit cascaded potentiometric ADC Conversion time 16 micro-seconds (typ.) Zero Error (offset) ± 2 LSB max Positive External Reference Voltage Range (VAREF) 2.4 to 3.0 Volt (typ.) ADCIN Range 0 to 3Volt Integral non-linearity typical 1 LSB, max. 2 LSB Differential non-linearity typical 0.5 LSB, max. 1 LSB Conversion Complete Flag or Conversion Complete Interrupt Selectable ADC Clock 			
ADC Port 1 I/O Functions	Port 1 pins are general I/O that are shared with the ADC channels. The channel select bit in ADCF register define which ADC channel/port1 pin will be used as ADCIN. The remaining ADC channels/port1 pins can be used as general-purpose I/O or as the alternate function that is available.			
	A conversion launched on a channel which are not selected on ADCF register will not have any effect.			
VAREF	VAREF should be connected to a low impedance point and must remain in the range specified in Table 122. If the ADC is not used, it is recommended to connect VAREF to VAGND.			

Figure 61. A/D Converter clock

EADC = 1

132 A/T89C51CC01

Table 116. IEN1 Register

IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0		
-	-	-	-	-	ETIM	EADC	ECAN		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.							
2	ETIM	Timer Overrun Interrupt Enable bit Clear to disable the timer overrun interrupt. Set to enable the timer overrun interrupt.							
1	EADC	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.							
0	ECAN	CAN Interrupt Enable bit Clear to disable the CAN interrupt. Set to enable the CAN interrupt.							

Reset Value = xxxx x000b bit addressable

AIMEL

Datasheet Change Log for T89C51CC01

Changes from 4129F -11/02 to 4129G - 04/03

Changes from 4129G - 04/03 to 4129H - 10/03

Changes from 4129H - 10/03 to 4129I - 12/03

Changes from 4129I - 12/03 to 4129J - 08/04

1. Changed the endurance of Flash to 100, 000 Write/Erase cycles.

- Added note on Flash retention formula for V_{IH1}, in Section "DC Parameters for Standard Voltage", page 144.
- 1. Updated "Electrical Characteristics" on page 144.
- 2. Corrected Figure 46 on page 84.
- 1. Correction in Registers CPA and CPS0.
- 2. Added note regarding PSEN during power On see Section "Hardware Boot Process", page 48.
- 1. Figure clock-out mode modified see, Figure 37 on page 67.
- 2. Added explanation on the CAN protocol, see Section "CAN Controller", page 75.
- 3. Corrected error in Table 53 on page 72, (1.25ms to 1.25s) for Time-out Computation.
- 1. Minor corrections throughout the document.
- 2. Clarification to Mode Switching Waveforms diagram. See page 16.
- Changes from 4129K 01/05 to 4129L 08/05

Changes from 4129L 08/05 to 4129M 02/08

Changes from 4129J -

08/04 to 4129K 01/05

Changes from 4129M 02/08 to 4129N 03/08

- 1. Added green product ordering information.
- 1. Removed non-green packages from ordering information.
- 1. Removed CA-BGA package offering from ordering information.
- 2. Updated package drawings.