

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6393t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

PIC18F6393/6493/8393/8493

NOTES:

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

•	PIC18F6393	 PIC18F8393
---	------------	--------------------------------

- PIC18F6493 PIC18F8493
- Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F6390/6490/8390/8490 devices. For information on the features and specifications shared by the PIC18F6393/ 6493/8393/8493 and PIC18F6390/6490/8390/8490 devices, see the "PIC18F6390/ 6490/8390/8490 Data Sheet" (DS39629).

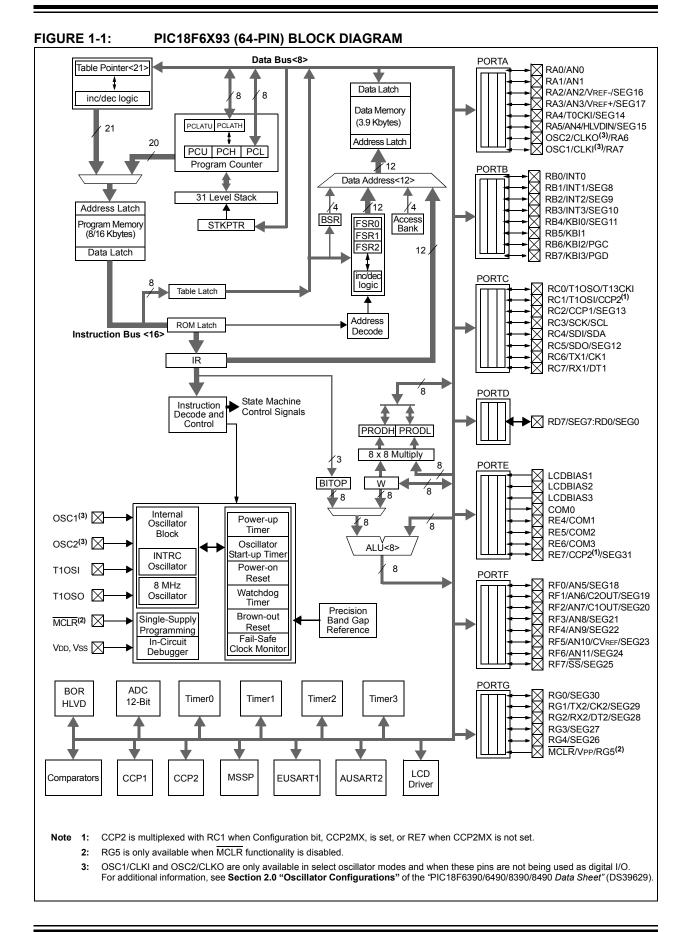
This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price. In addition to these features, the PIC18F6393/6493/8393/8493 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

1.1 Special Features

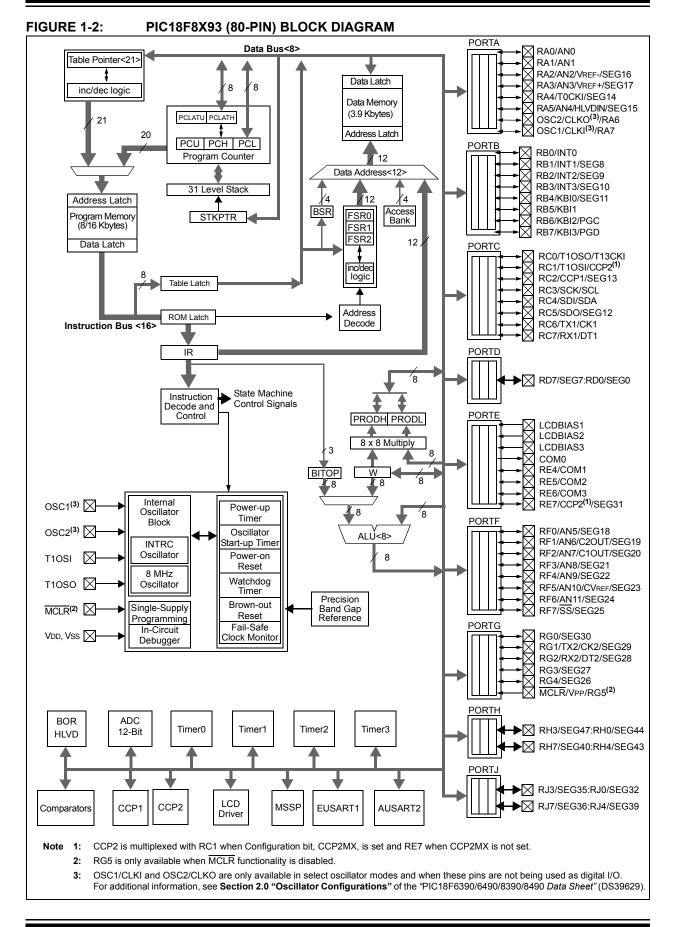
• **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduces code overhead.

1.2 Details on Individual Family Members

Devices in the PIC18F6393/6493/8393/8493 family are available in 64-pin (PIC18F6X93) and 80-pin (PIC18F8X93) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2, respectively.


The devices are differentiated from each other in the following ways:

- I/O Ports:
 - 64-pin devices 7 bidirectional ports
 - 80-pin devices 9 bidirectional ports
- LCD Pixels:
 - 64-pin devices 128 (32 SEGs x 4 COMs) pixels can be driven
 - 80-pin devices 192 (48 SEGs x 4 COMs) pixels can be driven
- Flash Program Memory:
 - PIC18FX393 devices 8 Kbytes
 - PIC18FX493 devices 16 Kbytes


All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F6393/6493/8393/8493 family are available as both standard and low-voltage devices. Standard devices with Flash memory, designated with an "F" in the part number (such as PIC18F6393), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6490), function over an extended VDD range of 2.0V to 5.5V.

PIC18F6393/6493/8393/8493

Din Nomo	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре Туре		Description		
				PORTA is a bidirectional I/O port.		
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog Input 0.		
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog Input 1.		
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	22	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (Low) input. SEG16 output for LCD.		
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (High) input. SEG17 output for LCD.		
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST ST Analog	Digital I/O. Timer0 external clock input. SEG14 output for LCD.		
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	27	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 4. Low-Voltage Detect input. SEG15 output for LCD.		
RA6				See the OSC2/CLKO/RA6 pin.		
RA7				See the OSC1/CLKI/RA7 pin.		
Legend: TTL = TTL cc ST = Schmit I = Input P = Power	mpatible input t Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output I^2C = ST with I^2C^{TM} or SMB levels		

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

	Pin Number	Pin Buffer	Buffer	D and that		
Pin Name	TQFP	Туре Туре		Description		
				PORTD is a bidirectional I/O port.		
RD0/SEG0 RD0 SEG0	58	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.		
RD1/SEG1 RD1 SEG1	55	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.		
RD2/SEG2 RD2 SEG2	54	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.		
RD3/SEG3 RD3 SEG3	53	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.		
RD4/SEG4 RD4 SEG4	52	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.		
RD5/SEG5 RD5 SEG5	51	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.		
RD6/SEG6 RD6 SEG6	50	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.		
RD7/SEG7 RD7 SEG7	49	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.		

TABLE 1-2:	PIC18F6X93 PINOUT I/O DESCRIPTIONS ((CONTINUED)	

= Input L

= Power Ρ

- = Output 0 I²C
 - = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pin Number		Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	36	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽¹⁾	35	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.
RC2/CCP1/SEG13 RC2 CCP1 SEG13	43	I/O I/O O	ST ST Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.
RC3/SCK/SCL RC3 SCK SCL	44	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI/SDA RC4 SDI SDA	45 I/O ST Digital I/O. I ST SPI data in. I/O I ² C I ² C data I/O.		SPI data in.	
RC5/SDO/SEG12 RC5 SDO SEG12	2 46 I/O ST Digital I/O. O — SPI data out. O Analog SEG12 output for LCD.		SPI data out.	
RC6/TX1/CK1 RC6 TX1 CK1	37	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).
RC7/RX1/DT1 RC7 RX1 DT1	38	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).
Legend: TTL = TTL cc ST = Schmit I = Input P = Power	tt Trigger input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output l^2C = ST with l^2C^{TM} or SMB levels

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Name	Pin Number	Pin Buff	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTE is a bidirectional I/O port.		
LCDBIAS1 LCDBIAS1	4	Ι	Analog	BIAS1 input for LCD.		
LCDBIAS2 LCDBIAS2	3	Ι	Analog	BIAS2 input for LCD.		
LCDBIAS3 LCDBIAS3	78	Ι	Analog	BIAS3 input for LCD.		
COM0 COM0	77	0	Analog	COM0 output for LCD.		
RE4/COM1 RE4 COM1	76	I/O O	ST Analog	Digital I/O. COM1 output for LCD.		
RE5/COM2 RE5 COM2	75	I/O O	ST Analog	Digital I/O. COM2 output for LCD.		
RE6/COM3 RE6 COM3	74	I/O O	ST Analog	Digital I/O. COM3 output for LCD.		
RE7/CCP2/SEG31 RE7 CCP2 ⁽²⁾ SEG31	73	I/O I/O O	ST ST Analog	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. SEG31 output for LCD.		
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input						

0

I²C

= Output

= ST with I²C[™] or SMB levels

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

L

Ρ

= Input

= Power

Pin Name	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTG is a bidirectional I/O port.		
RG0/SEG30 RG0 SEG30	5	I/O O	ST Analog	Digital I/O. SEG30 output for LCD.		
RG1/TX2/CK2/SEG29 RG1 TX2 CK2 SEG29	6	I/O O I/O O	ST — ST Analog	Digital I/O. AUSART2 asynchronous transmit. AUSART2 synchronous clock (see related RX2/DT2) SEG29 output for LCD.		
RG2/RX2/DT2/SEG28 RG2 RX2 DT2 SEG28	7	I/O I I/O O	ST ST ST Analog	Digital I/O. AUSART2 asynchronous receive. AUSART2 synchronous data (see related TX2/CK2). SEG28 output for LCD.		
RG3/SEG27 RG3 SEG27	8	I/O O	ST Analog	Digital I/O. SEG27 output for LCD.		
RG4/SEG26 RG4 SEG26	10	I/O O	ST Analog	Digital I/O. g SEG26 output for LCD.		
RG5				See MCLR/VPP/RG5 pin.		
I = Input P = Power	tt Trigger input			CMOS = CMOS compatible input or output Analog = Analog input O = Output I^2C = ST with I^2C^{TM} or SMB levels tion bit CCP2MX is set		

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Dia Nama	Pin Number	Pin Buffer	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTH is a bidirectional I/O port.
RH0/SEG47 RH0 SEG47	79	I/O O	ST Analog	Digital I/O. SEG47 output for LCD.
RH1/SEG46 RH1 SEG46	80	I/O O	ST Analog	Digital I/O. SEG46 output for LCD.
RH2/SEG45 RH2 SEG45	1	I/O O	ST Analog	Digital I/O. SEG45 output for LCD.
RH3/SEG44 RH3 SEG44	2	I/O O	ST Analog	Digital I/O. SEG44 output for LCD.
RH4/SEG40 RH4 SEG40	22	I/O O	ST Analog	Digital I/O. SEG40 output for LCD.
RH5/SEG41 RH5 SEG41	21	I/O O	ST Analog	Digital I/O. SEG41 output for LCD.
RH6/SEG42 RH6 SEG42	20	I/O O	ST Analog	Digital I/O. SEG42 output for LCD.
RH7/SEG43 RH7 SEG43	19	I/O O	ST Analog	Digital I/O. SEG43 output for LCD.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

- I = Input P = Power
 - = Power

= Output

I²C

= ST with I²C[™] or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

PIC18F6393/6493/8393/8493

REGISTER 2-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-4	VCFG<1:0>: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-
00	AVdd	AVss
01	External VREF+	AVss
10	AVDD	External VREF-
11	External VREF+	External VREF-

bit 3-0 **PCFG<3:0>:** A/D Port Configuration Control bits

PCFG<3:0>	AN11	AN10	AN9	AN8	AN7	ANG	AN5	AN4	AN3	AN2	AN1	ANO
0000	А	А	Α	А	Α	Α	А	Α	А	Α	Α	А
0001	А	А	А	А	А	А	А	Α	А	А	А	А
0010	А	А	А	А	А	А	А	Α	А	А	А	А
0011	А	А	А	А	А	А	А	А	А	А	А	Α
0100	D	А	А	А	А	А	А	А	А	А	Α	А
0101	D	D	А	Α	Α	Α	Α	А	А	А	Α	Α
0110	D	D	D	Α	Α	Α	Α	А	А	А	Α	Α
0111	D	D	D	D	Α	А	А	А	А	А	Α	А
1000	D	D	D	D	D	Α	Α	А	А	А	Α	Α
1001	D	D	D	D	D	D	А	А	А	А	Α	Α
1010	D	D	D	D	D	D	D	А	А	А	А	А
1011	D	D	D	D	D	D	D	D	А	А	Α	Α
1100	D	D	D	D	D	D	D	D	D	А	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	Α	А
1110	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D
A = A polog input												

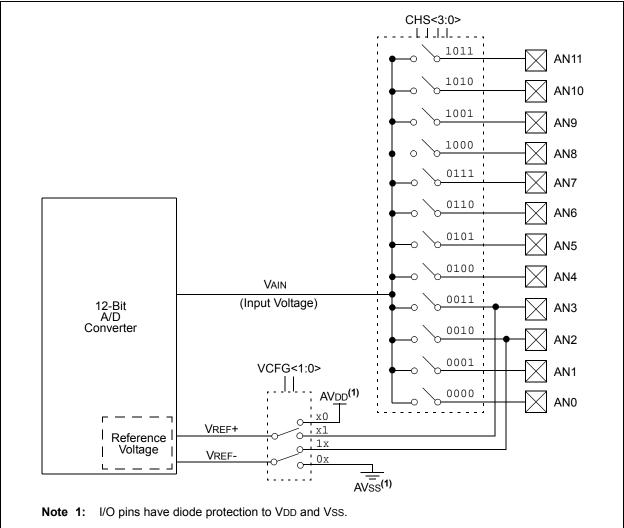
A = Analog input

D = Digital I/O

		DAMA	DAALO			DAMA	DAMA
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
hit 7		esult Format S	Coloct bit				
bit 7			Select bit				
	1 = Right just 0 = Left justifi						
bit 6	Unimplemen	ted: Read as	0'				
bit 5-3	ACQT<2:0>:	A/D Acquisitio	n Time Select	bits			
	111 = 20 T AD	-					
	110 = 16 T AD						
	101 = 12 TAD						
	100 = 8 TAD 011 = 6 TAD						
	011 = 0 TAD 010 = 4 TAD						
	001 = 2 TAD						
	000 = 0 TAD ⁽¹)					
bit 2-0	ADCS<2:0>:	A/D Conversion	on Clock Seled	ct bits			
	111 = F RC (cl	ock derived fro	om A/D RC os	cillator) ⁽¹⁾			
	110 = Fosc/6	-					
	101 = Fosc/1						
	100 = Fosc/4	ock derived fro		cillator)(1)			
	011 = FRC (Cl) 010 = Fosc/3						
	001 = Fosc/8						
	000 = Fosc/2	2					

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.


The analog reference voltage is software-selectable to either the device's positive and negative supply voltage (AVDD and AVss), or the voltage level on the RA3/AN3/ VREF+/SEG17 and RA2/AN2/VREF-/SEG16 pins.

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT<2:0> bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT<2:0> = 0.00. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software-selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD. (See parameter 130 for more information.)

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

Assumes TAD Min. = 0.8 µs A/D Clock Source (TAD) Operation ADCS<2:0> Maximum Fosc 2 Tosc 2.5 MHz 000 4 Tosc 5 MHz 100 8 Tosc 10 MHz 001 16 Tosc 20 MHz 101 32 Tosc 010 40 MHz 64 Tosc 110 40 MHz RC⁽¹⁾ 1 MHz⁽²⁾ x11

TABLE 2-1: TAD vs. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 2.5 $\mu s.$

2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.4 Operation in Power-Managed Modes

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction, and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

Param No.	Sym	Characteristic	Min	Тур	Мах	Units		Conditions	
A01	NR	Resolution	_	_	12	bit		$\Delta \text{VREF} \geq 3.0 \text{V}$	
A03	EIL	Integral Linearity Error	—	<±1	±2.0	LSB	VDD = 3.0V	ΔVREF ≥ 3.0V	
			—		±2.0	LSB	VDD = 5.0V	$\Delta V REF \ge 3.0 V$	
A04	Edl	Differential Linearity Error	—	<±1	+1.5/-1.0	LSB	VDD = 3.0V		
			—	_	+1.5/-1.0	LSB	VDD = 5.0V	$\Delta VREF \ge 3.0V$	
A06	EOFF	Offset Error	—	<±1	±5	LSB	VDD = 3.0V	$\Delta \text{VREF} \geq 3.0 \text{V}$	
			—	—	±3	LSB	VDD = 5.0V		
A07	Egn	Gain Error	—	<±1	±2.00	LSB	VDD = 3.0V	$\Delta VREF \ge 3.0V$	
		—	_	±2.00	LSB	VDD = 5.0V			
A10	—	Monotonicity	Gu	uarantee	d ⁽¹⁾	_		$VSS \leq VAIN \leq VREF$	
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	3		Vdd - Vss	V		For 12-bit resolution	
A21	Vrefh	Reference Voltage High	VSS + Δ VREF	_	Vdd	V		For 12-bit resolution	
A22	Vrefl	Reference Voltage Low	Vss	_	$VDD - \Delta VREF$	V		For 12-bit resolution	
A25	Vain	Analog Input Voltage	VREFL	_	VREFH	V			
A30	Zain	Recommended Impedance of Analog Voltage Source	_	—	2.5	kΩ			
A50	IREF	VREF Input Current ⁽²⁾	—		5 150	μΑ μΑ		During VAIN acquisition. During A/D conversion cycle.	

TABLE 4-1: A/D CONVERTER CHARACTERISTICS: PIC18F6393/6493/8393/8493 (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from the RA3/AN3/VREF+/SEG17 pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/SEG16 pin or VSS, whichever is selected as the VREFL source.

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

INDEX

Α

A/D	
A/D Converter Interrupt, Configuring	
Acquisition Requirements	
ADCON0 Register	31
ADCON1 Register	31
ADCON2 Register	31
ADRESH Register	31, 34
ADRESL Register	31
Analog Port Pins, Configuring	
Associated Registers	
Configuring the Module	
Conversion Clock (TAD)	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions	
Converter Characteristics	45
Discharge	
Operation in Power-Managed Modes	
Selecting and Configuring Acquisition Time	
Special Event Trigger (ECCP2)	
Transfer Function	
Use of the ECCP2 Trigger	
Absolute Maximum Ratings	
ADCON0 Register	
GO/DONE Bit	
ADCON1 Register	31
ADCON2 Register	31
ADRESH Register	31
ADRESL Register	31, 34
Analog-to-Digital Converter. See A/D.	

в

Block Diagrams	
A/D	
Analog Input Model	
PIC18F6X93 (64-Pin)	
PIC18F8X93 (80-Pin)	

С

Compare (ECCP2 Module)	
Special Event Trigger	
Conversion Considerations	54
Customer Change Notification Service	59
Customer Notification Service	59
Customer Support	59

D

41
9
9
9
7
9

_

E
Electrical Characteristics
A/D Converter
Absolute Maximum Ratings
Low-Power Voltage-Frequency Graph
Voltage-Frequency Graph 44
Equations
A/D Acquisition Time
A/D Minimum Charging Time
Calculating the Minimum Required
Acquisition Time
Errata
I
Internet Address 59
Interrupt Sources
A/D Conversion Complete
·
L
LCD Driver
Features 3
M
Microchip Internet Web Site
Microcontroller
Special Features
Migration from Baseline to Enhanced Devices
Migration from High-End to Enhanced Devices
Migration from Mid-Range to Enhanced Devices
с с
0
Oscillator Structure
Features
_
P
Packaging
Information
Marking
Peripheral Highlights
Pin Diagrams
64-Pin TQFP
80-Pin TQFP
Pin Functions
AVDD
AVDD
AVss
AVSS
AVSS
LCDBIAS1
LCDBIAS1
LCDBIAS2

OSC2/CLKO/RA6 13, 21

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com