

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, LCD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8393-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin High-Performance, Flash Microcontrollers with LCD Driver, 12-Bit ADC and nanoWatt Technology

LCD Driver Module Features:

- Direct Driving of LCD Panel
- Up to 192 Pixels: Software-Selectable
- Programmable LCD Timing module:
- Multiple LCD timing sources available
- Up to four commons: Static, 1/2, 1/3 or 1/4 multiplex
- Static, 1/2 or 1/3 bias configuration
- · Can Drive LCD Panel while in Sleep mode for Low-Power Operation

Power-Managed Modes:

- Run: CPU On, Peripherals On
- Idle: CPU Off, Peripherals On
- Sleep: CPU Off, Peripherals Off
- Ultra Low 50 nA Input Leakage
- Run mode Current Down to 14 µA Typical
- Idle mode Currents Down to 2.3 uA Typical
- Sleep mode Currents Down to 0.1 µA Typical
- Timer1 Oscillator: 1.0 µA, 32 kHz, 2V Typical
- Watchdog Timer: 1.7 µA Typical
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

- · Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (available for crystal and internal oscillators)
- Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
- Fast wake from Sleep and Idle, 1 µs typical
- Eight selectable frequencies, from 31 kHz to 8 MHz
- Provides a complete range of clock speeds from
- 31 kHz to 32 MHz when used with PLL User-tunable to compensate for frequency drift
- Secondary Oscillator Using Timer1 at 32 kHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:

- 12-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter module:
 - Auto-acquisition capability
 - Conversion available during Sleep
- High-Current Sink/Source 25 mA/25 mA
- Four External Interrupts
- Four Input Change Interrupts
- Four 8-Bit/16-Bit Timer/Counter modules
 - Real-Time Clock (RTC) Software module: Configurable 24-hour clock, calendar, automatic 100-year or 12,800-year, day-of-week calculator Uses Timer1
- · Up to Two Capture/Compare/PWM (CCP) modules
- Master Synchronous Serial Port (MSSP) module Supporting Three-Wire SPI (all four modes) and I²C[™] Master and Slave modes
- Addressable USART module:
- Supports RS-485 and RS-232
- Enhanced Addressable USART module: Supports RS-485, RS-232 and LIN/J2602 Auto-wake-up on Start bit
- Auto-Baud Detect
- · Dual Analog Comparators with Input Multiplexing
- Programmable 16-Level High/Low-Voltage Detection
 - (HLVD) module: Supports interrupt on High/Low-Voltage Detection

Special Microcontroller Features:

- C Compiler Optimized Architecture:
- Optional extended instruction set designed to optimize re-entrant code
- 1000 Erase/Write Cycle Flash Program Memory, Typical
- Flash Retention: 100 Years Typical
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 132s
- 2% stability over VDD and temperature
 In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
 In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range: 2.0V to 5.5V Programmable Brown-out Reset (BOR) with
- Software Enable Option

supplemented Note: This document is by the PIC18F6390/6490/8390/8490 Data Sheet (DS39629). See Section 1.0 "Device Overview"

Device	Program Memory		Data Memory	1/0	LCD	12-Bit	ССР	MSSP		ART/ ART	Commercian	Timers
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	1/0	(pixel)	A/D (channels)	(PWM)	SPI	Master I ² C™	EUS, AUS	Comparators	8/16-Bit
PIC18F6393	8K	4096	768	50	128	12	2	Y	Y	1/1	2	1/3
PIC18F6493	16K	8192	768	50	128	12	2	Y	Y	1/1	2	1/3
PIC18F8393	8K	4096	768	66	192	12	2	Y	Y	1/1	2	1/3
PIC18F8493	16K	8192	768	66	192	12	2	Y	Y	1/1	2	1/3

PIC18F6393/6493/8393/8493

Pin Diagrams

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

• PIC18F6393 •	PIC18F8393
----------------	------------

- PIC18F6493 PIC18F8493
- Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F6390/6490/8390/8490 devices. For information on the features and specifications shared by the PIC18F6393/ 6493/8393/8493 and PIC18F6390/6490/8390/8490 devices, see the "PIC18F6390/ 6490/8390/8490 Data Sheet" (DS39629).

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price. In addition to these features, the PIC18F6393/6493/8393/8493 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

1.1 Special Features

• **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduces code overhead.

1.2 Details on Individual Family Members

Devices in the PIC18F6393/6493/8393/8493 family are available in 64-pin (PIC18F6X93) and 80-pin (PIC18F8X93) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2, respectively.

The devices are differentiated from each other in the following ways:

- I/O Ports:
 - 64-pin devices 7 bidirectional ports
 - 80-pin devices 9 bidirectional ports
- LCD Pixels:
 - 64-pin devices 128 (32 SEGs x 4 COMs) pixels can be driven
 - 80-pin devices 192 (48 SEGs x 4 COMs) pixels can be driven
- Flash Program Memory:
 - PIC18FX393 devices 8 Kbytes
 - PIC18FX493 devices 16 Kbytes

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F6393/6493/8393/8493 family are available as both standard and low-voltage devices. Standard devices with Flash memory, designated with an "F" in the part number (such as PIC18F6393), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6490), function over an extended VDD range of 2.0V to 5.5V.

PIC18F6393/6493/8393/8493

Din Nomo	Pin Number	Pin	Buffer	Description			
Fill Naille	TQFP	Туре	Туре	Description			
				PORTA is a bidirectional I/O port.			
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog Input 0.			
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog Input 1.			
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	22	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (Low) input. SEG16 output for LCD.			
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (High) input. SEG17 output for LCD.			
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST ST Analog	Digital I/O. Timer0 external clock input. SEG14 output for LCD.			
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	27	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 4. Low-Voltage Detect input. SEG15 output for LCD.			
RA6				See the OSC2/CLKO/RA6 pin.			
RA7				See the OSC1/CLKI/RA7 pin.			
Legend:TTL= TTL compatible inputCMOS= CMOS compatible input or outputST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= Power I^2C = ST with I^2C^{TM} or SMB levels							

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Din Nome	Pin Number	Pin	Buffer	Description					
Pin Name	TQFP	Туре	Туре						
				PORTD is a bidirectional I/O port.					
RD0/SEG0 RD0 SEG0	58	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.					
RD1/SEG1 RD1 SEG1	55	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.					
RD2/SEG2 RD2 SEG2	54	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.					
RD3/SEG3 RD3 SEG3	53	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.					
RD4/SEG4 RD4 SEG4	52	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.					
RD5/SEG5 RD5 SEG5	51	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.					
RD6/SEG6 RD6 SEG6	50	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.					
RD7/SEG7 RD7 SEG7	49	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.					
Legend: TTL = TTL co ST = Schmi	Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input								

= Input L

= Power Ρ

- = Output 0 I²C
 - = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Din Nome	Pin Number	Pin	Buffer	Description				
Pin Name	TQFP	Туре	Туре					
				PORTD is a bidirectional I/O port.				
RD0/SEG0 RD0 SEG0	72	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.				
RD1/SEG1 RD1 SEG1	69	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.				
RD2/SEG2 RD2 SEG2	68	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.				
RD3/SEG3 RD3 SEG3	67	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.				
RD4/SEG4 RD4 SEG4	66	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.				
RD5/SEG5 RD5 SEG5	65	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.				
RD6/SEG6 RD6 SEG6	64	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.				
RD7/SEG7 RD7 SEG7	63	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.				
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input CMOS = CMOS compatible input or output Analog = Analog input O = Output								

TABLE 1-3:	PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)
		/

Ρ = Power l²C

= ST with I²C[™] or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Din Nome	Pin Number	Pin	Buffer	Description					
Pin Name	TQFP	Туре	Туре	Description					
				PORTE is a bidirectional I/O port.					
LCDBIAS1 LCDBIAS1	4	I	Analog	BIAS1 input for LCD.					
LCDBIAS2 LCDBIAS2	3	I	Analog	BIAS2 input for LCD.					
LCDBIAS3 LCDBIAS3	78	I	Analog	BIAS3 input for LCD.					
COM0 COM0	77	ο	Analog	COM0 output for LCD.					
RE4/COM1 RE4 COM1	76	I/O O	ST Analog	Digital I/O. COM1 output for LCD.					
RE5/COM2 RE5 COM2	75	I/O O	ST Analog	Digital I/O. COM2 output for LCD.					
RE6/COM3 RE6 COM3	74	I/O O	ST Analog	Digital I/O. COM3 output for LCD.					
RE7/CCP2/SEG31 RE7 CCP2 ⁽²⁾ SEG31	73	I/O I/O O	ST ST Analog	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. SEG31 output for LCD.					
Legend: TTL = TTL co ST = Schmi	ompatible input	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input					

0

I²C

= Output

= ST with I²C[™] or SMB levels

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

L

Ρ

= Input

= Power

Din Nome	Pin Number	Pin	Buffer	Description				
Pin Name	TQFP	Туре	Туре					
				PORTG is a bidirectional I/O port.				
RG0/SEG30 RG0 SEG30	5	I/O O	ST Analog	Digital I/O. SEG30 output for LCD.				
RG1/TX2/CK2/SEG29 RG1 TX2 CK2 SEG29	6	I/O O I/O O	ST — ST Analog	Digital I/O. AUSART2 asynchronous transmit. AUSART2 synchronous clock (see related RX2/DT2) SEG29 output for LCD.				
RG2/RX2/DT2/SEG28 RG2 RX2 DT2 SEG28	7	I/O I I/O O	ST ST ST Analog	Digital I/O. AUSART2 asynchronous receive. AUSART2 synchronous data (see related TX2/CK2). SEG28 output for LCD.				
RG3/SEG27 RG3 SEG27	8	I/O O	ST Analog	Digital I/O. SEG27 output for LCD.				
RG4/SEG26 RG4 SEG26	10	I/O O	ST Analog	Digital I/O. SEG26 output for LCD.				
RG5				See MCLR/VPP/RG5 pin.				
Legend:TTL= TTL compatible inputCMOS= CMOS compatible input or outputST= Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= Power l^2C = ST with l^2C^{TM} or SMB levels								

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

Pin Namo	Pin Number	Pin	Buffer	Description						
	TQFP	Туре	Туре	Description						
				PORTJ is a bidirectional I/O port.						
RJ0/SEG32 RJ0 SEG32	62	I/O O	ST Analog	Digital I/O. SEG32 output for LCD.						
RJ1/SEG33 RJ1 SEG33	61	I/O O	ST Analog	Digital I/O. SEG33 output for LCD.						
RJ2/SEG34 RJ2 SEG34	60	I/O O	ST Analog	Digital I/O. SEG34 output for LCD.						
RJ3/SEG35 RJ3 SEG35	59	I/O O	ST Analog	Digital I/O. SEG35 output for LCD.						
RJ4/SEG39 RJ4 SEG39	39	I/O O	ST Analog	Digital I/O. SEG39 output for LCD.						
RJ5/SEG38 RJ5 SEG38	40	I/O O	ST Analog	Digital I/O SEG38 output for LCD.						
RJ6/SEG37 RJ6 SEG37	41	I/O O	ST Analog	Digital I/O. SEG37 output for LCD.						
RJ7/SEG36 RJ7 SEG36	42	I/O O	ST Analog	Digital I/O. SEG36 output for LCD.						
Vss	11, 31, 51, 70	Р	_	Ground reference for logic and I/O pins.						
Vdd	12, 32, 48, 71	Р	—	Positive supply for logic and I/O pins.						
AVss	26	Р	—	Ground reference for analog modules.						
AVdd	25	Р	—	Positive supply for analog modules.						
Legend: TTL = TTL co ST = Schmit	egend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels Analog = Analog input									

0

I²C

= Output

= ST with I²C[™] or SMB levels

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for CCP2 when Configuration bit, CCP2MX, is cleared.

L

Ρ

= Input

= Power

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0				
bit 7	•	•			•	-	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7	ADFM: A/D R	esult Format S	elect bit								
	1 = Right justi 0 = Left justifi	ified ed									
bit 6	Unimplemen	ted: Read as ')'								
bit 5-3	ACQT<2:0>:	A/D Acquisitior	n Time Select	bits							
	111 = 20 T AD										
	110 = 16 TAD										
	101 = 12 TAD										
	100 = 8 IAD										
	011 = 0 TAD 010 = 4 TAD										
	001 = 2 TAD										
	000 = 0 TAD ⁽¹)									
bit 2-0	ADCS<2:0>:	A/D Conversio	n Clock Selec	t bits							
	111 = FRC (cl	ock derived fro	m A/D RC os	cillator) ⁽¹⁾							
	110 = Fosc/6	4									
	101 = FOSC/1	6									
	011 = FRC (cl)	ock derived fro	m A/D RC os	cillator) ⁽¹⁾							
	010 = Fosc/3	2									
	001 = Fosc/8										
	000 = Fosc/2										

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

The value in the ADRESH:ADRESL registers is unknown following Power-on and Brown-out Resets and is not affected by any other Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time <u>can be</u> programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - · Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)

- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared
 OR
 - · Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit, ADIF, if required.
- 7. For the next conversion, go to Step 1 or Step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

FIGURE 2-2: A/D TRANSFER FUNCTION

FIGURE 2-3: ANALOG INPUT MODEL

2.8 Use of the ECCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the ECCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(3)	
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	(3)	
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	(3)	
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	(3)	
PIR2	OSCFIF	CMIF	_	_	BCL1IF	HLVDIF	TMR3IF	CCP2IF	(3)	
PIE2	OSCFIE	CMIE	_	_	BCL1IE	HLVDIE	TMR3IE	CCP2IE	(3)	
IPR2	OSCFIP	CMIP	_	_	BCL1IP	HLVDIP	TMR3IP	CCP2IP	(3)	
ADRESH	A/D Result Register High Byte									
ADRESL	A/D Result Register Low Byte									
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(3)	
ADCON1	_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(3)	
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(3)	
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	(3)	
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	(3)	
TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	(3)	

 TABLE 2-2:
 REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

2: These registers are not implemented on 64-pin devices.

3: For these Reset values, see the "PIC18F6390/6490/8390/8490 Data Sheet" (DS39629).

3.0 SPECIAL FEATURES OF THE CPU

Note:	For additional details on the Configuration							
	bits, refer to Section 23.1 "Configuration							
	Bits" in the "PIC18F6390/6490/8390/8490							
	Data Sheet" (DS39629). Device ID informa-							
	tion presented in this section is for the							
	PIC18F6393/6493/8393/8493 devices only.							

PIC18F6393/6493/8393/8493 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These include:

DEVICE IDs

Device ID Registers

TABLE 3-1:

3.1 Device ID Registers

The Device ID registers are "read-only" registers. They identify the device type and revision to device programmers and can be read by firmware using table reads.

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx ⁽¹⁾
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	xxxx xxxx(1)

Legend: x = unknown

Note 1: See Register 3-1 and Register 3-2 for DEVID values. DEVID registers are read-only and cannot be programmed by the user.

PIC18F6393/6493/8393/8493

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

64-Lead TQFP (10x10x1mm)

80-Lead TQFP (12x12x1mm)

Example

Legend:	XXX	Customer-specific information							
	Y	Y Year code (last digit of calendar year)							
	YY	Year code (last 2 digits of calendar year)							
	WW	Week code (week of January 1 is week '01')							
	NNN	Alphanumeric traceability code							
	Pb-free JEDEC designator for Matte Tin (Sn)								
	 * This package is Pb-free. The Pb-free JEDEC designator (e3) 								
		can be found on the outer packaging for this package. \smile							
Note: I	In the event the full Microchip part number cannot be marked on one line, it will								
t c	be carried over to the next line, thus limiting the number of available characters for customer-specific information.								

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	IVILLIIVI	IVIILLIIVIE I EKS				
Dimension	MIN	NOM	MAX			
Contact Pitch	E	0.50 BSC				
Contact Pad Spacing	C1		13.40			
Contact Pad Spacing	C2		13.40			
Contact Pad Width (X80)	X1			0.30		
Contact Pad Length (X80)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

PIC18F6393/6493/8393/8493

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	¥	<u>/xx</u>	xxx		Exa	amples	:	
Device	Temperature Range	Package	Pattern		a) b)	PIC18 TQFP QTP p PIC18	LF639 packa attern LF639	93-I/PT 301 = Industrial temp., ge, Extended VDD limits, #301. 93-I/PT = Industrial temp., TQFP
Device ^{(1), (2)}	PIC18F6393, PI VDD range: 4 PIC18LF6393, F VDD range: 2	IC18F6493, PI .2V to 5.5V PIC18LF6493, .0V to 5.5V	C18F8393, PIC ⁻ PIC18LF8393, F	18F8493 — PIC18LF8493 —		packa	ge, Ex	tended VDD limits.
Temperature Range	I = -40°0	C to +85°C	(Industrial)					
Package	PT = TQ	FP (Thin Quad	l Flatpack)					
Pattern	QTP, SQTP, Co (blank otherwise	de or Special F Ə)	Requirements		Not	e 1: F L 2: ☐	= = _F = T =	Standard Voltage Range Wide Voltage Range in Tape and Reel TQFP packages only.