

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 4x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f358rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 **Power management**

3.7.1 Power supply schemes

- V_{SS}, V_{DD} = 1.8 V+/- 8%: external power supply for I/Os and core. It is provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supply for ADC, DACs, comparators operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to V_{DDA} differs from one analog peripheral to another. *Table 3* provides the summary of the V_{DDA} ranges for analog peripherals. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.
- V_{BAT}= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch which is guaranteed in the full range of VDD) when VDD is not present.

Analog peripheral	Minimum V _{DDA} supply	Maximum V _{DDA} supply
ADC	1.8 V	3.6 V
COMP	1.65 V	3.6 V
DAC / OPAMP	2.4 V	3.6V

 Table 3. External analog supply values for analog peripherals

3.7.2 Power supply supervision

The device power on reset is controlled through the external NPOR pin. The device remains in reset state when NPOR pin is held low.

To guarantee a proper power-on reset, the NPOR pin must be held low when VDDA is applied. Then, when VDD is stable, the reset state can be exited by:

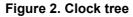
- either putting the NPOR pin in high impedance. NPOR pin has an internal pull up.
- or forcing the pin to high level by connecting it to V_{DDA}.

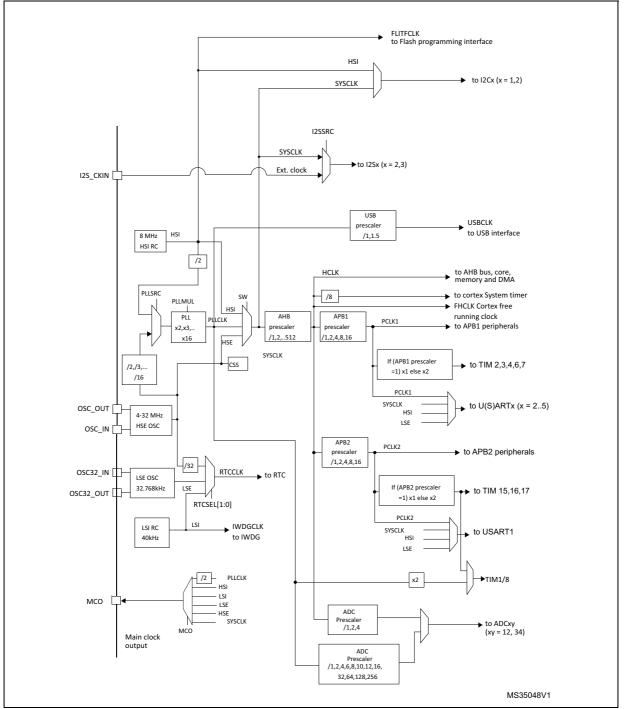
3.7.3 Low-power modes

The STM32F358xC devices support two low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.


• Stop mode


Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop mode.

• 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP capability.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32.

3.19 Inter-integrated circuit interface (I²C)

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match. The I2C interfaces can be served by the DMA controller. Refer to *Table 7* for the features available in I2C1 and I2C2.

Table 7. STM32F358xC I²C implementation

I2C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х
Independent clock	Х	Х
SMBus	Х	Х
Wakeup from STOP	Х	Х

1. X = supported.

Table 13. STM32F358xC pin definitions

Pir	n numb	ber			JIE 13.		Pin functions	
LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	-	-	PE2	I/O	FT	(1)	TRACECK, TIM3_CH1, TSC_G7_IO1, EVENTOUT	-
2	-	-	PE3	I/O	FT	(1)	TRACED0, TIM3_CH2, TSC_G7_IO2, EVENTOUT	-
3	-	-	PE4	I/O	FT	(1)	TRACED1, TIM3_CH3, TSC_G7_IO3, EVENTOUT	-
4	-	-	PE5	I/O	FT	(1)	TRACED2, TIM3_CH4, TSC_G7_IO4, EVENTOUT	-
5	-	-	PE6	I/O	FT	(1)	TRACED3, EVENTOUT	WKUP3, RTC_TAMP3
6	1	1	V _{BAT}	S	-	-	Backup pov	wer supply
7	2	2	PC13 ⁽²⁾	I/O	тс	-	TIM1_CH1N	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT
8	3	3	PC14 ⁽²⁾ OSC32_IN (PC14)	I/O	тс	-	-	OSC32_IN
9	4	4	PC15 ⁽²⁾ OSC32_ OUT (PC15)	I/O	тс	-	-	OSC32_OUT
10	-	-	PF9	I/O	FT	(1)	TIM15_CH1, SPI2_SCK, EVENTOUT	-
11	-	-	PF10	I/O	FT	(1)	TIM15_CH2, SPI2_SCK, EVENTOUT	-
12	5	5	PF0- OSC_IN (PF0)	I/O	FTf	-	TIM1_CH3N, I2C2_SDA,	OSC_IN
13	6	6	PF1- OSC_OUT (PF1)	I/O	FTf	-	I2C2_SCL	OSC_OUT
14	7	7	NRST	I/O	RST	-	Device reset input / internal reset output (active low)	
15	8	-	PC0	I/O	TTa	(1)	EVENTOUT	ADC12_IN6, COMP7_INM
16	9	-	PC1	I/O	TTa	(1)	EVENTOUT	ADC12_IN7, COMP7_INP
17	10	-	PC2	I/O	TTa	(1)	COMP7_OUT, EVENTOUT	ADC12_IN8
18	11	-	PC3	I/O	TTa	(1)	TIM1_BKIN2, EVENTOUT	ADC12_IN9
19	-	-	PF2	I/O	TTa	(1)	EVENTOUT	ADC12_IN10
20	12	8	VSSA/ VREF-	S	-	-	Analog ground/Negative reference voltage	

	Table 13. STM32F358xC pin definitions (continued)								
Pir	n numl	ber					Pin functions		
LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
78	51	-	PC10	I/O	FT	(1)	SPI3_SCK, I2S3_CK, USART3_TX, UART4_TX, TIM8_CH1N, EVENTOUT	_	
79	52	-	PC11	I/O	FT	(1)	SPI3_MISO, I2S3ext_SD, USART3_RX, UART4_RX, TIM8_CH2N, EVENTOUT	-	
80	53	-	PC12	I/O	FT	(1)	SPI3_MOSI, I2S3_SD, USART3_CK, UART5_TX, TIM8_CH3N, EVENTOUT	-	
81	-	-	PD0	I/O	FT	(1)	CAN_RX, EVENTOUT	-	
82	-	-	PD1	I/O	FT	(1)	CAN_TX, TIM8_CH4, TIM8_BKIN2, EVENTOUT	-	
83	54	-	PD2	I/O	FT	(1)	UART5_RX, TIM3_ETR, TIM8_BKIN, EVENTOUT	-	
84	-	-	PD3	I/O	FT	(1)	USART2_CTS, TIM2_CH1_ETR, EVENTOUT	-	
85	-	-	PD4	I/O	FT	(1)	USART2_RTS_DE, TIM2_CH2, EVENTOUT	-	
86	-	-	PD5	I/O	FT	(1)	USART2_TX, EVENTOUT	-	
87	-	-	PD6	I/O	FT	(1)	USART2_RX, TIM2_CH4, EVENTOUT	-	
88	-	-	PD7	I/O	FT	(1)	USART2_CK, TIM2_CH3, EVENTOUT	-	
89	55	39	PB3	I/O	FT	-	SPI3_SCK, I2S3_CK, SPI1_SCK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TIM8_CH1N, TSC_G5_IO1, JTDO- TRACESWO, EVENTOUT	-	
90	56	40	PB4	I/O	FT	-	SPI3_MISO, I2S3ext_SD, SPI1_MISO, USART2_RX, TIM3_CH1, TIM16_CH1, TIM17_BKIN, TIM8_CH2N, TSC_G5_IO2, NJTRST, EVENTOUT	-	
91	57	41	PB5	I/O	FT	-	SPI3_MOSI, SPI1_MOSI, I2S3_SD, I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM8_CH3N, TIM17_CH1, EVENTOUT	-	

Table 13. STM32F358xC pin definitions (continued)

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 21: Voltage characteristics*, *Table 22: Current characteristics*, and *Table 23: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External digital supply voltage (including V_{DD} and $V_{BAT})$	-0.3	1.95	
$V_{DDA} - V_{SS}$	External analog supply voltage	-0.3	4.0	
V _{DD} – V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	
V _{REF+} -V _{DDA} ⁽²⁾	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	
	Input voltage on FT and FTf pins	V _{SS} -0.3	V _{DD} + 4.0	V
	Input voltage on TTa pins	V _{SS} - 0.3	4.0	
V _{IN} ⁽³⁾	Input voltage on any other pin	V _{SS} - 0.3	4.0	
	Input voltage on POR pin	$V_{SS} - 0.3$	V _{DDA} + 4.0	
	Input Voltage on B Pin	0	9	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	m\/
V _{SSX} –V _{SS}	Variations between all the different ground pins	-	50	- mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)			-

Table 21.	Voltage	characteristics ⁽¹⁾
-----------	---------	--------------------------------

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between V_{DDA} and V_{DD}: V_{DDA} must power on before or at the same time as V_{DD} in the power up sequence. V_{DDA} must be greater than or equal to V_{DD}.

2. V_{REF+} must be always lower or equal than V_{DDA} ($V_{REF+} \le V_{DDA}$). If unused then it must be connected to V_{DDA} .

3. V_{IN} maximum must always be respected. Refer to *Table 22: Current characteristics* for the maximum allowed injected current values.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and V_{DD} = 1.8 V, V_{DDA} = 3.3 V.

Table 36. Peripheral current consumption

Derinherel	Typical consumption ⁽¹⁾	l leit
Peripheral	I _{DD}	Unit
BusMatrix ⁽²⁾	12.6	
DMA1	7.6	
DMA2	6.1	
CRC	2.1	
GPIOA	10.0	
GPIOB	10.3	
GPIOC	2.2	
GPIOD	8.8	
GPIOE	3.3	
GPIOF	3.0	
TSC	5.5	
ADC1&2	17.3	
ADC3&4	18.8	
APB2-Bridge ⁽³⁾	3.6	μA/MHz
SYSCFG	7.3	
TIM1	40.0	
SPI1	8.8	
TIM8	36.4	
USART1	23.3	
TIM15	17.1	
TIM16	10.1	
TIM17	11.0	
APB1-Bridge ⁽³⁾	6.1	
TIM2	49.1	
TIM3	38.8	
TIM4	38.3	

Derinheral	Typical consumption ⁽¹⁾	l la it
Peripheral	I _{DD}	— Unit
TIM6	9.7	
TIM7	12.1	
WWDG	6.4	
SPI2	40.4	
SPI3	40.0	
USART2	41.9	
USART3	40.2	
UART4	36.5	μA/MHz
UART5	30.8	
I2C1	10.5	
I2C2	10.4	
CAN	33.4	
PWR	5.7	
DAC	15.4	

Table 36. Peripheral current consumption (continued)	Table 36. Pe	eripheral cu	urrent consu	motion	(continued)
--	--------------	--------------	--------------	--------	-------------

1. The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).

3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.

6.3.9 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	53.5	60	μs	
t _{ERASE}	Page (2 KB) erase time	$T_A = -40$ to +105 °C	20	-	40	ms	
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms	
	Supply current	Write mode	-	-	10	mA	
IDD		Erase mode	-	-	12	mA	

Table 45. Flash memory characteristics

1. Guaranteed by design, not tested in production.

Querrahal	Deveneter	Conditions	Value	11:::4
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 46. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

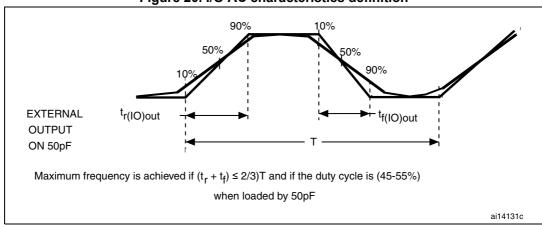
These tests are compliant with EIA/JESD 78A IC latch-up standard.

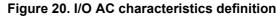
Table	50.	Electrical sensitivities
Table	UU .	

	Symbol	Parameter	Conditions	Class
ĺ	LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.


Functional susceptibility to I/O current injection


While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 51

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 52*).

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-	-	0.3V _{DD} + 0.07 ⁽¹⁾	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	0.445V _{DD} + 0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	700 ⁽¹⁾	-	-	ns

Table 55. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

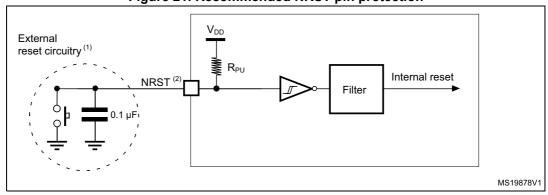


Figure 21. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 55. Otherwise the reset will not be taken into account by the device.

6.3.15 NPOR pin characteristics

The NPOR pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, Rpu (see *Table 56*) connected to V_{DDA} supply.

Unless otherwise specified, the parameters given in *Table 56* are derived from tests performed under ambient temperature and V_{DDA} supply voltage conditions summarized in *Table 24*.

Symbol ⁽¹⁾	Parameter	Conditions	Min	Тур	Мах	Unit		
V _{IL(NPOR)}	NPOR Input low level voltage	-	-	-	0.475V _{DDA} - 0.2	v		
V _{IH(NPOR)}	NPOR Input high level voltage	-	0.5V _{DDA} + 0.2	-	-	v		
V _{hys(NPOR)}	NPOR Schmitt trigger voltage hysteresis	-	-	100	-	mV		
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ		

Table 56. NPOR pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

6.3.16 Timer characteristics

The parameters given in *Table 57* are guaranteed by design.

Refer to *Section 6.3.13: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
		-	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9	-	ns
,		f _{TIMxCLK} = 144 MHz, x= 1.8	6.95	-	ns
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit
TC31M		TIM2	-	32	DIL
		-	1	65536	t _{TIMxCLK}
t _{COUNTER}	16-bit counter clock period	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
		f _{TIMxCLK} = 144 MHz, x= 1.8	0.0069	455	μs
		-	-	65536 × 65536	t _{TIMxCLK}
t _{MAX_COUNT}	Maximum possible count	f _{TIMxCLK} = 72 MHz	-	59.65	S
MAX_COUNT	with 32-bit counter	f _{TIMxCLK} = 144 MHz, x= 1.8	-	29.825	S

Table 57. TIMx⁽¹⁾⁽²⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM6, TIM15, TIM16 and TIM17 timers.

2. Guaranteed by design, not tested in production.

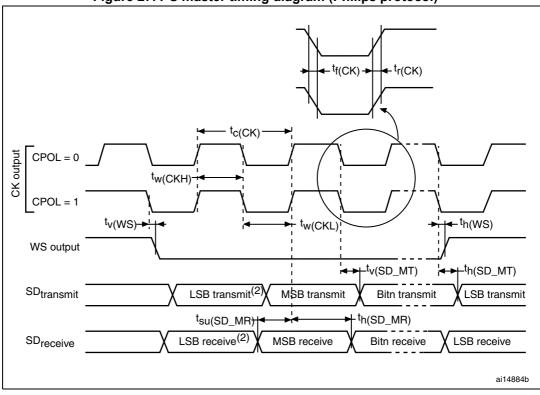


Figure 27. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Measurement points are done at $0.5V_{\text{DD}}$ and with external C_L=30 pF.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

CAN (controller area network) interface

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

6.3.18 ADC characteristics

Unless otherwise specified, the parameters given in *Table 64* to *Table 67* are guaranteed by design, with conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage for ADC	-	1.8	-	3.6	V	
		Single-ended mode, 5 MSPS	-	907	1033.0		
		Single-ended mode, 1 MSPS	-	194	285.5		
1	ADC current consumption on VDDA	Single-ended mode, 200 KSPS	-	51.5	70	μA	
I _{DDA}	pin (see <i>Figur</i> e 28)	Differential mode, 5 MSPS	-	887. 5	1009	μΑ	
		Differential mode, 1 MSPS	-	212	285		
		Differential mode, 200 KSPS	-	51	69.5		
V _{REF+}	Positive reference voltage	-	2	-	V _{DDA}	V	
	ADC current consumption on VREF+	Single-ended mode, 5 MSPS	-	104	139		
		Single-ended mode, 1 MSPS	-	20.4	37		
1		Single-ended mode, 200 KSPS	-	3.3	11.3	μA	
I _{REF}	pin (see <i>Figure 2</i> 9)	Differential mode, 5 MSPS	-	174	235	μΛ	
		Differential mode, 1 MSPS	-	34.6	52.6		
		Differential mode, 200 KSPS	-	6	13.6		
f _{ADC}	ADC clock frequency		0.14	-	72	MHz	
		Resolution = 12 bits, Fast Channel	0.01	-	5.14		
f _S ⁽¹⁾	Sampling rate	Resolution = 10 bits, Fast Channel	0.012	-	6	MSPS	
IS, ,	Sampling rate	Resolution = 8 bits, Fast Channel	0.014	-	7.2		
		Resolution = 6 bits, Fast Channel	0.0175	-	9		

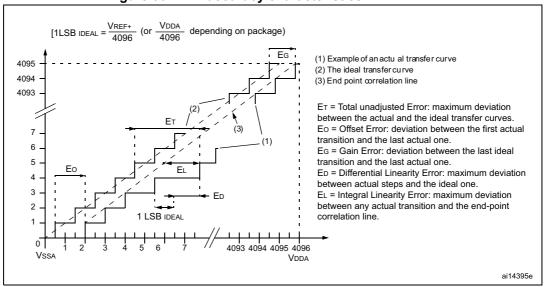
•			coonditionio	ree pin packages	(00	mina	04,	
Symbol	Parameter	C	Min (3)	Тур	Max (3)	Unit		
			Cingle ended	Fast channel 5.1 Ms	66	67	-	
	Signal-to-		Single ended	Slow channel 4.8 Ms	66	67	-	
SNR noise ratio	noise ratio	Sampling freq \leq 5 Msps	Differential	Fast channel 5.1 Ms	69	70	-	
				Slow channel 4.8 Ms	69	70	-	dB
		V _{DDA} = V _{REF+} = 3.3 V 25°C	Cingle and d	Fast channel 5.1 Ms	-	-76	-76	uв
Total THD harmonic distortion		100-pin package	Single ended	Slow channel 4.8 Ms	-	-76	-76	
			Differential	Fast channel 5.1 Ms	-	-80	-80	
			Dillerential	Slow channel 4.8 Ms	-	-80	-80	

Table 66. ADC accuracy - limited test conditions 100-pin packages⁽¹⁾⁽²⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.13 does not affect the ADC accuracy.

3. Data based on characterization results, not tested in production.


1

1

Symbol	Parameter	Conditions				Max ⁽⁴⁾	Unit
			Single Ended	Fast channel 5.1 Ms	-	±6.5	
ET	Total		Single Ended	Slow channel 4.8 Ms	-	±6.5	
	unadjusted error		Differential	Fast channel 5.1 Ms	-	±4	
			Dillerential	Slow channel 4.8 Ms	-	±4.5	
			Single Ended	Fast channel 5.1 Ms	-	£3	
EO	Offset error			Slow channel 4.8 Ms	-	±3	
EO	Oliset el loi		Differential	Fast channel 5.1 Ms	-	±2.5	
	Differe	Dillerential	Slow channel 4.8 Ms	-	±2.5		
			Single Ended	Fast channel 5.1 Ms	-	±6	
EG				Slow channel 4.8 Ms	-	± 6	LSB
EG Gain error	Gainenoi	$\label{eq:ADC clock freq. } \begin{array}{l} \mbox{ADC clock freq. } \le 72 \mbox{ MHz}, \\ \mbox{Sampling freq. } \le 5 \mbox{ Msps} \\ \mbox{1.8V} \le V_{DDA} \mbox{, } V_{REF+} \le 3.6 \mbox{ V} \end{array}$	Differential	Fast channel 5.1 Ms	-	±3.5	LOD
			Differential	Slow channel 4.8 Ms	-	±4	1
			Single Ended	Fast channel 5.1 Ms	-	±1.5	
ED	Differential linearity	64-pin package		Slow channel 4.8 Ms	-	±1.5	
LD	error		Differential	Fast channel 5.1 Ms	-	±1.5	
			Differential	Slow channel 4.8 Ms	-	±1.5	
			Single Ended	Fast channel 5.1 Ms	-	13	
EL	Integral linearity			Slow channel 4.8 Ms	-	±3.5	
LL	error		Differential	Fast channel 5.1 Ms	-	±2	
			Differentia	Slow channel 4.8 Ms	-	±2.5	
			Single Ended	Fast channel 5.1 Ms	10.4	-	
ENOB	Effective number of			Slow channel 4.8 Ms	10.4	-	bits
21100	bits		Differential	Fast channel 5.1 Ms	10.8	-	
			Billerential	Slow channel 4.8 Ms	10.8	-	

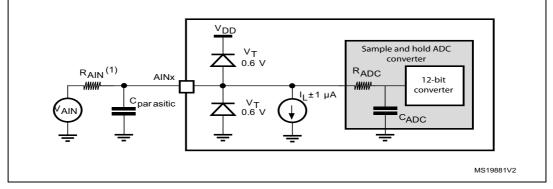

Table 69. ADC accuracy, 64-pin packages⁽¹⁾⁽²⁾⁽³⁾

Figure 30. ADC accuracy characteristics

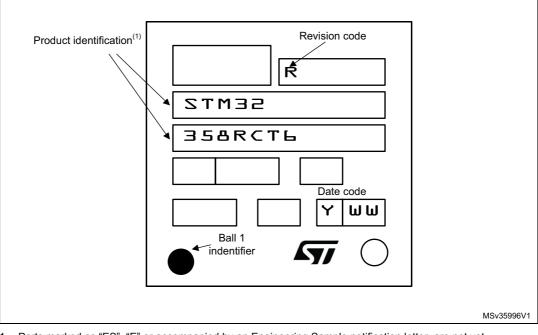
Figure 31. Typical connection diagram using the ADC

1. Refer to *Table 64* for the values of R_{AIN}.

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 10*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.


6.3.21 Operational amplifier characteristics

Symbol	Param	neter	Condition	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	2.4	-	3.6	V
CMIR	Common mode inpu	t range	-	0	-	V _{DDA}	V
		Maximum	25°C, No Load on output.	-	-	4	
\/I	Input offset voltage	calibration range	All voltage/Temp.	-	-	6	mV
VI _{OFFSET}	input onset voltage	After offset	25°C, No Load on output.	-	-	1.6	IIIV
		calibration	All voltage/Temp.	-	-	3	
ΔVI_{OFFSET}	Input offset voltage drift		-	-	5	-	µV/°C
I _{LOAD}	Drive current		-	-	-	500	μA
IDDOPAMP			No load, quiescent mode	-	690	1450	μA
CMRR	Common mode reject	ction ratio	-	-	90	-	dB
PSRR	Power supply rejection ratio		DC	73	117	-	dB
GBW	Bandwidth		-	-	8.2	-	MHz
SR	Slew rate		-	-	4.7	-	V/µs
R _{LOAD}	Resistive load		-	4	-	-	kΩ
C _{LOAD}	Capacitive load		-	-	-	50	pF
VOH	High saturation voltage		R _{load} = min, Input at V _{DDA} .	-	-	100	
VOH _{SAT}			R _{load} = 20K, Input at V _{DDA} .	-	-	20	mV
	Low saturation voltage	20	Rload = min, input at 0V	-	-	100	IIIV
VOL _{SAT}		ye	Rload = 20K, input at 0V.	-	-	20	
φm	Phase margin		-	-	62	-	0
t _{offtrim}	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	-	2	ms
t _{wakeup}	Wake up time from C	DFF state.	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega,$ Follower configuration	-	2.8	5	μs

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

