Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betails	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212k2snfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

R8C/2K Group, R8C/2L Group RENESAS MCU

1. Overview

1.1 Features

The R8C/2K Group and R8C/2L Group of single-chip MCUs incorporates the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

Furthermore, the R8C/2L Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/2K Group and R8C/2L Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1.1 Applications

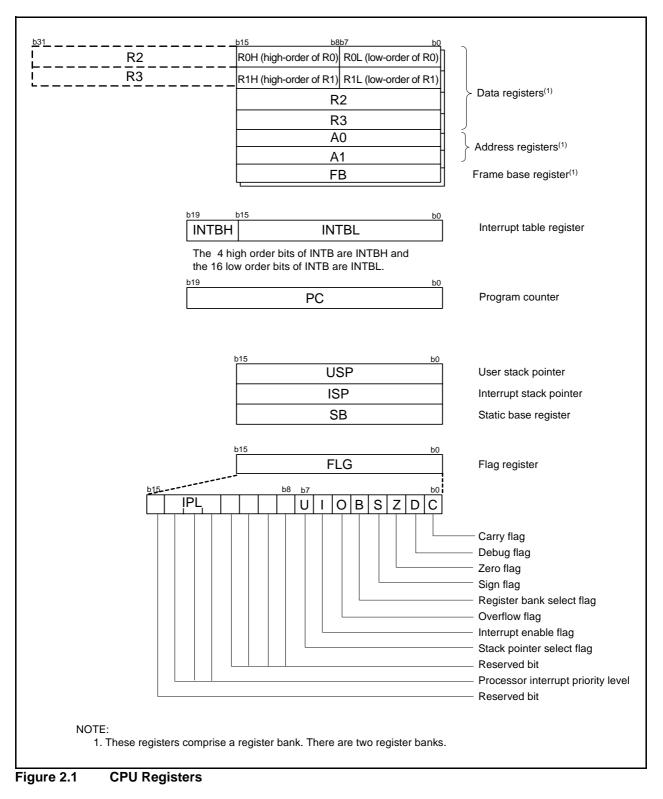
Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

Table 1.3	able 1.3 Specifications for R8C/2L Group (1)						
Item	Function	Specification					
CPU	Central processing	R8C/Tiny series core					
	unit	Number of fundamental instructions: 89					
		Minimum instruction execution time:					
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)					
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)					
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)					
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits					
		• Multiply-accumulate instruction: 16 bits \times 16 bits $+$ 32 bits \rightarrow 32 bits					
		Operation mode: Single-chip mode (address space: 1 Mbyte)					
Memory	ROM, RAM	Refer to Table 1.6 Product List for R8C/2L Group.					
Power Supply	Voltage detection	Power-on reset					
Voltage	circuit	Voltage detection 3					
Detection	Circuit	· Vollage detection o					
I/O Ports	Programmable I/O	Input-only: 3 pins					
1/01 013	ports	CMOS I/O ports: 25, selectable pull-up resistor					
	pons	 High current drive ports: 8 					
Clock	Clock generation	2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),					
CIUCK	circuits						
	circuits	On-chip oscillator (high-speed, low-speed)					
		(high-speed on-chip oscillator has a frequency adjustment function)					
		Oscillation stop detection: XIN clock oscillation stop detection function					
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16					
		Low power consumption modes:					
		Standard operating mode (high-speed clock, high-speed on-chip oscillator,					
-		low-speed on-chip oscillator), wait mode, stop mode					
Interrupts		• External: 4 sources, Internal: 15 sources, Software: 4 sources					
		Priority levels: 7 levels					
Watchdog Time		15 bits x 1 (with prescaler), reset start selectable					
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)					
		Timer mode (period timer), pulse output mode (output level inverted every					
		period), event counter mode, pulse width measurement mode, pulse period					
		measurement mode					
	Timer RB	8 bits × 1 (with 8-bit prescaler)					
		Timer mode (period timer), programmable waveform generation mode (PWM					
		output), programmable one-shot generation mode, programmable wait one-					
	T D 0	shot generation mode					
	Timer RC	16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode					
	Timer RD	(output 3 pins), PWM2 mode (PWM output pin)					
	Timer RD	16 bits x 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode					
		(output 6 pins), reset synchronous PWM mode (output three-phase					
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode					
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3					
		mode (PWM output 2 pins with fixed period)					

Table 1.3Specifications for R8C/2L Group (1)

Item	Function	Specification
Serial	UART0, UART2	Clock synchronous serial I/O/UART × 2
Interface		
LIN Module		Hardware LIN: 1 (timer RA, UART0)
A/D Converter		10-bit resolution × 9 channels, includes sample and hold function
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V
		 Programming and erasure endurance: 10,000 times (data flash)
		1,000 times (program ROM)
		 Program security: ROM code protect, ID code check
		 Debug functions: On-chip debug, on-board flash rewrite function
Operating Free	luency/Supply	f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)
Voltage		f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V) f(XIN) = 5 MHz (VCC = 2.2 to 5.5 V) (VCC = 2.7 to 5.5 V for A/D converter only)
Current consur	nption	Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
		Typ. 6 mA (VCC = 3.0 V, $f(XIN) = 10 \text{ MHz})'$
		Typ. 23 μ A (VCC = 3.0 V, wait mode, low-speed on-chip oscillator used) Typ. 0.7 μ A (VCC = 3.0 V, stop mode)
Operating Amb	ient Temperature	-20 to 85°C (N version)
		-40 to 85°C (D version) ⁽¹⁾
		-20 to 105°C (Y version) ⁽²⁾
Package		32-pin LQFP
		Package code: PLQP0032GB-A (previous code: 32P6U-A)

 Table 1.4
 Specifications for R8C/2L Group (2)


1. Specify the D version if D version functions are to be used.

2. Please contact Renesas Technology sales offices for the Y version.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

RENESAS

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

Address	Register	Symbol	After reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010An	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0113h			
0114h 0115h			
0116h			
0117h			
0118h			
0119h			
011Ah			
011Bh			
011Ch			
011Dh			
011Eh			
011Fh			
	Timer DC Made Degister	TRCMR	010010005
0120h	Timer RC Mode Register		01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0127h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h			FFh
0123h	Timer RC General Register B	TRCGRB	FFh
012An		110010	FFh
	Timer DC Concrel Desigter C	TROOPO	
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh		700000	FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
0130h	Timer RC Control Register 2	TRCCR2	00011111b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	0111111b
0133h	· · · · · ·		
0134h			
0135h			
0136h			
0137h	Timer RD Start Register	TRDSTR	11111100b
0138h	Timer RD Mode Register	TRDMR	00001110b
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b
013Ah	Timer RD Function Control Register	TRDFCR	1000000b
013Bh	Timer RD Output Master Enable Register 1	TRDOER1	FFh
013Ch	Timer RD Output Master Enable Register 2	TRDOER2	01111111b
013Dh	Timer RD Output Control Register	TRDOCR	00h
013Eh	Timer RD Digital Filter Function Select Register 0	TRDDF0	00h
013Fh	Timer RD Digital Filter Function Select Register 1	TRDDF1	00h
0.0111			00.1

SFR Information (5)⁽¹⁾ Table 4.5

NOTE: 1. The blank regions are reserved. Do not access locations in these regions

5. Electrical Characteristics

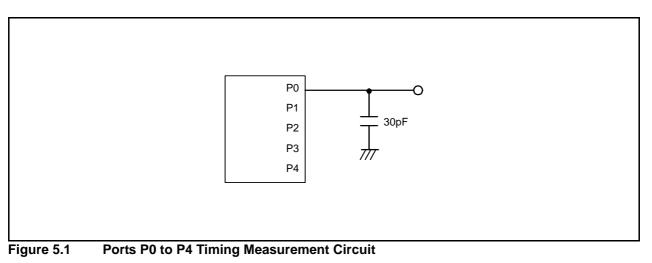
The electrical characteristics of N version (Topr = -20° C to 85° C) and D version (Topr = -40° C to 85° C) are listed below.

Please contact Renesas Technology sales offices for the electrical characteristics in the Y version (Topr = -20° C to 105° C).

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Topr = 25°C	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Symbol		Parameter	Conditions		Standard		Unit
Symbol		arameter	Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage			2.2	-	5.5	V
AVcc	Supply voltage			2.7	-	5.5	
Vss/AVss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H"	Except P2_0 to P2_7		-	-	-10	mA
	current	P2_0 to P2_7		-	-	-40	mA
IOH(avg)	Average output	Except P2_0 to P2_7		-	-	-5	mA
	"H" current	P2_0 to P2_7		-	-	-20	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L"	Except P2_0 to P2_7		-	-	10	mA
	currents	P2_0 to P2_7		-	-	40	mA
IOL(avg)	Average output	Except P2_0 to P2_7		-	-	5	mA
	"L" current	P2_0 to P2_7		-	-	20	mA
f(XIN)	XIN clock input os	cillation frequency	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
			$2.2~V \leq Vcc < 2.7~V$	0	-	5	MHz
-	System clock	OCD2 = 0	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
		XIN clock selected	$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
			$2.2~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0	-	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	_	kHz
			$\begin{tabular}{l} FRA01 = 1 \\ High-speed on-chip \\ oscillator clock selected \\ 3.0 \ V \le Vcc \le 5.5 \ V \end{tabular}$	-	_	20	MHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.7 V} \le Vcc \le 5.5 \ V \end{array}$	_	-	10	MHz
			$\label{eq:FRA01 = 1} \begin{array}{l} FRA01 = 1 \\ High\text{-speed on-chip} \\ oscillator clock selected \\ 2.2 V \leq Vcc \leq 5.5 \ V \end{array}$	-	_	5	MHz


Recommended Operating Conditions Table 5.2

1. Vcc = 2.2 to 5.5 V at $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. The average output current indicates the average value of current measured during 100 ms.

Cumbal	Parameter	Conditions	Standard			Unit		
Symbol		Farameter	Conditions	Min.	Тур.	Max.	IX.	
-	Resolution		Vref = AVCC	-	-	10	Bits	
-	Absolute	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±3	LSB	
	accuracy	8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±2	LSB	
		10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±5	LSB	
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±2	LSB	
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ	
tconv	Conversion time	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	3.3	-	-	μS	
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	2.8	-	-	μS	
Vref	Reference voltag	e		2.2	-	AVcc	V	
Via	Analog input volta	age ⁽²⁾		0	-	AVcc	V	
-	A/D operating	Without sample and hold	$V_{ref} = AV_{CC} = 2.7 \text{ to } 5.5 \text{ V}$	0.25	_	10	MHz	
	clock frequency	With sample and hold	Vref = AVcc = 2.7 to 5.5 V	1	-	10	MHz	

Table 5.3	A/D Converter	Characteristics

 AVcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
 When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	ard Max. - 400 9 97+CPU clock × 6 cycles - 3+CPU clock × 4 cycles 5.5 5.5 60	Unit
_	Program/erase endurance ⁽²⁾	R8C/2K Group	100 ⁽³⁾	-	-	times
		R8C/2L Group	1,000(3)	-	-	times
-	Byte program time		-	50	400	μS
_	Block erase time		-	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-		μS
-	Interval from erase start/restart until following suspend request		650	-	_	μS
-	Interval from program start/restart until following suspend request		0	-	_	ns
_	Time from suspend until program/erase restart		-	-		μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	_	5.5	V
_	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Cumbal	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	ard Max. - 400 - 9 97+CPU clock × 6 cycles - 3+CPU clock × 4 cycles	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		-	50	400	μs
-	Byte program time (program/erase endurance > 1,000 times)		-	65	-	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	9	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	_		μS
-	Interval from erase start/restart until following suspend request		650	-	-	μs
-	Interval from program start/restart until following suspend request		0	_	-	ns
-	Time from suspend until program/erase restart		-	_		μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. -40°C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

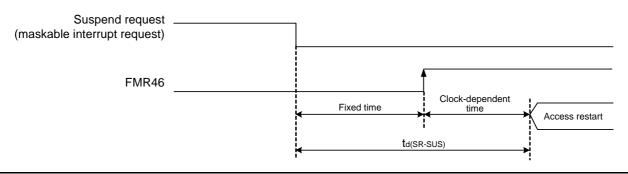


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Faiallielei	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	_	_	V

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ⁽⁴⁾		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Standard			
Symbol		Condition	Min.	Тур.	Max.	Unit	
fOCO40M	High-speed on-chip oscillator frequency	Vcc = 2.7 V to 5.5 V	39.2	40	40.8	MHz	
	temperature • supply voltage dependence	$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$					
		Vcc = 2.7 V to 5.5 V	39.0	40	41.0	MHz	
		$-40^\circ C \leq T_{opr} \leq 85^\circ C^{(2)}$					
		Vcc = 2.2 V to 5.5 V	35.2	40	44.8	MHz	
		$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(3)}$					
		Vcc = 2.2 V to 5.5 V	34.0	40	46.0	MHz	
		$-40^\circ C \leq T_{opr} \leq 85^\circ C^{(3)}$					
	High-speed on-chip oscillator frequency when	Vcc = 5.0 V, Topr = 25°C	-	36.864	-	MHz	
	correction value in FRA7 register is written to	Vcc = 2.7 V to 5.5 V	-3%	-	3%	%	
	FRA1 register ⁽⁴⁾	$-20^{\circ}C \le T_{opr} \le 85^{\circ}C$					
-	Value in FRA1 register after reset		08h	-	F7h	-	
_	Oscillation frequency adjustment unit of high- speed on-chip oscillator	Adjust FRA1 register (value after reset) to -1	-	+0.3	_	MHz	
-	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	-	10	100	μs	
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	550	-	μΑ	

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

1. Vcc = 2.2 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. These standard values show when the FRA1 register value after reset is assumed.

3. These standard values show when the corrected value of the FRA6 register is written to the FRA1 register.

4. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
-	Oscillation stability time		-	10	100	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	15	-	μΑ

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.12 **Power Supply Circuit Timing Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	i alameter	Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μS
td(R-S)	STOP exit time ⁽³⁾		1	_	150	μS

RENESAS

NOTES:

The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
 Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

Table 5.15Electrical Characteristics (3) [Vcc = 5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	Standard			Unit
Symbol	Falametei		Condition		Min. Typ.		Onit
Icc	Icc Power supply Wait mode current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins are Vss	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	1	25	75	μΑ	
	are Vss		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	60	μΑ
	Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.8	3.0	μΑ	
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.2	-	μΑ

Table 5.21Electrical Characteristics (2) [Vcc = 3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard	t	Unit
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	_	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5	9	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	130	300	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μΑ
	Low-speed on-chip oscillat While a WAIT instruction is Peripheral clock off VCA27 = VCA26 = VCA25	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed	_	23	55	μΑ	
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		0.7	3.0	μA
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	_	μA

RENESAS

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.22 XIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	

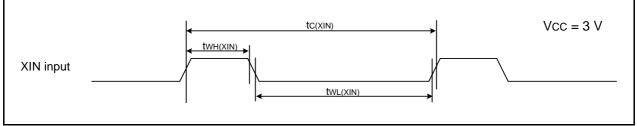


Figure 5.8 XIN Input Timing Diagram when Vcc = 3 V

Table 5.23 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	=	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width	120	-	ns	

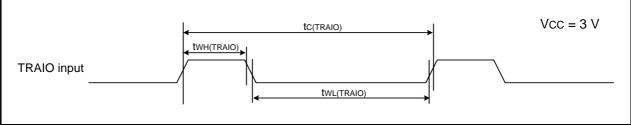
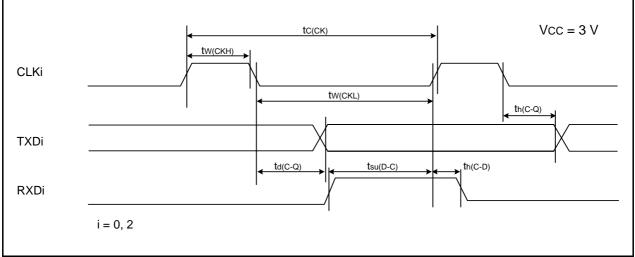



Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V

Symbol	Parameter	Sta	Standard		
	Falanelei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tw(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0, 2

Table 5.25 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width	380 ⁽¹⁾	-	ns	
tw(INL)	INTi input "L" width	380(2)	_	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

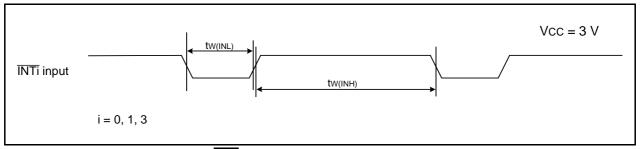
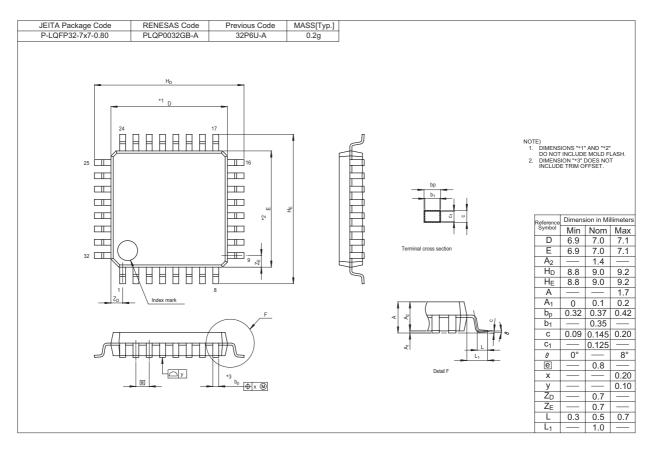


Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 3 V


Table 5.27Electrical Characteristics (2) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standar	b	Unit
Symbol			Condition		Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	_	mA
other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA	
	High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA	
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μΑ
	XIN clock off High-speed on-chip Low-speed on-chip While a WAIT instri Peripheral clock off VCA27 = VCA26 =	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	20	55	μΑ	
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.7	3.0	μΑ
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	1.1	_	μΑ

RENESAS

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

