

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212k2syfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outlines the Specifications for R8C/2K Group and Tables 1.3 and 1.4 outlines the Specifications for R8C/2L Group.

ltem	Function	Specification
CPU	Central processing	R8C/Tiny series core
	unit	 Number of fundamental instructions: 89
		 Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits x 16 bits + 32 bits \rightarrow 32 bits
		 Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM	Refer to Table 1.5 Product List for R8C/2K Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3
Detection		
I/O Ports	Programmable I/O	Input-only: 3 pins
	ports	 CMOS I/O ports: 25, selectable pull-up resistor
		High current drive ports: 8
Clock	Clock generation	2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
	circuits	On-chip oscillator (high-speed, low-speed)
		(high-speed on-chip oscillator has a frequency adjustment function)
		 Oscillation stop detection: XIN clock oscillation stop detection function
		 Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		 Low power consumption modes:
		Standard operating mode (high-speed clock, high-speed on-chip oscillator,
		low-speed on-chip oscillator), wait mode, stop mode
Interrupts		 External: 4 sources, Internal: 15 sources, Software: 4 sources
		Priority levels: 7 levels
Watchdog Tim	er	15 bits x 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits \times 1 (with 8-bit prescaler)
		limer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
	T 55	measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation mode (PWM
		output) programmable one-shot generation mode, programmable wait one-
		shot deperation mode
	Timer PC	16 bits x 1 (with 4 conture/compare registers)
		Timer mode (input capture function, output compare function). PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits x 2 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)

 Table 1.1
 Specifications for R8C/2K Group (1)

Item	Function	Specification		
Serial	UART0, UART2	Clock synchronous serial I/O/UART × 2		
Interface				
LIN Module		Hardware LIN: 1 (timer RA, UART0)		
A/D Converter		10-bit resolution × 9 channels, includes sample and hold function		
Flash Memory	1	 Programming and erasure voltage: VCC = 2.7 to 5.5 V 		
		 Programming and erasure endurance: 100 times 		
		 Program security: ROM code protect, ID code check 		
		 Debug functions: On-chip debug, on-board flash rewrite function 		
Operating Frequency/Supply		f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)		
Voltage		f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V)		
		f(XIN) = 5 MHz (VCC = 2.2 to 5.5 V) (VCC = 2.7 to 5.5 V for A/D converter only)		
Current consu	mption	Typ. 10 mA (VCC = 5.0 V , f(XIN) = 20 MHz)		
		Typ. 6 mA (VCC = 3.0 V, $f(XIN) = 10$ MHZ)		
		Typ. 23 μ A (VCC = 3.0 V, wait mode, low-speed on-cnip oscillator used)		
		Typ. 0.7 μ A (VCC = 3.0 V, stop mode)		
Operating Am	bient Temperature	-20 to 85°C (N version)		
		-40 to 85°C (D version) ⁽¹⁾		
		-20 to 105°C (Y version) ⁽²⁾		
Package		32-pin LQFP		
		 Package code: PLQP0032GB-A (previous code: 32P6U-A) 		

 Table 1.2
 Specifications for R8C/2K Group (2)

NOTES:

1. Specify the D version if D version functions are to be used.

2. Please contact Renesas Technology sales offices for the Y version.

	opeomoations for	
Item	Function	Specification
CPU	Central processing	R8C/Tiny series core
	unit	 Number of fundamental instructions: 89
		 Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM	Refer to Table 1.6 Product List for R8C/2L Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3
Detection		5
I/O Ports	Programmable I/O	Input-only: 3 pins
	ports	CMOS I/O ports: 25. selectable pull-up resistor
	1	High current drive ports: 8
Clock	Clock generation	2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor).
	circuits	On-chip oscillator (high-speed, low-speed)
		(high-speed on-chip oscillator has a frequency adjustment function)
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		• Low power consumption modes:
		Standard operating mode (high-speed clock, high-speed on-chip oscillator.
		low-speed on-chip oscillator) wait mode, stop mode
Interrupts		External: 4 sources Internal: 15 sources Software: 4 sources
interrupte		Priority levels: 7 levels
Watchdog Time	er	15 bits x 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits x 2 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)

Table 1.3Specifications for R8C/2L Group (1)

1.3 **Block Diagram**

Figure 1.3 shows a Block Diagram.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/2L Group

Figure 3.2 is a Memory Map of R8C/2L Group. The R8C/2L Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1.5-Kbyte internal RAM is allocated addresses 00400h to 009FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
0002h			
00030			
00C4h			
00C5h			
00C6h			
00C7h			
0009h			
0000h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
000Eh			
00000			
UUCFN			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00b
00040	NO CONTO REGISTER 2	ABOONZ	0011
00050	A/D Oradinal Derivitien 0		0.01
00D6h	A/D CONTROL REGISTER U	ADCONU	UUN
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DAh 00DBh			
UUDBN			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h	Port P0 Register	PO	XXh
00001	Port of Register	1 0 D4	
00EIN	Poit PT Register	PI	AAII
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port 2 Direction Register		00h
002711	For FS Director Register	FDS	
00E8h	Port P4 Register	P4	XXh
00E9h			
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh			
00EDh			
OUEEN			
UUEFh			
00F0h			
00F1h			
00F2h			
00F3h			
00F4h	Port P2 Drive Consolity Control Pogistor	DODDB	00h
00551	For F2 Drive Capabily Control Register		
00F5h	Pin Select Register 1	PINSK1	77U
00F6h	Pin Select Register 2	PINSR2	XXh
00F7h	Pin Select Register 3	PINSR3	XXh
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00EAb	INT Input Eliter Solect Degister		00b
			001
UUFBh	Key input Enable Register	KIEN	UUN
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	XX000000b
00FEh			
00FFb			
001111			

SFR Information (4)⁽¹⁾ Table 4.4

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Rev.1.10 Dec 21, 2007 Page 20 of 45 REJ03B0219-0110

Address	Register	Symbol	After reset	
0100h	Timer RA Control Register	TRACR	00h	
0101h	Timer RA I/O Control Register	TRAIOC	00h	
0102h	Timer RA Mode Register	TRAMR	00h	
0102h	Timor DA Droscolor Dogistor	TDADE	EEb	
01031	Timer DA Degister			
0104n		IKA		
0105h	LIN Control Register 2	LINCR2	00h	
0106h	LIN Control Register	LINCR	00h	
0107h	LIN Status Register	LINST	00h	
0108h	Timer RB Control Register	TRBCR	00h	
0109h	Timer RB One-Shot Control Register	TRBOCR	00h	
0104h	Timer RB I/O Control Register	TRBIOC	00b	
010Rh	Timer RB Mode Degister	TDBMD	00b	
01001	Timer ND Mode Register			
01000		TROPRE		
010Dh	Timer RB Secondary Register	TRBSC	FFh	
010Eh	Timer RB Primary Register	TRBPR	FFh	
010Fh				
0110h				
0111h				
0112h				
0113h				
0114b				
01140				
01101				
0116h				
0117h				
0118h				
0119h				
011Ah				
011Bh				
011Ch				
011Dh				
011Eh				
011FN		TROMP	01001000	
0120h	Timer RC Mode Register	TROMR	010010006	
0121h	Timer RC Control Register 1	TRCCR1	00h	
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b	
0123h	Timer RC Status Register	TRCSR	01110000b	
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b	
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b	
0126h	Timer RC Counter	TRC	00h	
0127h			00h	
0129h	Timor PC Conoral Pagistor A	TRCCPA	EEb	
01201	Timer No General Register A	INCORA		
01290	Timer BC Canaral Degister D	TROOPR		
012Ah	limer RC General Register B	TRUGRB	FFn	
012Bh			FFN	
012Ch	Timer RC General Register C	TRCGRC	FFh	
012Dh			FFh	
012Eh	Timer RC General Register D	TRCGRD	FFh	
012Fh			FFh	
0130h	Timer RC Control Register 2	TRCCR2	00011111b	
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h	
01326	Timer RC Output Master Enable Register	TRCOFR	011111116	
01320	Timor NO Ouput Master Linable Negister	MODEN		
013311				
0134h				
0135h				
0136h				
0137h	Timer RD Start Register	TRDSTR	11111100b	
0138h	Timer RD Mode Register	TRDMR	00001110b	
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b	
013Ah	Timer RD Function Control Register	TRDFCR	1000000b	
013Rh	Timer RD Output Master Enable Register 1	TRDOFR1	FFh	
01005	Timer PD Output Master Enable Register 2		01111111	
01300				
013Dh	Imer KD Output Control Register		UUN	
013Eh	Timer RD Digital Filter Function Select Register 0	TRDDF0	00h	
013Fh	Timer RD Digital Filter Function Select Register 1	TRDDF1	00h	

SFR Information (5)⁽¹⁾ Table 4.5

NOTE: 1. The blank regions are reserved. Do not access locations in these regions

Address	Register	Symbol	After reset
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
0180h			
010Dh			
018Eh			
0100h			
019011			
01911			
01920			
01930			
0194h			
0195h			
01960			
0197h			
01980			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019FN			
01A00			
0140h			
01A20			
01A31			
01A411			
01A50			
01A01			
01471			
01A0h			
01450			
01ARh			
01ADh			
01406			
014Fh			
01B0h			
01B1h		L	
01B2h		L	
01B3h	Elash Memory Control Register 4	FMR4	0100000b
01B4h			01000000
01B5h	Elash Memory Control Register 1	FMR1	100000Xb
01B6h			
01B7h	Flash Memory Control Register 0	FMR0	0000001b
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BFh			
01BFh			
0.5.1			L
EEEEh	Ontion Eurotion Salast Pagistar	OFS	(Noto 2)

SFR Information (7)⁽¹⁾ Table 4.7

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
The OFS register cannot be changed by a program. Use a flash programmer to write to it.

Symbol	Parameter	Conditions		Lloit			
Symbol	r	alameter	Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage			2.2	-	5.5	V
AVcc	Supply voltage			2.7	-	5.5	
Vss/AVss	Supply voltage			-	0	-	V
Viн	Input "H" voltage			0.8 Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	_	-80	mA
IOH(peak)	Peak output "H"	Except P2_0 to P2_7		-	-	-10	mA
	current	P2_0 to P2_7		-	-	-40	mA
IOH(avg)	Average output	Except P2_0 to P2_7		-	-	-5	mA
	"H" current	P2_0 to P2_7		-	-	-20	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	_	80	mA
IOL(peak)	Peak output "L"	Except P2_0 to P2_7		-	-	10	mA
	currents	P2_0 to P2_7		-	-	40	mA
IOL(avg)	Average output	Except P2_0 to P2_7		-	-	5	mA
	"L" current	P2_0 to P2_7		-	-	20	mA
f(XIN)	XIN clock input osc	cillation frequency	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
			$2.2~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0	-	5	MHz
-	System clock	OCD2 = 0	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
		XIN clock selected	$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	I	10	MHz
			$2.2~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0	-	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	-	kHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{3.0 V} \le Vcc \le 5.5 \ V \end{array}$	-	_	20	MHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.7 V} \le Vcc \le 5.5 V \end{array}$	-	-	10	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected $2.2 V \le Vcc \le 5.5 V$	-	_	5	MHz

Recommended Operating Conditions Table 5.2

NOTES:

1. Vcc = 2.2 to 5.5 V at $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. The average output current indicates the average value of current measured during 100 ms.

Symbol	Paramotor		Conditions	Standard			Linit
Symbol		alameter	Conditions	Min.	Тур.	Max.	Unit
_	Resolution		Vref = AVCC	-	-	10	Bits
—	Absolute	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±3	LSB
	accuracy	8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±2	LSB
		10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±5	LSB
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	3.3	-	-	μS
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltage			2.2	-	AVcc	V
Via	Analog input voltage ⁽²⁾			0	-	AVcc	V
_	A/D operating clock frequency	Without sample and hold	Vref = AVcc = 2.7 to 5.5 V	0.25	-	10	MHz
		With sample and hold	Vref = AVcc = 2.7 to 5.5 V	1	_	10	MHz

Table 5.3	A/D Converter	Characteristics

NOTES:

 AVcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
 When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Paramotor	Conditions		Linit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	0,000 ⁽³⁾ – –		times
_	Byte program time (program/erase endurance ≤ 1,000 times)		-	50	400	μS
-	Byte program time (program/erase endurance > 1,000 times)		_	- 65 -		μs
-	Block erase time (program/erase endurance \leq 1,000 times)		_	0.2	9	S
-	Block erase time (program/erase endurance > 1,000 times)		_	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	-	μS
_	Interval from program start/restart until following suspend request		0	-	_	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μs
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	_	_	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. -40°C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Linit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation		-	-	300	μS
	starts ⁽²⁾					
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Linit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ⁽⁴⁾		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Linit		
Symbol	i arameter	Condition	Min.	Тур.	Max.	Onit
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation		_	_	100	μS
	starts ⁽³⁾					

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol		ramatar	Condition		Standard			Llnit
Symbol	Fa	lamelei			Min.	Тур.	Max.	Onit
Vон	Output "H"	Except P2_0 to P2_7,	Iон = -5 mA		Vcc - 2.0	-	Vcc	V
	voltage	XOUT	Іон = -200 μА		Vcc - 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Iон = -20 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7,	IOL = 5 mA		-	-	2.0	V
		XOUT	Ιοι = 200 μΑ		-	-	0.45	V
		P2_0 to P2_7	Drive capacity HIGH	IoL = 20 mA	-	-	2.0	V
		Drive capacity LOW	IoL = 5 mA	-	-	2.0	V	
		XOUT	Drive capacity HIGH	lo∟ = 1 mA	-	-	2.0	V
			Drive capacity LOW	IoL = 500 μA	-	-	2.0	V
Vt+-Vt-	Hysteresis				0.1	0.5	-	V
		$\frac{1}{10}, \frac{1}{11}, \frac{1}{12}, \frac{1}{13}, \frac{1}{12}, \frac{1}$						
		CLK0, CLK2						
		RESET			0.1	1.0	-	V
Ін	Input "H" current		VI = 5 V, Vcc = 5 V		-	-	5.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 5 V		-	-	-5.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 5 V		30	50	167	kΩ
Rfxin	Feedback resistance	XIN			-	1.0	-	MΩ
VRAM	RAM hold voltage	ł	During stop mode		1.8	-	-	V

Table 5.13 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

1. Vcc = 4.2 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.14	Electrical Characteristics (2) [Vcc = 5 V]
	(Topr = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.)

Symbol	Doromotor		Condition	-	Standard	Ł	Linit
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	=	10	17	mA
	output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	130	300	μA

Rev.1.10 Dec 21, 2007 Page 33 of 45 **REJ03B0219-0110**

Symbol	Para	meter	Condition		Standard			Unit
Symbol	T ala				Min.	Тур.	Max.	Onit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc – 0.5	-	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Iон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	Іон = –50 μА	Vcc - 0.5	_	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IOL = 1 mA		-	-	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	lo∟ = 5 mA	-	-	0.5	V
			Drive capacity LOW	lo∟ = 1 mA	-	_	0.5	V
		XOUT	Drive capacity HIGH	lo∟ = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 50 μA	-	_	0.5	V
VT+-VT-	Hysteresis	ÎNT0, ÎNT1, ÎNT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD2, CLK0, CLK2			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V, Vcc = 3	V	-	-	4.0	μA
lı∟	Input "L" current	t "L" current V		V	-	-	-4.0	μA
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 3 V		66	160	500	kΩ
Rfxin	Feedback resistance	XIN			-	3.0	—	MΩ
VRAM	RAM hold voltage		During stop mode		1.8	-	-	V

 Table 5.20
 Electrical Characteristics (1) [Vcc = 3 V]

NOTE:

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.22 XIN Input

Symbol	Parameter	Stan	Standard	
Symbol	Falameter	Min.	Max.	Unit
tc(XIN)	XIN input cycle time	100	-	ns
twh(XIN)	XIN input "H" width	40	-	ns
twl(XIN)	XIN input "L" width	40	-	ns

Figure 5.8 XIN Input Timing Diagram when Vcc = 3 V

Table 5.23 TRAIO Input

Symbol	Parameter	Stan	dard	Lloit
Symbol	Falanielei	Standard Unit Min. Max. 300 - ns 120 - ns 120 - ns	Unit	
tc(TRAIO)	TRAIO input cycle time	300	=	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.27Electrical Characteristics (2) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard		
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Symbol Parameter Icc Power supply curren (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open other pins are Vss Icc Power supply curren (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open other pins are Vss	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	-	- Unit mA mA mA μA μA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	-	mA
	High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	-	mA	
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	 Imax. <li< td=""></li<>	
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	20	55	μΑ
		Stop mode	XIN clock off, $T_{opr} = 25 \circ C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.7	3.0	μΑ
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	-	μA