Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betails	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212k4sdfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

R8C/2K Group, R8C/2L Group RENESAS MCU

1. Overview

1.1 Features

The R8C/2K Group and R8C/2L Group of single-chip MCUs incorporates the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

Furthermore, the R8C/2L Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/2K Group and R8C/2L Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

Item Function Specification Serial UART0, UART2 Clock synchronous serial I/O/UART × 2 Interface Hardware LIN: 1 (timer RA, UART0)
Interface
LIN Modulo Hardware LIN: 1 (timor PA LIAPTO)
A/D Converter 10-bit resolution × 9 channels, includes sample and hold function
Flash Memory • Programming and erasure voltage: VCC = 2.7 to 5.5 V
 Programming and erasure endurance: 100 times
 Program security: ROM code protect, ID code check
 Debug functions: On-chip debug, on-board flash rewrite function
Operating Frequency/Supply f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)
Voltage $f(XIN) = 10 \text{ MHz} (VCC = 2.7 \text{ to } 5.5 \text{ V})$
f(XIN) = 5 MHz (VCC = 2.2 to 5.5 V) (VCC = 2.7 to 5.5 V for A/D converter
Current consumption Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)
Typ. 23 μ A (VCC = 3.0 V, wait mode, low-speed on-chip oscillator used)
Typ. 0.7 μA (VCC = 3.0 V, stop mode)
Operating Ambient Temperature -20 to 85°C (N version)
-40 to 85°C (D version) ⁽¹⁾
-20 to 105°C (Y version) ⁽²⁾
Package 32-pin LQFP
 Package code: PLQP0032GB-A (previous code: 32P6U-A)

 Table 1.2
 Specifications for R8C/2K Group (2)

NOTES:

1. Specify the D version if D version functions are to be used.

2. Please contact Renesas Technology sales offices for the Y version.

Table 1.3	able 1.3 Specifications for R8C/2L Group (1)						
Item	Function	Specification					
CPU	Central processing	R8C/Tiny series core					
	unit	Number of fundamental instructions: 89					
		Minimum instruction execution time:					
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)					
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)					
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)					
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits					
		• Multiply-accumulate instruction: 16 bits \times 16 bits $+$ 32 bits \rightarrow 32 bits					
		Operation mode: Single-chip mode (address space: 1 Mbyte)					
Memory	ROM, RAM	Refer to Table 1.6 Product List for R8C/2L Group.					
Power Supply	Voltage detection	Power-on reset					
Voltage	circuit	Voltage detection 3					
Detection	Circuit	· Vollage detection o					
I/O Ports	Programmable I/O	Input-only: 3 pins					
1/01/01/3	ports	CMOS I/O ports: 25, selectable pull-up resistor					
	pons	 High current drive ports: 8 					
Clock	Clock generation	2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),					
CIUCK	circuits						
	circuits	On-chip oscillator (high-speed, low-speed)					
		(high-speed on-chip oscillator has a frequency adjustment function)					
		Oscillation stop detection: XIN clock oscillation stop detection function					
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16					
		Low power consumption modes:					
		Standard operating mode (high-speed clock, high-speed on-chip oscillator,					
-		low-speed on-chip oscillator), wait mode, stop mode					
Interrupts		• External: 4 sources, Internal: 15 sources, Software: 4 sources					
		Priority levels: 7 levels					
Watchdog Time		15 bits x 1 (with prescaler), reset start selectable					
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)					
		Timer mode (period timer), pulse output mode (output level inverted every					
		period), event counter mode, pulse width measurement mode, pulse period					
		measurement mode					
	Timer RB	8 bits × 1 (with 8-bit prescaler)					
		Timer mode (period timer), programmable waveform generation mode (PWM					
		output), programmable one-shot generation mode, programmable wait one-					
	T D 0	shot generation mode					
	Timer RC	16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode					
	Timer RD	(output 3 pins), PWM2 mode (PWM output pin)					
	Timer RD	16 bits x 2 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode					
		(output 6 pins), reset synchronous PWM mode (output three-phase					
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode					
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3					
		mode (PWM output 2 pins with fixed period)					

Table 1.3Specifications for R8C/2L Group (1)

Item	Function	Specification			
Serial	UART0, UART2	Clock synchronous serial I/O/UART × 2			
Interface					
LIN Module		Hardware LIN: 1 (timer RA, UART0)			
A/D Converter		10-bit resolution × 9 channels, includes sample and hold function			
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V 			
		 Programming and erasure endurance: 10,000 times (data flash) 			
		1,000 times (program ROM)			
		 Program security: ROM code protect, ID code check 			
		 Debug functions: On-chip debug, on-board flash rewrite function 			
Operating Free	luency/Supply	f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)			
Voltage		f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V) f(XIN) = 5 MHz (VCC = 2.2 to 5.5 V) (VCC = 2.7 to 5.5 V for A/D converter only)			
Current consur	nption	Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)			
		Typ. 6 mA (VCC = 3.0 V, $f(XIN) = 10 \text{ MHz})'$			
		Typ. 23 μ A (VCC = 3.0 V, wait mode, low-speed on-chip oscillator used) Typ. 0.7 μ A (VCC = 3.0 V, stop mode)			
Operating Amb	ient Temperature	-20 to 85°C (N version)			
		-40 to 85°C (D version) ⁽¹⁾			
		-20 to 105°C (Y version) ⁽²⁾			
Package		32-pin LQFP			
		Package code: PLQP0032GB-A (previous code: 32P6U-A)			

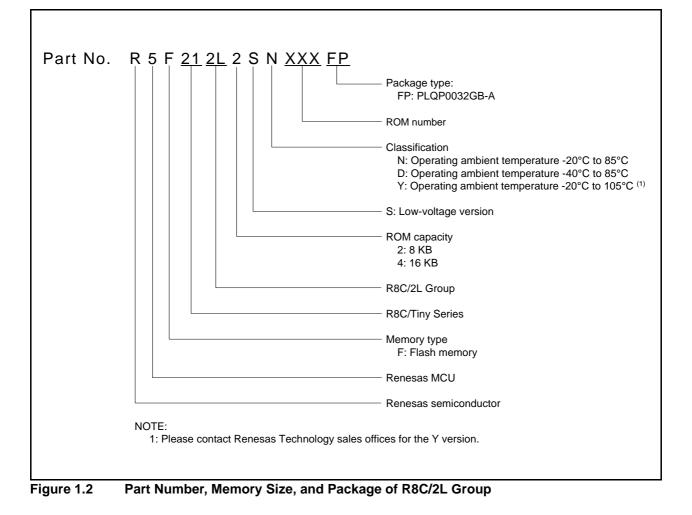
 Table 1.4
 Specifications for R8C/2L Group (2)

NOTES:

1. Specify the D version if D version functions are to be used.

2. Please contact Renesas Technology sales offices for the Y version.

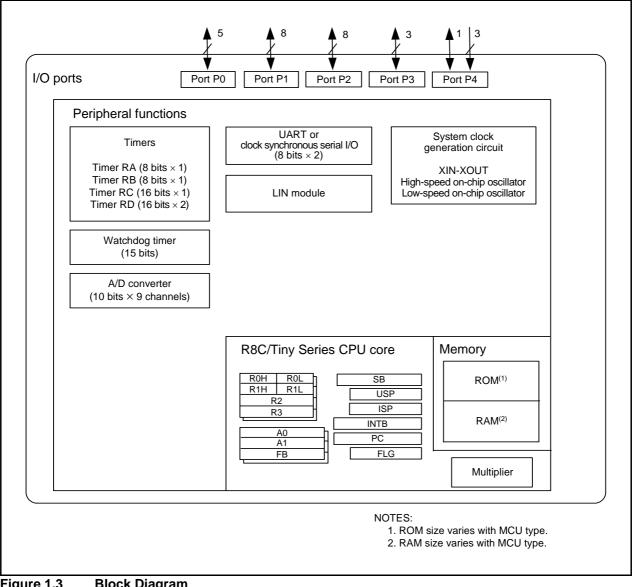
Part No.	ROM C	apacity	RAM	Package Type	Remarks
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remains
R5F212L2SNFP	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	N version
R5F212L4SNFP	16 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A	
R5F212L2SDFP	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	D version
R5F212L4SDFP	16 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A	
R5F212L2SNXXXFP (D)	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	N version
R5F212L4SNXXXFP (D)	16 Kbytes	1 Kbyte × 2	1.5 Kbytes	PLQP0032GB-A	Factory programming product ⁽¹⁾
R5F212L2SDXXXFP (D)	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	D version
R5F212L4SDXXXFP (D)	16 Kbytes	1 Kbyte × 2	1.5 Kbytes	PLQP0032GB-A	Factory programming product ⁽¹⁾

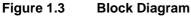

Table 1.6 Product List for R8C/2L Group

Current of Dec. 2007

(D): Under development

NOTE:


1. The user ROM is programmed before shipment.



RENESAS

1.3 **Block Diagram**

Figure 1.3 shows a Block Diagram.

RENESAS

Pin	Control Pin	ntrol Pin Port		I/O Pin Functions for of	Peripheral Module	S
Number		FUIL	Interrupt	Timer	Serial Interface	A/D Converter
1	VREF	P4_2				
2	MODE					
3	RESET					
4	XOUT	P4_7				
5	VSS/AVSS					
6	XIN	P4_6				
7	VCC/AVCC					
8		P3_3	INT3	TRCCLK		
9		P2_7		TRDIOD1		
10		P2_6		TRDIOC1		
11		P2_5		TRDIOB1		
12		P2_4		TRDIOA1		
13		P2_3		TRDIOD0		
14		P2_1		TRDIOB0		
15		P2_2		TRDIOC0		
16		P2_0		TRDIOA0/TRDCLK		
17		P4_5	INT0			
18		P1_7	INT1	TRAIO		
19		P1_6			CLK0	
20		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0	
21		P1_4			TXD0	
22		P1_3	KI3	TRBO		AN11
23		P1_2	KI2	TRCIOB		AN10
24		P1_1	KI1	TRCIOA/TRCTRG		AN9
25		P1_0	KI0			AN8
26		P3_4		TRCIOC		
27		P3_5		TRCIOD		
28		P0_5				AN2
29		P0_3			CLK2	AN4
30		P0_2			RXD2	AN5
31		P0_1			TXD2	AN6
32		P0_0				AN7

 Table 1.7
 Pin Name Information by Pin Number

NOTE:

1. Can be assigned to the pin in parentheses by a program.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

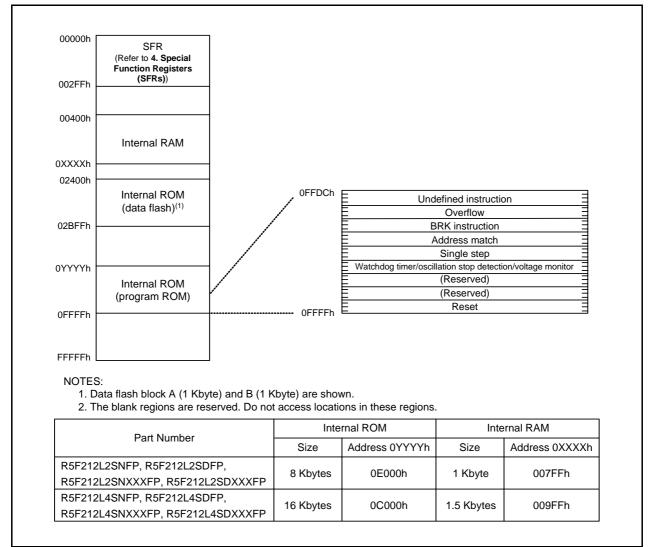
IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/2L Group

Figure 3.2 is a Memory Map of R8C/2L Group. The R8C/2L Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1.5-Kbyte internal RAM is allocated addresses 00400h to 009FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Address	Register	Symbol	After reset
0040h		Gymbol	7110110301
0040H			
004111 0042h			
0042h 0043h			
0044h			
0045h			
0046h		75.010	
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h	Timer RD0 Interrupt Control Register	TRD0IC	XXXXX000b
0049h	Timer RD1 Interrupt Control Register	TRD1IC	XXXXX000b
004Ah			
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh			
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h			
0054h			
0055h			
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch			
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h			
0073h			
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			
Y: Undofined			

SFR Information (2)⁽¹⁾ Table 4.2

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

5. Electrical Characteristics

The electrical characteristics of N version (Topr = -20° C to 85° C) and D version (Topr = -40° C to 85° C) are listed below.

Please contact Renesas Technology sales offices for the electrical characteristics in the Y version (Topr = -20° C to 105° C).

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Topr = 25°C	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Cumbal	Deremeter	Conditions		Linit		
Symbol	Resc/2L Group1,000(3)timeByte program time-50400µsBlock erase time-0.49sTime delay from suspend request until suspend97+CPU clock × 6 cyclesµsInterval from erase start/restart until following suspend request650Interval from program start/restart until following suspend request0nsTime from suspend until program/erase restart3+CPU clock x 4 cyclesµsProgram, erase voltage2.7-5.5VRead voltage2.2-5.5V	Unit				
_	Program/erase endurance ⁽²⁾	R8C/2K Group	100 ⁽³⁾	-	-	times
		R8C/2L Group	1,000(3)	-	-	times
-	Byte program time		-	50	400	μS
_	Block erase time		-	0.4	9	S
td(SR-SUS)			-	-		μS
-			650	-	_	μS
-	1 0		0	-	_	ns
_			-	-		μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	_	5.5	V
_	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

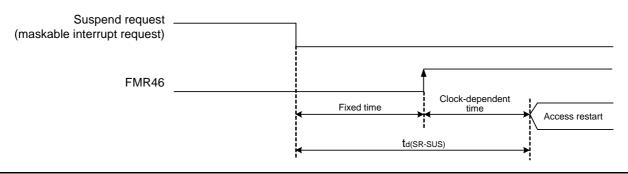


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Faiallielei	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	_	_	V

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

	Parameter	Condition	Standard			Unit
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ⁽⁴⁾		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

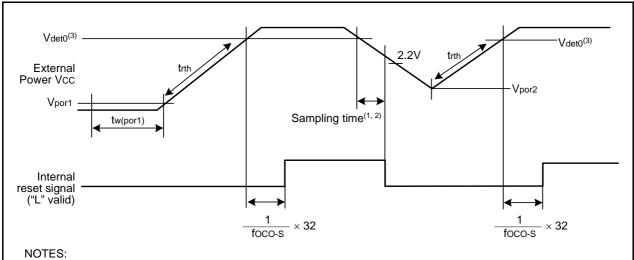

Symbol	Parameter	Condition		Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

Table 5.9 Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics
--

NOTES:

1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.

- 2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. $t_{w(por1)}$ indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain $t_{w(por1)}$ for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain $t_{w(por1)}$ for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to **6. Voltage Detection Circuit** for details.

Figure 5.3 Reset Circuit Electrical Characteristics

Symbol	Parameter	Star	Standard		
	Parameter		Max.	Unit	
tc(CK)	CLKi input cycle time	200	-	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0, 2

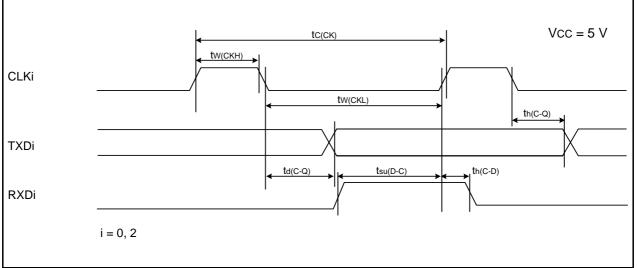
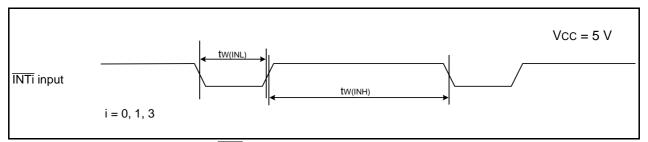


Figure 5.6 Serial Interface Timing Diagram when Vcc = 5 V


Table 5.19 External Interrupt INTi (i = 0, 1, 3) Input

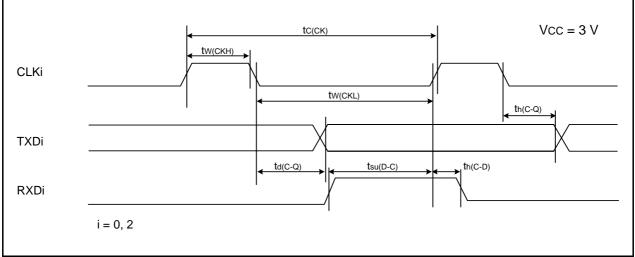
Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width	250(1)	-	ns	
tw(INL)	INTi input "L" width	250 ⁽²⁾	-	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Symbol	Parameter		Cond	lition	S	tandard		Unit	
Symbol	Pala	inelei	Cond	illion	Min.	Тур.	Max.	ζ.	
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	_	Vcc	V	
		P2_0 to P2_7	Drive capacity HIGH	Iон = -5 mA	Vcc - 0.5	-	Vcc	V	
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	-	Vcc	V	
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	-	Vcc	V	
			Drive capacity LOW	Іон = –50 μА	Vcc - 0.5	_	Vcc	V	
VoL Outp	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA	·	-	-	0.5	V	
		P2_0 to P2_7	Drive capacity HIGH	IOL = 5 mA	-	-	0.5	V	
			Drive capacity LOW	IOL = 1 mA	-	-	0.5	V	
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	-	-	0.5	V	
			Drive capacity LOW	IOL = 50 μA	-	-	0.5	V	
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD2, CLK0, CLK2			0.1	0.3	-	V	
		RESET			0.1	0.4	-	V	
Ін	Input "H" current		VI = 3 V, Vcc = 3	V	-	_	4.0	μA	
lı∟	Input "L" current		VI = 0 V, Vcc = 3	V	-	-	-4.0	μA	
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3	V	66	160	500	kΩ	
RfXIN	Feedback resistance	XIN			-	3.0	-	MΩ	
Vram	RAM hold voltage		During stop mode	e	1.8	-	-	V	


 Table 5.20
 Electrical Characteristics (1) [Vcc = 3 V]

NOTE:

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Symbol	Parameter	Sta	Standard		
		Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tw(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0, 2

Table 5.25 External Interrupt INTi (i = 0, 1, 3) Input

Svmbol	Parameter		Standard		
Symbol	Falanielei	Min.	Max.	Unit	
tw(INH)	INTi input "H" width	380 ⁽¹⁾	-	ns	
tw(INL)	INTi input "L" width	380(2)	_	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

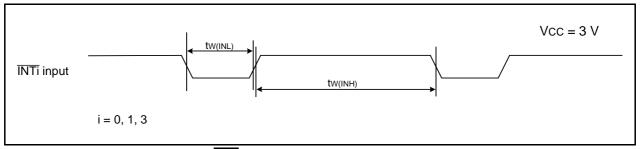
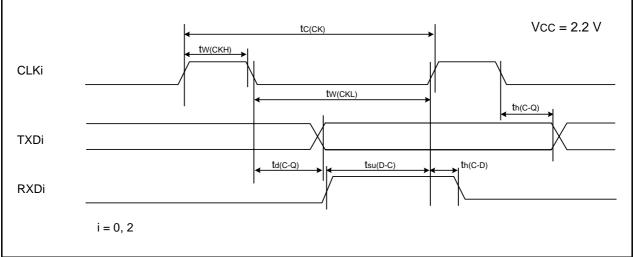


Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Table 5.27Electrical Characteristics (2) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)


Symbol Parameter		Condition		Standar	b	Unit	
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	20	55	μΑ
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.7	3.0	μΑ
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	1.1	_	μΑ


RENESAS

Table 5.30 S	erial Interface
--------------	-----------------

Symbol	Parameter	Star	Standard		
	Parameter		Max.	Unit	
tc(CK)	CLKi input cycle time	800	-	ns	
tw(CKH)	CLKi input "H" width	400	-	ns	
tW(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0, 2

Table 5.31 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(INH)	INTi input "H" width	1000(1)	-	ns
tw(INL)	INTi input "L" width	1000(2)	-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

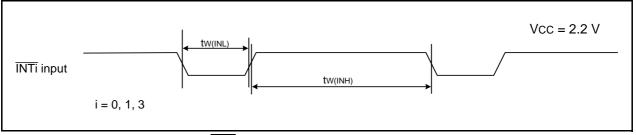


Figure 5.15 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V