

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212k4syfp-v2

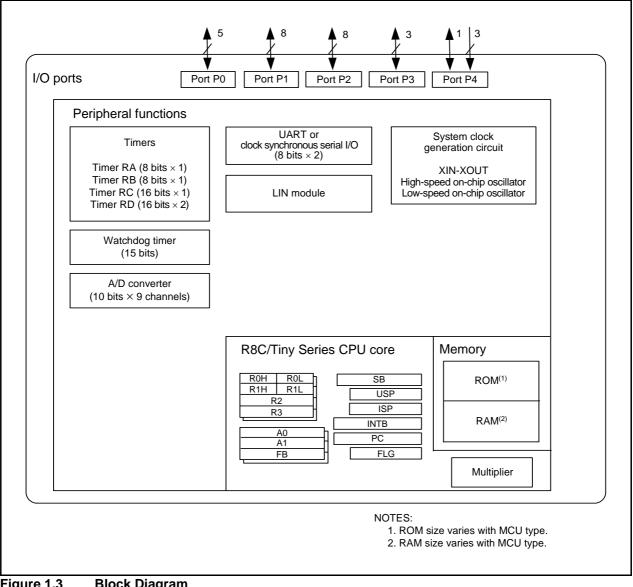
Email: info@E-XFL.COM

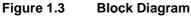
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item Function Specification Serial UART0, UART2 Clock synchronous serial I/O/UART × 2 Interface Hardware LIN: 1 (timer RA, UART0)
Interface
LIN Modulo Hardware LIN: 1 (timor PA LIAPTO)
A/D Converter 10-bit resolution × 9 channels, includes sample and hold function
Flash Memory • Programming and erasure voltage: VCC = 2.7 to 5.5 V
 Programming and erasure endurance: 100 times
 Program security: ROM code protect, ID code check
 Debug functions: On-chip debug, on-board flash rewrite function
Operating Frequency/Supply f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V)
Voltage $f(XIN) = 10 \text{ MHz} (VCC = 2.7 \text{ to } 5.5 \text{ V})$
f(XIN) = 5 MHz (VCC = 2.2 to 5.5 V) (VCC = 2.7 to 5.5 V for A/D converter
Current consumption Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)
Typ. 23 μ A (VCC = 3.0 V, wait mode, low-speed on-chip oscillator used)
Typ. 0.7 μA (VCC = 3.0 V, stop mode)
Operating Ambient Temperature -20 to 85°C (N version)
-40 to 85°C (D version) ⁽¹⁾
-20 to 105°C (Y version) ⁽²⁾
Package 32-pin LQFP
 Package code: PLQP0032GB-A (previous code: 32P6U-A)

 Table 1.2
 Specifications for R8C/2K Group (2)

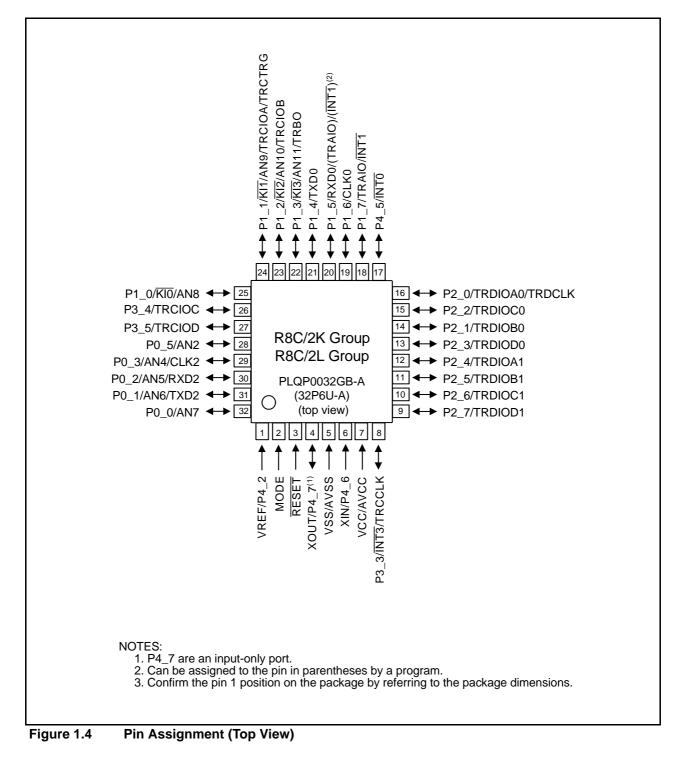
NOTES:


1. Specify the D version if D version functions are to be used.


2. Please contact Renesas Technology sales offices for the Y version.

1.3 **Block Diagram**

Figure 1.3 shows a Block Diagram.



RENESAS

1.4 Pin Assignment

Figure 1.4 shows the Pin Assignment (Top View). Table 1.7 outlines the Pin Name Information by Pin Number.

Pin Functions 1.5

Table 1.8 lists Pin Functions.

Table 1.8 **Pin Functions**

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	-	Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	-	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	0	the XIN and XOUT pins ⁽¹⁾ . To use an external clock, input it to the XIN pin and leave the XOUT pin open.
INT interrupt input	INTO, INT1, INT3	I	INT interrupt input pins. INT0 is timer RB, timer RC and timer RD input pins.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O pins
	TRDCLK	I	External clock input pin
Serial interface	CLK0, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD2	I	Serial data input pins
	TXD0, TXD2	0	Serial data output pins
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN2, AN4 to AN11	I	Analog input pins to A/D converter
I/O port	P0_0 to P0_3, P0_5, P1_0 to P1_7, P2_0 to P2_7, P3_3 to P3_5, P4_5,	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P2_0 to P2_7 also function as LED drive ports.
Input port	P4_2, P4_6, P4_7	I	Input-only ports

I: Input O: Output

NOTE:

I/O: Input and output

1. Refer to the oscillator manufacturer for oscillation characteristics.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

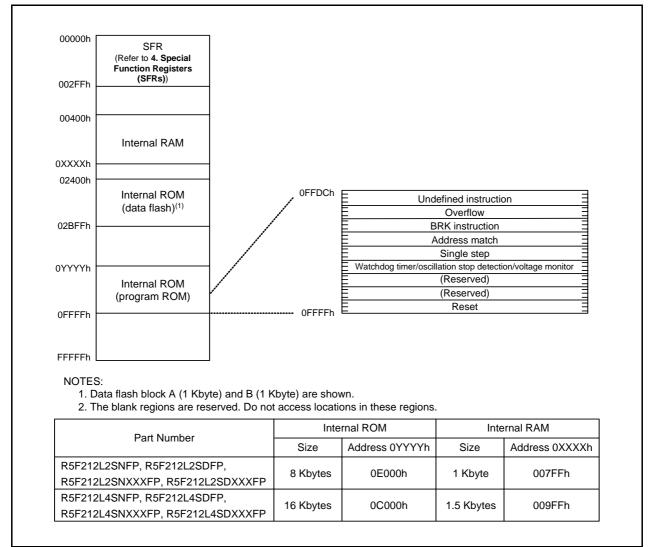
IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/2L Group

Figure 3.2 is a Memory Map of R8C/2L Group. The R8C/2L Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1.5-Kbyte internal RAM is allocated addresses 00400h to 009FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Address	Register	Symbol	After reset
0180h		0,11001	/
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h		1	
0193h			
0194h		1	
0195h		1	
0196h			
0197h		1	
0198h		1	
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			1
01B0h			1
01B1h			
01B2h			
01B3h	Flash Memory Control Register 4	FMR4	0100000b
01B3h		1 101117	01000000
01B4h	Flash Memory Control Register 1	FMR1	100000Xb
01B6h		1 1011 1	100000/05
01B0h	Flash Memory Control Register 0	FMR0	0000001b
01B8h		1 101110	00000015
01B9h			
01BAh			1
01BAn 01BBh			
01BBh 01BCh			
01BCh 01BDh			
01BEh			
01BFh		l	
	Ontion Eurotion Salast Deviator		(Nata 2)
FFFFh	Option Function Select Register	OFS	(Note 2)

SFR Information (7)⁽¹⁾ Table 4.7

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
The OFS register cannot be changed by a program. Use a flash programmer to write to it.

Symbol		Parameter	Conditions		Standard		Unit
Symbol		arameter	Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage			2.2	-	5.5	V
AVcc	Supply voltage			2.7	-	5.5	
Vss/AVss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H"	Except P2_0 to P2_7		-	-	-10	mA
	current	P2_0 to P2_7		-	-	-40	mA
IOH(avg)	Average output	Except P2_0 to P2_7		-	-	-5	mA
	"H" current	P2_0 to P2_7		-	-	-20	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L"	Except P2_0 to P2_7		-	-	10	mA
	currents	P2_0 to P2_7		-	-	40	mA
IOL(avg)	Average output	Except P2_0 to P2_7		-	-	5	mA
	"L" current	P2_0 to P2_7		-	-	20	mA
f(XIN)	XIN clock input os	cillation frequency	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
			$2.2~V \leq Vcc < 2.7~V$	0	-	5	MHz
-	System clock	OCD2 = 0	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
		XIN clock selected	$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
			$2.2~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0	-	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	_	kHz
			$\begin{tabular}{l} FRA01 = 1 \\ High-speed on-chip \\ oscillator clock selected \\ 3.0 \ V \le Vcc \le 5.5 \ V \end{tabular}$	-	_	20	MHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.7 V} \le Vcc \le 5.5 \ V \end{array}$	_	-	10	MHz
			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	-	_	5	MHz

Recommended Operating Conditions Table 5.2

NOTES:

1. Vcc = 2.2 to 5.5 V at $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. The average output current indicates the average value of current measured during 100 ms.

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
_	Program/erase endurance ⁽²⁾	R8C/2K Group	100 ⁽³⁾	-	-	times
		R8C/2L Group	1,000(3)	-	-	times
-	Byte program time		-	50	400	μS
_	Block erase time		-	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	_	μS
-	Interval from program start/restart until following suspend request		0	-	_	ns
_	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	_	5.5	V
_	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Cumbal	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		-	50	400	μs
-	Byte program time (program/erase endurance > 1,000 times)		-	65	-	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	9	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	_	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	-	μs
-	Interval from program start/restart until following suspend request		0	_	-	ns
-	Time from suspend until program/erase restart		-	_	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. -40°C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

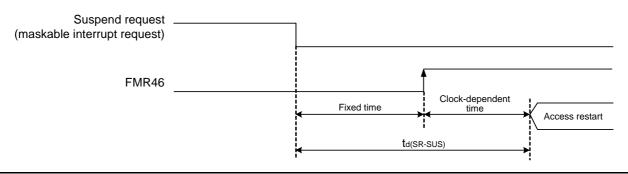


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol Parameter		Condition		Unit		
Symbol	Faiallielei	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	_	_	V

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ⁽⁴⁾		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol Parameter		Condition		Unit		
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

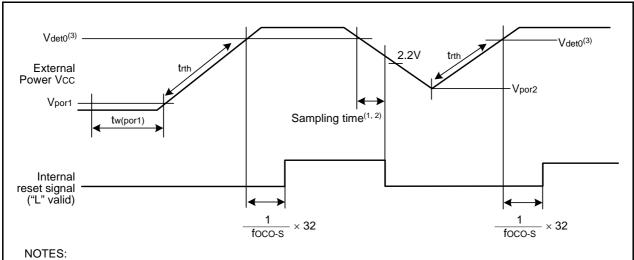

Symbol	Parameter	Condition		Standard		Unit
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

Table 5.9 Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics
--

NOTES:

1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.

- 2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. $t_{w(por1)}$ indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain $t_{w(por1)}$ for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain $t_{w(por1)}$ for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit for details.
- 3. Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to **6. Voltage Detection Circuit** for details.

Figure 5.3 Reset Circuit Electrical Characteristics

Symbol	Parameter	Condition		Standard			
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit	
fOCO40M	High-speed on-chip oscillator frequency	Vcc = 2.7 V to 5.5 V	39.2	40	40.8	MHz	
	temperature • supply voltage dependence	$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$					
		Vcc = 2.7 V to 5.5 V	39.0	40	41.0	MHz	
		$-40^\circ C \leq T_{opr} \leq 85^\circ C^{(2)}$					
		Vcc = 2.2 V to 5.5 V	35.2	40	44.8	MHz	
		$-20^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(3)}$					
		Vcc = 2.2 V to 5.5 V	34.0	40	46.0	MHz	
		$-40^\circ C \leq T_{opr} \leq 85^\circ C^{(3)}$					
	High-speed on-chip oscillator frequency when	Vcc = 5.0 V, Topr = 25°C	-	36.864	-	MHz	
	correction value in FRA7 register is written to	Vcc = 2.7 V to 5.5 V	-3%	-	3%	%	
	FRA1 register ⁽⁴⁾	$-20^{\circ}C \le T_{opr} \le 85^{\circ}C$					
-	Value in FRA1 register after reset		08h	-	F7h	-	
_	Oscillation frequency adjustment unit of high- speed on-chip oscillator	Adjust FRA1 register (value after reset) to -1	-	+0.3	_	MHz	
-	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	-	10	100	μs	
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	550	-	μΑ	

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

NOTES:

1. Vcc = 2.2 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. These standard values show when the FRA1 register value after reset is assumed.

3. These standard values show when the corrected value of the FRA6 register is written to the FRA1 register.

4. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
-	Oscillation stability time		-	10	100	μS
-	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	15	-	μA

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.12 **Power Supply Circuit Timing Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	T alanciel	Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μS
td(R-S)	STOP exit time ⁽³⁾		1	_	150	μS

RENESAS

NOTES:

The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
 Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

Table 5.14	Electrical Characteristics (2) [Vcc = 5 V]
	(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard	ł	Unit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	10	17	mA
	Single-chip mode, output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μA

Rev.1.10 Dec 21, 2007 Page 33 of 45 **REJ03B0219-0110**

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.16 XIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
twl(XIN)	XIN input "L" width	25	-	ns	

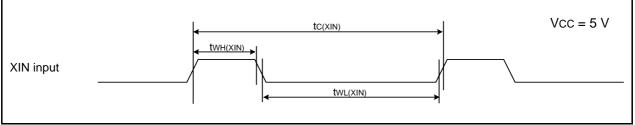


Figure 5.4 XIN Input Timing Diagram when Vcc = 5 V

Table 5.17 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

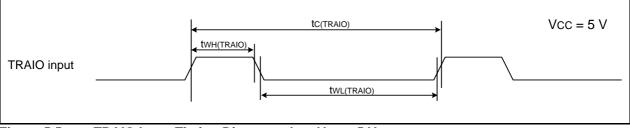


Figure 5.5 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.21Electrical Characteristics (2) [Vcc = 3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard	t	Unit
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	_	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5	9	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
	Low-speed XIN clock off on-chip High-speed on-chip oscillator	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz	_	130	300	μA	
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	55	μΑ
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		0.7	3.0	μA
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	_	μA

RENESAS

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.22 XIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	

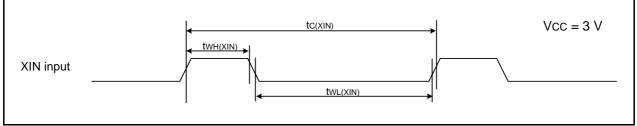


Figure 5.8 XIN Input Timing Diagram when Vcc = 3 V

Table 5.23 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	=	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width	120	-	ns	

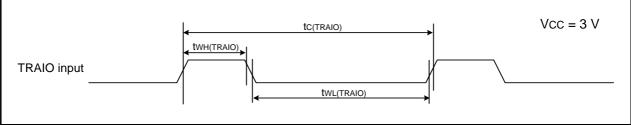


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V

Symbol	Doro	ameter	Conc	dition	S	tandard		Unit
Symbol	Fdia	ameter	Conc		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	—	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Iон = −2 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = –50 μА	Vcc - 0.5	—	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA		-	—	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IOL = 2 mA	-	—	0.5	V
			Drive capacity LOW	IOL = 1 mA	-	—	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	IOL = 50 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD2, CLK0, CLK2			0.05	0.3	_	V
		RESET			0.05	0.15	-	V
Ін	Input "H" current		VI = 2.2 V		-	-	4.0	μA
lı∟	Input "L" current		VI = 0 V		-	_	-4.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V		100	200	600	kΩ
RfXIN	Feedback resistance	XIN			-	5	-	MΩ
Vram	RAM hold voltage		During stop mode	e	1.8	-	-	V

 Table 5.26
 Electrical Characteristics (1) [Vcc = 2.2 V]

NOTE:

1. Vcc = 2.2 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Table 5.27Electrical Characteristics (2) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standar	b	Unit
Symbol	Falameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	20	55	μΑ
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	0.7	3.0	μΑ
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	1.1	_	μΑ

RENESAS

REVISION	HIGTORY
REVISION	NISIORI

R8C/2K Group, R8C/2L Group Datasheet

Rev.	Date	Description	
		Page	Summary
0.10	Jul 20, 2007	-	First Edition issued
1.00	Nov 07, 2007	All pages	"Preliminary" deleted
		3, 5	Table 1.2, Table 1.4;
			Current consumption: "TBD" \rightarrow "Typ. 10 mA" "Typ. 6 mA" "Typ. 2.0 μ A" "Typ. 0.7 μ A" revised
		6, 7	Table 1.5, Table 1.6 revised Figure 1.1, Figure 1.2; ROM number "XXX" added, NOTE1 added
		20	Table 4.4 "005Fh" "006Fh" "007Fh" "008Fh" added
		24	Table 5.2 NOTE2 revised
		32, 33	Table 5.14, Table 5.15 revised
		37, 41	Table 5.21, Table 5.27 revised
1.10	Dec 21, 2007	3, 5	Table 1.2, Table 1.4; revised, NOTE2 added
		6, 7	Figure 1.1, Figure 1.2; "Y: Operating ambient", NOTE1 added
		15, 16	Figure 3.1, Figure 3.2; "Expanded area" deleted
		17	Table 4.1 "002Ch" added, "003Bh" "003Ch" "003Dh" deleted
		20	Table 4.4 "00D4h" "00D6h" revised
		22	Table 4.6 "0143h" revised
		24	5. "The electrical characteristics" added
		31	Table 5.10 Symbol "fOCO40M": Parameter added, NOTE4 added

All trademarks and registered trademarks are the property of their respective owners.