

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	25
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212l2snfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outlines the Specifications for R8C/2K Group and Tables 1.3 and 1.4 outlines the Specifications for R8C/2L Group.

Table 1.1 Specifications for R8C/2K Group (1)

Item	Function	Specification
CPU	Central processing	R8C/Tiny series core
	unit	Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)
		Multiplier: 16 bits × 16 bits → 32 bits
		 Multiply-accumulate instruction: 16 bits x 16 bits + 32 bits → 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM	Refer to Table 1.5 Product List for R8C/2K Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3
Detection		
I/O Ports	Programmable I/O	Input-only: 3 pins
	ports	CMOS I/O ports: 25, selectable pull-up resistor
		High current drive ports: 8
Clock	Clock generation	2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
	circuits	On-chip oscillator (high-speed, low-speed)
		(high-speed on-chip oscillator has a frequency adjustment function)
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		• Low power consumption modes:
		Standard operating mode (high-speed clock, high-speed on-chip oscillator,
		low-speed on-chip oscillator), wait mode, stop mode
Interrupts		External: 4 sources, Internal: 15 sources, Software: 4 sources
monapio		Priority levels: 7 levels
Watchdog Tim	er	15 bits × 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)
111101		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits × 2 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3
		mode (PWM output 2 pins with fixed period)

1.2 Product List

Table 1.5 lists the Product List for R8C/2K Group, Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/2K Group, Table 1.6 lists the Product List for R8C/2L Group, and Figure 1.2 shows a Part Number, Memory Size, and Package of R8C/2L Group.

Table 1.5 Product List for R8C/2K Group

Current of Dec. 2007

Part No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F212K2SNFP	8 Kbytes	1 Kbyte	PLQP0032GB-A	N version
R5F212K4SNFP	16 Kbytes	1.5 Kbytes	PLQP0032GB-A	
R5F212K2SDFP	8 Kbytes	1 Kbyte	PLQP0032GB-A	D version
R5F212K4SDFP	16 Kbytes	1.5 Kbytes	PLQP0032GB-A	
R5F212K2SNXXXFP (D)	8 Kbytes	1 Kbyte	PLQP0032GB-A	N version
R5F212K4SNXXXFP (D)	16 Kbytes	1.5 Kbytes	PLQP0032GB-A	Factory programming product ⁽¹⁾
R5F212K2SDXXXFP (D)	8 Kbytes	1 Kbyte	PLQP0032GB-A	D version
R5F212K4SDXXXFP (D)	16 Kbytes	1.5 Kbytes	PLQP0032GB-A	Factory programming product ⁽¹⁾

(D): Under development

NOTE:

1. The user ROM is programmed before shipment.

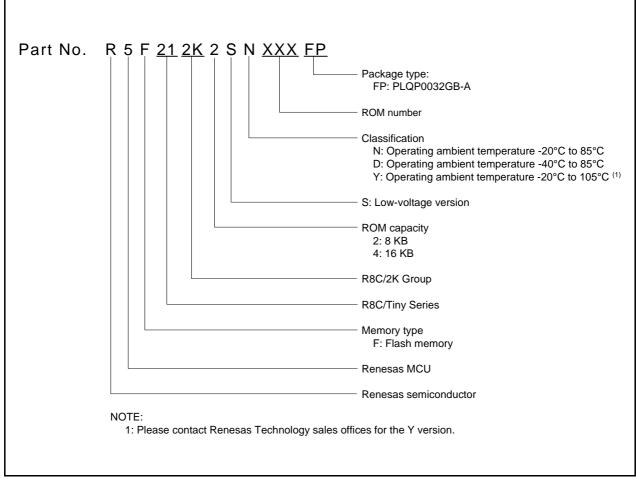


Figure 1.1 Part Number, Memory Size, and Package of R8C/2K Group

Table 1.6 Product List for R8C/2L Group

Current of Dec. 2007

Part No.	ROM Capacity		RAM	Package Type	Remarks
- arriver	Program ROM	Data flash	Capacity	r donago rypo	rtomanto
R5F212L2SNFP	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	N version
R5F212L4SNFP	16 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A	
R5F212L2SDFP	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	D version
R5F212L4SDFP	16 Kbytes	1 Kbyte x 2	1.5 Kbytes	PLQP0032GB-A	
R5F212L2SNXXXFP (D)	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	N version
R5F212L4SNXXXFP (D)	16 Kbytes	1 Kbyte × 2	1.5 Kbytes	PLQP0032GB-A	Factory programming product ⁽¹⁾
R5F212L2SDXXXFP (D)	8 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	D version
R5F212L4SDXXXFP (D)	16 Kbytes	1 Kbyte × 2	1.5 Kbytes	PLQP0032GB-A	Factory programming product ⁽¹⁾

(D): Under development

NOTE:

1. The user ROM is programmed before shipment.

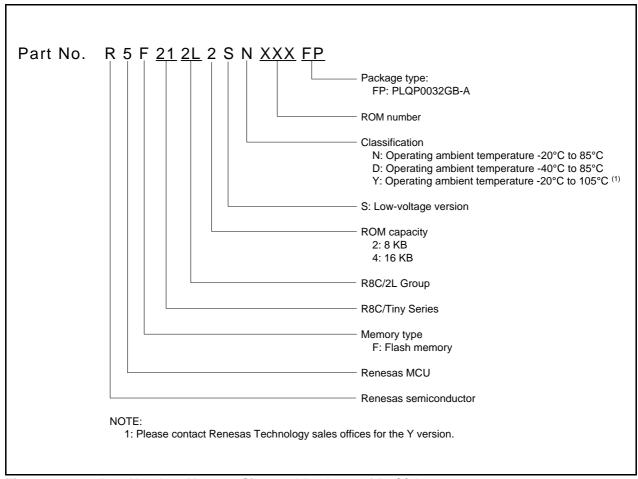


Figure 1.2 Part Number, Memory Size, and Package of R8C/2L Group

Table 1.7 Pin Name Information by Pin Number

Pin	Control Pin	Port	I/O Pin Functions for of Peripheral Modules				
Number	Control Pin	Polt	Interrupt	Timer	Serial Interface	A/D Converter	
1	VREF	P4_2					
2	MODE						
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC/AVCC						
8		P3_3	ĪNT3	TRCCLK			
9		P2_7		TRDIOD1			
10		P2_6		TRDIOC1			
11		P2_5		TRDIOB1			
12		P2_4		TRDIOA1			
13		P2_3		TRDIOD0			
14		P2_1		TRDIOB0			
15		P2_2		TRDIOC0			
16		P2_0		TRDIOA0/TRDCLK			
17		P4_5	ĪNT0				
18		P1_7	INT1	TRAIO			
19		P1_6			CLK0		
20		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0		
21		P1_4			TXD0		
22		P1_3	KI3	TRBO		AN11	
23		P1_2	KI2	TRCIOB		AN10	
24		P1_1	KI1	TRCIOA/TRCTRG		AN9	
25		P1_0	KI0			AN8	
26		P3_4		TRCIOC			
27		P3_5		TRCIOD			
28		P0_5				AN2	
29		P0_3			CLK2	AN4	
30		P0_2			RXD2	AN5	
31		P0_1			TXD2	AN6	
32		P0_0				AN7	

1. Can be assigned to the pin in parentheses by a program.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 **Interrupt Table Register (INTB)**

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 **Program Counter (PC)**

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1.

The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/2L Group

Figure 3.2 is a Memory Map of R8C/2L Group. The R8C/2L Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1.5-Kbyte internal RAM is allocated addresses 00400h to 009FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

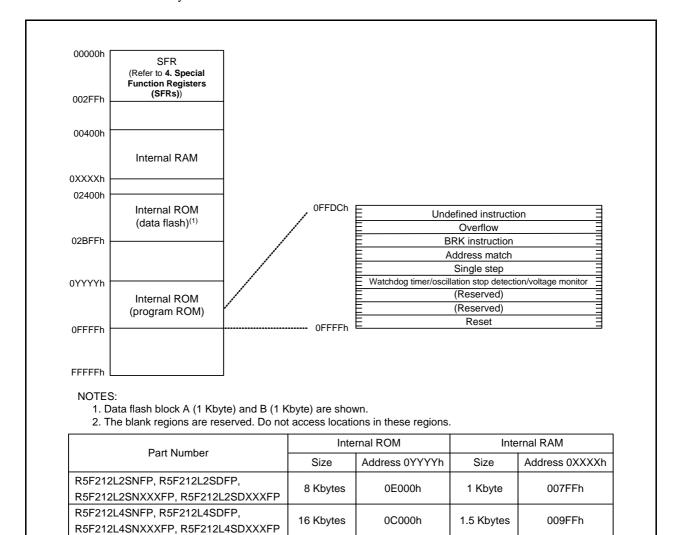


Figure 3.2 Memory Map of R8C/2L Group

SFR Information (2)⁽¹⁾ Table 4.2

Address	Register	Symbol	After reset
0040h			
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h	Timer RD0 Interrupt Control Register	TRD0IC	XXXXX000b
0049h	Timer RD1 Interrupt Control Register	TRD1IC	XXXXX000b
004Ah			
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Eh	77D CONVERSION INTERPRETATION REGISTER	7 IBIO	7000000000
0050h		+	
0050H	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0051h	UARTO Transmit interrupt Control Register	SORIC	XXXXX000b
0052H	Oractio receive interrupt Control register	SUNIC	AAAAA000D
0053h			
0055h			
0056h	Timor PA Interrupt Control Pogister	TRAIC	XXXXX000b
	Timer RA Interrupt Control Register	TRAIC	AAAAAUUD
0057h	Times DD Intervent Control Degister	TDDIO	VVVVVOCCE
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh			
005Ch			
005Dh	INT0 Interrupt Control Register	INT0IC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah		1	
006Bh		1	
006Ch		1	
006Dh			
006Eh		1	
006Fh			
0070h		<u> </u>	<u> </u>
0071h		<u> </u>	<u> </u>
0071h		+	
0072h		+	
0074h		-	
0075h			-
0075h		+	+
0077h		+	+
007711 0078h			
0078h			
0079h			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh	1	1	1

X: Undefined
NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

SFR Information (3)⁽¹⁾ Table 4.3

Address	Register	Symbol	After reset
0080h	rtegister	Gymbol	Aitel Teset
0081h			
0081H			
0082h			
0084h			
0085h			
0086h			
0087h 0088h			
0089h			
008Ah			
008Bh			
008Ch			
008Dh			
008Eh			
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
		0010	70/01
00A3h		0016	XXh
00A3h 00A4h	UART0 Transmit/Receive Control Register 0	U0C0	XXh 00001000b
00A3h 00A4h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1		XXh 00001000b 00000010b
00A3h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h	UART0 Transmit/Receive Control Register 0	U0C0 U0C1	XXh 00001000b 00000010b
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh 00AEh 00AFh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh 00AEh 00AEh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh 00AEh 00AEh 00B1h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ADh 00AFh 00B0h 00B1h 00B2h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ACh 00ACh 00ACh 00AFh 00B1h 00B2h 00B3h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A9h 00AAh 00ACh 00ACh 00ACh 00B1h 00B2h 00B2h 00B3h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00AFh 00B6h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00AEh 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00AFh 00B6h 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ACh 00ACh 00ACh 00ACh 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B6h 00B7h 00B8h 00B9h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B8h 00B8h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00B1h 00B1h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B8h 00BAh 00BBh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00B1h 00B2h 00B3h 00B4h 00B5h 00B6h 00B7h 00B8h 00B9h 00BAh 00BAh 00BAh	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh
00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00B1h 00B2h 00B3h 00B5h 00B6h 00B7h 00B8h 00B8h 00B8h 00B8h 00B8h	UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0C0 U0C1	XXh 00001000b 00000010b XXh

X: Undefined
NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Recommended Operating Conditions Table 5.2

Symbol	Parameter		Conditions		Standard		Unit
Symbol	'	rafametei	Conditions	Min.	Тур.	Max.	Oill
Vcc	Supply voltage			2.2	-	5.5	V
AVcc	Supply voltage			2.7	-	5.5	
Vss/AVss	Supply voltage			-	0	-	V
VIH	Input "H" voltage			0.8 Vcc	_	Vcc	V
VIL	Input "L" voltage			0	_	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		=	=	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	_	-80	mA
IOH(peak)	Peak output "H"	Except P2_0 to P2_7		_	_	-10	mA
	current	P2_0 to P2_7		-	-	-40	mA
IOH(avg)	Average output	Except P2_0 to P2_7		-	-	-5	mA
	"H" current	P2_0 to P2_7		_	=	-20	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L"	Except P2_0 to P2_7		-	-	10	mA
	currents	P2_0 to P2_7		-	=	40	mA
IOL(avg)	Average output	Except P2_0 to P2_7		-	=	5	mA
	"L" current	P2_0 to P2_7		-	=	20	mA
f(XIN)	XIN clock input oscillation frequency		3.0 V ≤ Vcc ≤ 5.5 V	0	_	20	MHz
	·		2.7 V ≤ Vcc < 3.0 V	0	-	10	MHz
			2.2 V ≤ Vcc < 2.7 V	0	=	5	MHz
_	System clock	OCD2 = 0	3.0 V ≤ Vcc ≤ 5.5 V	0	=	20	MHz
		XIN clock selected	2.7 V ≤ Vcc < 3.0 V	0	=	10	MHz
			2.2 V ≤ Vcc < 2.7 V	0	=	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	=	kHz
		SSIGGE	FRA01 = 1 High-speed on-chip oscillator clock selected 3.0 V ≤ Vcc ≤ 5.5 V	_	-	20	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected 2.7 V ≤ Vcc ≤ 5.5 V	_	-	10	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected 2.2 V ≤ Vcc ≤ 5.5 V	_	=	5	MHz

Vcc = 2.2 to 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Cymphal	Dorometer	Conditions		Unit			
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
_	Program/erase endurance ⁽²⁾	R8C/2K Group	100(3)	-	-	times	
		R8C/2L Group	1,000(3)	-	-	times	
-	Byte program time		ī	50	400	μS	
_	Block erase time		=	0.4	9	S	
td(SR-SUS)	Time delay from suspend request until suspend		-	_	97+CPU clock × 6 cycles	μS	
_	Interval from erase start/restart until following suspend request		650	_	_	μS	
=	Interval from program start/restart until following suspend request		0	=	-	ns	
_	Time from suspend until program/erase restart		-	_	3+CPU clock × 4 cycles	μS	
_	Program, erase voltage		2.7	-	5.5	V	
-	Read voltage		2.2	-	5.5	V	
_	Program, erase temperature		0	-	60	°C	
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	=	=	year	

- NOTES:

 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.
 - 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics(4)

Symbol	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
_	Program/erase endurance ⁽²⁾		10,000(3)	-	-	times
_	Byte program time (program/erase endurance ≤ 1,000 times)		_	50	400	μS
_	Byte program time (program/erase endurance > 1,000 times)		_	65	_	μS
_	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	9	S
_	Block erase time (program/erase endurance > 1,000 times)		_	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		=	-	97+CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	-	-	ns
_	Time from suspend until program/erase restart		_	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		2.2	_	5.5	V
=	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	_	-	year

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 8. -40°C for D version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

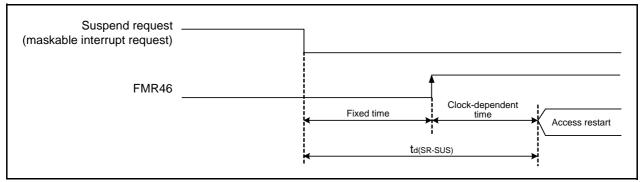


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		=	=	300	μS
Vccmin	MCU operating voltage minimum value		2.2	=	=	V

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Syllibol	Faranietei	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ⁽⁴⁾		2.70	2.85	3.00	V
=	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	_	μS
=	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	=	0.6	=	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 4. This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	_	μS
=	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	=	0.6	=	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		=	=	100	μ\$

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- $2. \quad \text{Time until the voltage monitor 2 interrupt request is generated after the voltage passes $V_{\text{det}2}$.}$
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Cumbal	Parameter	Condition		Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fOCO40M	High-speed on-chip oscillator frequency temperature • supply voltage dependence	Vcc = 2.7 V to 5.5 V -20°C \le Topr \le 85°C ⁽²⁾	39.2	40	40.8	MHz
		Vcc = 2.7 V to 5.5 V -40° C \leq Topr \leq 85 $^{\circ}$ C ⁽²⁾	39.0	40	41.0	MHz
		Vcc = 2.2 V to 5.5 V -20° C \leq Topr \leq 85 $^{\circ}$ C ⁽³⁾	35.2	40	44.8	MHz
		Vcc = 2.2 V to 5.5 V -40° C \leq Topr \leq 85 $^{\circ}$ C ⁽³⁾	34.0	40	46.0	MHz
	High-speed on-chip oscillator frequency when	Vcc = 5.0 V, Topr = 25°C	_	36.864	_	MHz
	correction value in FRA7 register is written to FRA1 register ⁽⁴⁾	Vcc = 2.7 V to 5.5 V -20°C ≤ Topr ≤ 85°C	-3%	=	3%	%
_	Value in FRA1 register after reset		08h	_	F7h	-
_	Oscillation frequency adjustment unit of high- speed on-chip oscillator	Adjust FRA1 register (value after reset) to -1	-	+0.3	-	MHz
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	_	10	100	μS
=	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	550	_	μΑ

- Vcc = 2.2 to 5.5 V, T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
 These standard values show when the FRA1 register value after reset is assumed.
- 3. These standard values show when the corrected value of the FRA6 register is written to the FRA1 register.
- 4. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
_	Oscillation stability time		=	10	100	μS
=	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	15	-	μΑ

NOTE:

1. Vcc = 2.2 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	,	d	Unit	
Symbol	r alametel	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
- Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

Table 5.14 Electrical Characteristics (2) [Vcc = 5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter Condition	Standard			Unit		
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unii
Icc	current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	10	17	mA
	Single-chip mode, output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4		mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5		mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	10	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	4	=	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μА

Table 5.15 Electrical Characteristics (3) [Vcc = 5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Cumbal	Parameter		Condition		Standard	d	Unit
Symbol	TIDOT T ATAITIGE CONTUINOT	Condition	Min.	Тур.	Max.	Offic	
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open, other pins	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	75	μА
are Vss		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	23	60	μА	
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	=	0.8	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	1.2	-	μΑ

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.16 XIN Input

Symbol	Parameter	Stan	Unit	
Symbol	Faranietei	Min.	Max.	Offic
tc(XIN)	(IN input cycle time 50 –			
twh(xin)	XIN input "H" width	-	ns	
twl(xin)	XIN input "L" width 25 –			

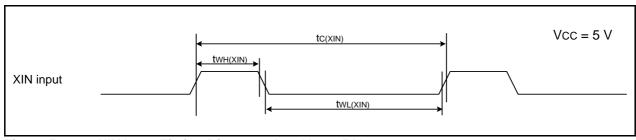


Figure 5.4 XIN Input Timing Diagram when Vcc = 5 V

Table 5.17 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time 100 –			
tWH(TRAIO)	TRAIO input "H" width 40 –			
tWL(TRAIO)	TRAIO input "L" width 40 –			

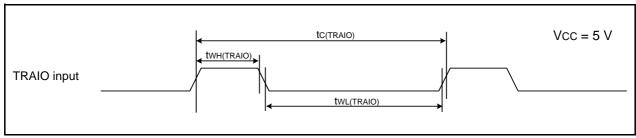


Figure 5.5 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.27 Electrical Characteristics (2) [Vcc = 2.2 V] $(Topr = -20 \text{ to } 85^{\circ}\text{C (N version)} / -40 \text{ to } 85^{\circ}\text{C (D version)}, \text{ unless otherwise specified.})$

Symbol	Parameter		Condition		Standar	d	Unit
Symbol	Farameter		Condition	Min.	Тур.	Max.	5
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open.	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	_	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μА
	Wait n	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	20	55	μΑ
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.7	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	_	μА

Timing requirements

(Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at $Topr = 25^{\circ}C$) [Vcc = 2.2 V]

Table 5.28 XIN Input

Symbol	Parameter	Stan	Standard	
Symbol	Falanielei	Min.	Max.	Unit
tc(XIN)	XIN input cycle time	-	ns	
twh(xin)	XIN input "H" width	90	-	ns
twl(XIN)	XIN input "L" width	90	-	ns

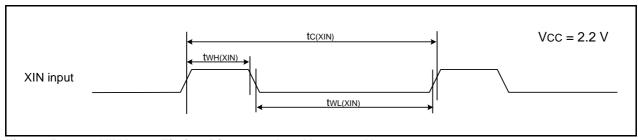


Figure 5.12 XIN Input Timing Diagram when Vcc = 2.2 V

Table 5.29 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time 500 -			
tWH(TRAIO)	TRAIO input "H" width 200 –			
tWL(TRAIO)	TRAIO input "L" width 200 -			

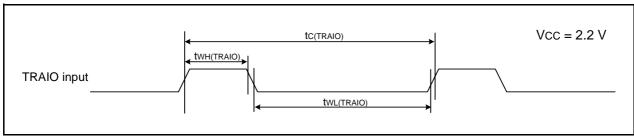


Figure 5.13 TRAIO Input Timing Diagram when Vcc = 2.2 V

REVISION HISTORY

R8C/2K Group, R8C/2L Group Datasheet

Rev.	Date		Description
IXEV.	Date	Page	Summary
0.10	Jul 20, 2007	_	First Edition issued
1.00	Nov 07, 2007	All pages	"Preliminary" deleted
		3, 5	Table 1.2, Table 1.4;
			Current consumption: "TBD" \rightarrow "Typ. 10 mA" "Typ. 6 mA" "Typ. 2.0 μ A" "Typ. 0.7 μ A" revised
		6, 7	Table 1.5, Table 1.6 revised
			Figure 1.1, Figure 1.2; ROM number "XXX" added, NOTE1 added
		20	Table 4.4 "005Fh" "006Fh" "007Fh" "008Fh" added
		24	Table 5.2 NOTE2 revised
		32, 33	Table 5.14, Table 5.15 revised
		37, 41	Table 5.21, Table 5.27 revised
1.10	Dec 21, 2007	3, 5	Table 1.2, Table 1.4; revised, NOTE2 added
		6, 7	Figure 1.1, Figure 1.2; "Y: Operating ambient", NOTE1 added
		15, 16	Figure 3.1, Figure 3.2; "Expanded area" deleted
		17	Table 4.1 "002Ch" added, "003Bh" "003Ch" "003Dh" deleted
		20	Table 4.4 "00D4h" "00D6h" revised
		22	Table 4.6 "0143h" revised
		24	5. "The electrical characteristics" added
		31	Table 5.10 Symbol "fOCO40M": Parameter added, NOTE4 added

All trademarks and registered trademarks are the property of their respective owners.