

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details		
Product Status	Active	
Core Processor	Coldfire V2	
Core Size	32-Bit Single-Core	
Speed	166MHz	
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART, USB	
Peripherals	DMA, WDT	
Number of I/O	69	
Program Memory Size	-	
Program Memory Type	ROMIess	
EEPROM Size	-	
RAM Size	64K x 8	
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V	
Data Converters	-	
Oscillator Type	External	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	256-LBGA	
Supplier Device Package	256-MAPBGA (17x17)	
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5274cvm166	

MCF5275 Family Configurations

In addition, the MCF5275 family features an enhanced multiply accumulate unit (EMAC), large on-chip memory (64 Kbytes SRAM, 16 Kbytes configurable cache), and a 16-bit DDR SDRAM memory controller.

These devices are ideal for cost-sensitive applications requiring significant control processing for file management, connectivity, data buffering, and user interface, as well as signal processing in a variety of key markets such as security, imaging, networking, gaming, and medical. This leading package of integration and high performance allows fast time to market through easy code reuse and extensive third party tool support.

To locate any published errata or updates for this document, refer to the ColdFire products website at http://www.freescale.com/coldfire.

1 MCF5275 Family Configurations

Table 1. MCF5275 Family Configurations

Module	MCF5274L	MCF5275L	MCF5274	MCF5275
ColdFire Version 2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•
System Clock		up to 10	66 MHz	l
Performance (Dhrystone 2.1 MIPS)		up to	159	
Instruction/Data Cache		16 Kbytes (d	configurable)	
Static RAM (SRAM)		64 K	bytes	
Interrupt Controllers (INTC)	2	2	2	2
Edge Port Module (EPORT)	•	•	•	•
External Interface Module (EIM)	•	•	•	•
4-channel Direct-Memory Access (DMA)	•	•	•	•
DDR SDRAM Controller	•	•	•	•
Fast Ethernet Controller (FEC)	1	1	2	2
Watchdog Timer Module (WDT)	•	•	•	•
4-channel Programmable Interval Timer Module (PIT)	•	•	•	•
32-bit DMA Timers	4	4	4	4
USB	•	•	•	•
QSPI	•	•	•	•
UART(s)	3	3	3	3
I ² C	•	•	•	•
PWM	4	4	4	4
General Purpose I/O Module (GPIO)	•	•	•	•
CIM = Chip Configuration Module + Reset Controller Module	•	•	•	•
Debug BDM	•	•	•	•
JTAG - IEEE 1149.1 Test Access Port	•	•	•	•
Hardware Encryption	_	•	_	•
Package	196 MAPBGA 256 MAPBG			APBGA

2 Block Diagram

The superset device in the MCF5275 family comes in a 256 Mold Array Plastic Ball Grid Array (MAPBGA) package. Figure 1 shows a top-level block diagram of the MCF5275, the superset device.

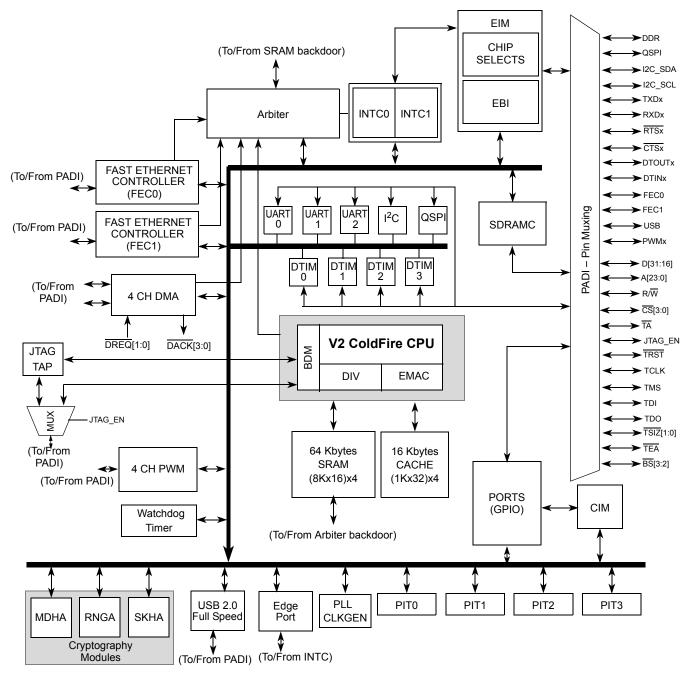


Figure 1. MCF5275 Block Diagram

3 Features

For a detailed feature list see the MCF5275 Reference Manual (MCF5275RM).

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Signal Descriptions

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF5275 signals, consult the *MCF5275 Reference Manual* (MCF5275RM).

Table 2 lists the signals for the MCF5275 in functional group order. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Table 2. MCF5274 and MCF5275 Signal Information and Muxing

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA		
	Reset							
RESET	_	_	_	I	N15	K12		
RSTOUT	_	_	_	0	N14	L12		
			Clock					
EXTAL	_	_	_	I	L16	M14		
XTAL	_	_	_	0	M16	N14		
CLKOUT	_	_	_	0	T12	P9		
		Mode	Selection					
CLKMOD[1:0]	_	_	_	I	N13, P13	M11, N11		
RCON	_	_	_	I	P8	M6		
	Ex	ternal Memor	y Interface a	nd Po	rts			
A[23:21]	PADDR[7:5]	CS[6:4]	_	0	A11, B11, C11	A8, B8, C8		
A[20:0]	_	_	_	0	A12, B12, C12, A13, B13, C13, A14, B14, C14, B15, C15, B16, C16, D14, D15, E14:16, F14:16	D11, C12, B13,		

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
D[31:16]	-	_	_	0	M1, N1, N2, N3, P1, P2, R1, R2, P3, R3, T3, N4, P4, R4, T4, N5	J3, L1, K2, K3, M1, L2, L3, L4, K4, J4, M2, N1, N2, M3, M4, N3
BS[3:2]	PBS[3:2]	CAS[3:2]		0	M3, R5	K1, L5
ŌĒ	PBUSCTL[7]	_		0	K1	H4
TA	PBUSCTL[6]	_	_	I	L13	K14
TEA	PBUSCTL[5]	DREQ1	_	I	Т8	_
R/W	PBUSCTL[4]	_	_	0	P7	L6
TSIZ1	PBUSCTL[3]	DACK1	_	0	D16	B14
TSIZ0	PBUSCTL[2]	DACK0	_	0	G16	E14
TS	PBUSCTL[1]	DACK2	_	0	L4	H2
TIP	PBUSCTL[0]	DREQ0	_	0	P6	_
		Chip	Selects			
CS[7:1]	PCS[7:1]	_	_	0	D10:13, E13, F13, N7	D8, A9, A10, D10, B12, C14, P4
CS0	_	_	_	0	R6	N5
		DDR SDR	AM Controll	er		
DDR_CLKOUT	_	_	_	0	T7	P6
DDR_CLKOUT	_	_	_	0	T6	P5
SD_CS[1:0]	PSDRAM[7:6]	CS[3:2]	_	0	M2, T5	H3, M5
SD_SRAS	PSDRAM[5]	_	_	0	L2	H1
SD_SCAS	PSDRAM[4]	_	_	0	L1	G3
SD_WE	PSDRAM[3]	_	_	0	K2	G4
SD_A10	_	_	_	0	N6	N4
SD_DQS[3:2]	PSDRAM[2:1]	_	_	I/O	M4, P5	J2, P3
SD_CKE	PSDRAM[0]	_	_	0	L3	J1
SD_VREF	_	_	_	ı	A15, T2	A13, P2
		External I	nterrupts Po	rt		
ĪRQ[7:5]	PIRQ[7:5]	_	_	I	G13, H16, H15	F14, G13, G14
ĪRQ[4]	PIRQ[4]	DREQ2	_	I	H14	H11
		DREQ[3:2]		ı	J14, J13	H14, H12

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
VSSPLL	_	_	_	ı	K16	L13
VSS			_	I	A1, A10, A16, E5, E12, F6, F11, G7:10, H7:10, J1, J7:10, K7:10, L6, L11, M5, N16, R7, T1, T16	F7, F8, G6:9, H6:9, J7, J8
OVDD	_	1	_	I	E6:8, F5, F7, F8, G5, G6, H5, H6, J11, J12, K11, K12, L9, L10, L12, M9:11	E5:7, F5, F6, H10, J9, J10, K8:10
VDD			_	I	D8, H13, K4, N8	D6, G5, G12, L7
SD_VDD	_	_	_	_	E9:11, F9, F10, F12, G11, G12, H11, H12, J5, J6, K5, K6, L5, L7, L8, M6, M7, M8	

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

5 Design Recommendations

5.1 Layout

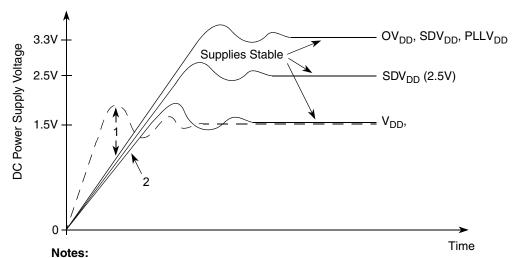
- Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF5275.
- See application note AN1259 System Design and Layout Techniques for Noise Reduction in MCU-Based Systems.
- Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing.

5.2 Power Supply

• 33uF, 0.1 μF, and 0.01 μF across each power supply

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Refers to pin's primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.


If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

Design Recommendations

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 2 shows situations in sequencing the I/O V_{DD} (OV $_{DD}$), SDRAM V_{DD} (SDV $_{DD}$), PLL V_{DD} (PLLV $_{DD}$), and Core V_{DD} (V $_{DD}$).

- 1. VDD should not exceed OVDD, SDVDD or PLLVDD by more than 0.4 V at any time, including power-up.
- Recommended that VDD should track OVDD/SDVDD/PLLVDD up to 0.9 V, then separate for completion of ramps.
- Input voltage must not be greater than the supply voltage (OVDD, SDVDD, VDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.
- 4. Use 1 ms or slower rise time for all supplies.

Figure 2. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and OV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 3.3V) and OV_{DD} are specified relative to V_{DD} .

5.2.1.1 Power Up Sequence

If OV_{DD}/SDV_{DD} are powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD}/SDV_{DD} powers up before V_{DD} must powered up. V_{DD} should not lead the OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ by more than 0.4 V during power ramp-up or high current will be in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 μ s to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 µs or slower rise time for all supplies.
- V_{DD}/PLLV_{DD} and OV_{DD}/SDV_{DD} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD}/SD V_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.2.1.2 Power Down Sequence

If V_{DD} is powered down first, then sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after V_{DD} powers down before OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ must power down. V_{DD} should not lag OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ going low by more than 0.4 V during power down or undesired high current will be in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop V_{DD} to 0 V.
- 2. Drop OV_{DD}/SDV_{DD}/PLLV_{DD} supplies.

5.3 Decoupling

- Place the decoupling capacitors as close to the pins as possible, but they can be outside the footprint of the package.
- 0.1 µF and 0.01 µF at each supply input

5.4 Buffering

• Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See electricals.

5.5 Pull-up Recommendations

• Use external pull-up resistors on unused inputs. See pin table.

5.6 Clocking Recommendations

- Use a multi-layer board with a separate ground plane.
- Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible.
- Do not run a high frequency trace around crystal circuit.
- Ensure that the ground for the bypass capacitors is connected to a solid ground trace.
- Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal.
- Tie the ground pin to the most solid ground in the system.
- Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable.
- Tie XTAL to ground when an external oscillator is clocking the device.

Mechanicals/Pinouts

6 Mechanicals/Pinouts

6.1 256 MAPBGA Pinout

Figure 3 is a consolidated MCF5274/75 pinout for the 256 MAPBGA package. Table 2 lists the signals by group and shows which signals are muxed and bonded on each of the device packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Α	VSS	FEC1_ RXD1	FEC1_ RXDV	FEC1_ CRS	FEC1_ COL	FEC0_ COL	FEC0_ MDIO	U0RXD	U1RXD	VSS	A23	A20	A17	A14	SD_ VREF	VSS	Α
В	FEC1_ RXD3	FEC1_ RXD2	FEC1_ RXD0	FEC1_ RXCLK	FEC0_ RXDV	FEC0_ RXCLK	FEC0_ MDC	U0TXD	U1TXD	I2C_ SDA	A22	A19	A16	A13	A11	A9	В
С	FEC1_ TXCLK	FEC1_ RXER	FEC0_ TXCLK	FEC0_ RXER	FEC0_ RXD2	FEC0_ RXD0	FEC0_ CRS	U0CTS	U1CTS	I2C_ SCL	A21	A18	A15	A12	A10	A8	С
D	FEC1_ TXER	FEC1_ TXEN	FEC0_ TXER	FEC0_ TXEN	FEC0_ RXD3	FEC0_ RXD1	U0RTS	VDD	U1RTS	CS7	CS6	CS5	CS4	A7	A6	TSIZ1	D
Е	FEC1_ TXD3	FEC1_ TXD2	FEC0_ TXD3	NC	VSS	OVDD	OVDD	OVDD	SD_VDD	SD_VDD	SD_VDD	VSS	CS3	A5	A4	А3	Е
F	FEC1_ TXD0	FEC1_ TXD1	FEC0_ TXD2	FEC0_ TXD1	OVDD	VSS	OVDD	OVDD	SD_VDD	SD_VDD	VSS	SD_VDD	CS2	A2	A1	A0	F
G	FEC1_ MDIO	FEC1_ MDC	DT0OUT	FEC0_ TXD0	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	ĪRQ7	USB_ SPEED	USB_ CLK	TSIZ0	G
Н	DT1IN	DT1OUT	DT0IN	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	VDD	ĪRQ4	ĪRQ5	ĪRQ6	Н
J	VSS	DT2IN	DT2OUT	DT3IN	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	ĪRQ2	ĪRQ3	USB_RP	USB_RN	J
К	ŌE	SD_WE	DT3OUT	VDD	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	ĪRQ1	USB_TN	USB_TP	VSSPLL	К
L	SD_ SCAS	SD_ SRAS	SD_CKE	TS	SD_VDD	VSS	SD_VDD	SD_VDD	OVDD	OVDD	VSS	OVDD	TA	USB_ TXEN	USB_ RXD	EXTAL	L
М	D31	SD_CS1	BS3	SD_DQS3	VSS	SD_VDD	SD_VDD	SD_VDD	OVDD	OVDD	OVDD	NC	USB_ SUSP	PLL_ TEST	VDDPLL	XTAL	М
N	D30	D29	D28	D20	D16	SD_A10	CS1	VDD	TEST	DDATA2	DDATA0	QSPI_ CS2	CLK MOD1	RSTOUT	RESET	VSS	Ν
Р	D27	D26	D23	D19	SD_DQS2	TIP	R/W	RCON	U2CTS	DDATA3	DDATA1	QSPI_ CS0	CLK MOD0	TRST/ DSCLK	TDO/ DSO	TCLK/ PSTCLK	Р
R	D25	D24	D22	D18	BS2	CS0	VSS	U2RTS	U2TXD	PST2	PST0	QSPI_ DOUT	QSPI_ CS3	JTAG_ EN	TMS/ BKPT	TDI/DSI	R
Т	VSS	SD_ VREF	D21	D17	SD_CS0	DDR_CLK OUT	DDR_CLK OUT	TEA	U2RXD	PST3	PST1	CLKOUT	QSPI_ DIN	QSPI_ CS1	QSPI_ CLK	VSS	Т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 3. MCF5274 and MCF5275 Pinout (256 MAPBGA)

6.4 Package Dimensions - 196 MAPBGA

Figure 6 shows MCF5275 196 MAPBGA package dimensions.

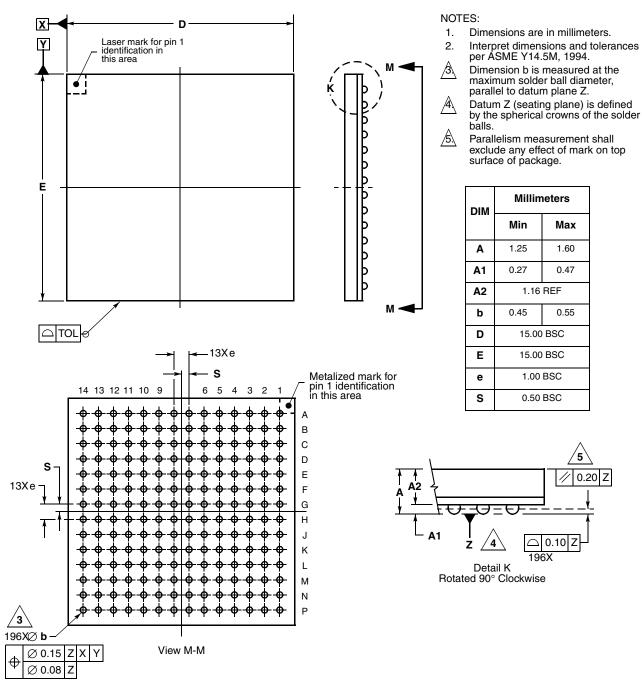


Figure 6. 196 MAPBGA Package Dimensions

 $P_{INT} = I_{DD} \times V_{DD}$, Watts - Chip Internal Power

P_{I/O} = Power Dissipation on Input and Output Pins — User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \,^{\circ}C) + \Theta_{JMA} \times P_D^2 \quad (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

8.3 ESD Protection

Table 9. ESD Protection Characteristics^{1, 2}

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V
ESD Target for Machine Model	MM	200	V
HBM Circuit Description	R _{series}	1500	Ω
	С	100	pF
MM Circuit Description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) positive pulses negative pulses	_	1 1	_
Number of pulses per pin (MM) positive pulses negative pulses	_	3 3	_
Interval of Pulses	_	1	sec

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

8.4 DC Electrical Specifications

Table 10. DC Electrical Specifications¹

Characteristic	Symbol	Min	Max	Unit
Core Supply Voltage	V_{DD}	1.4	1.6	V
I/O Pad Supply Voltage	OV_DD	3.0	3.6	V
PLL Supply Voltage	V _{DDPLL}	3.0	3.6	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	2.3	2.7	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	3.0	3.6	V
SSTL Memory pads reference voltage (SD V _{DD} = 2.5V)	V_{REF}	0.5 SD V _{DD}	_2	V
SSTL Memory pads reference voltage (SD V _{DD} = 3.3V)	V_{REF}	0.45 SD V _{DD}	_2	V
Input High Voltage 3.3V I/O Pads	V _{IH}	0.7 x OV _{DD}	OV _{DD} + 0.3	V
Input Low Voltage 3.3V I/O Pads	V _{IL}	V _{SS} - 0.3	0.35 x OV _{DD}	V
Output High Voltage 3.3V I/O Pads I _{OH} = -2.0 mA	V _{OH}	OV _{DD} - 0.5	_	V
Output Low Voltage 3.3V I/O Pads I _{OL} = 2.0mA	V _{OL}	_	0.5	V
Input Hysteresis 3.3V I/O Pads	V _{HYS}	0.06 x V _{DD}	_	mV
Input High Voltage SSTL 3.3V/2.5V ³	V _{IH}	V _{REF} + 0.3	SDV _{DD} + 0.3	V
Input Low Voltage SSTL 3.3V/2.5V ³	V _{IL}	V _{SS} - 0.3	V _{REF} - 0.3	V
Output High Voltage SSTL $3.3V/2.5V^4$ $I_{OH} = -5.0 \text{ mA}$	V _{OH}	SDV _{DD} - 0.25V	_	V
Output Low Voltage SSTL 3.3V/2.5V ⁴ I _{OL} = 5.0 mA	V _{OL}	_	0.35	V
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	I _{in}	-1.0	1.0	μА
High Impedance (Off-State) Leakage Current $V_{in} = V_{DD}$ or V_{SS} , All input/output and output pins	I _{OZ}	-1.0	1.0	μА
Weak Internal Pull Up Device Current, tested at V _{IL} Max. ⁵	I _{APU}	-10	-130	μΑ
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF

8.5 Oscillator and Phase Lock Loop (PLLMRFM) Electrical Specifications

Table 11. PLL Electrical Specifications¹

Characteristic	Symbol	Min	Max	Unit
PLL Reference Frequency Range Crystal reference External reference 1:1 Mode (NOTE: f _{sys/2} = 2 × fref_1:1)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 83	MHz
Core frequency CLKOUT Frequency ² External reference On-Chip PLL Frequency	f _{core}	0 f _{ref} / 32	166 83 83	MHz MHz MHz
Loss of Reference Frequency ^{3, 5}	f _{LOR}	100	1000	kHz
Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	TBD	TBD	MHz
Crystal Start-up Time ^{5, 6}	t _{cst}	_	10	ms
EXTAL Input High Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V _{IHEXT} V _{IHEXT}	TBD TBD	TBD TBD	V
EXTAL Input Low Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V_{ILEXT} V_{ILEXT}	TBD TBD	TBD TBD	V
XTAL Output High Voltage I _{OH} = 1.0 mA	V _{OH}	TBD	_	V
XTAL Output Low Voltage I _{OL} = 1.0 mA	V _{OL}	_	TBD	V
XTAL Load Capacitance ⁷		5	30	pF
PLL Lock Time ⁸	t _{lpll}	_	750	μS
Power-up To Lock Time ^{6, 9} With Crystal Reference Without Crystal Reference ¹⁰	t _{lplk}		11 750	ms μs
1:1 Mode Clock Skew (between CLKOUT and EXTAL) 11	t _{skew}	-1	1	ns
Duty Cycle of reference ⁵	t _{dc}	40	60	% f _{sys/2}
Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
CLKOUT Period Jitter, ^{5, 6, 9,12, 13} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5 .01	% f _{sys/2}
Frequency Modulation Range Limit ¹⁴ , ¹⁵ (f _{sys/2} Max must not be exceeded)	C_{mod}	0.8	2.2	% f _{sys/2}
ICO Frequency. $f_{ico} = f_{ref} \cdot 2 \cdot (MFD+2)^{16}$	f _{ico}	48	83	MHz

All values given are initial design targets and subject to change.

² All internal registers retain data at 0 Hz.

^{3 &}quot;Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

- Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{LOR} with default MFD/RFD settings.
- This parameter is guaranteed by characterization before qualification rather than 100% tested.
- Proper PC board layout procedures must be followed to achieve specifications.
- Load capacitance determined from crystal manufacturer specifications and includes circuit board parasitics.
- This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDPLL} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time.
- $t_{|D|} = (64 * 4 * 5 + 5 x \tau) \times T_{ref}$, where $t_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $t_{ref} = 1.57 \times 10^{-6} \times 2 (MFD + 2)$
- ¹¹ PLL is operating in 1:1 PLL mode.
- ¹² Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the jitter percentage for a given interval.
- ¹³ Based on slow system clock of 33MHz maximum frequency.
- ¹⁴ Modulation percentage applies over an interval of 10μs, or equivalently the modulation rate is 100KHz.
- 15 Modulation rate selected must not result in $f_{\text{sys/2}}$ value greater than the $f_{\text{sys/2}}$ maximum specified value. Modulation range determined by hardware design. $f_{sys/2} = f_{ico} / (2 \cdot 2^{RFD})$

External Interface Timing Characteristics 8.6

Table 12 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Table 12. Processor Bus Input Timing Specifications

Name	Characteristic ¹	Symbol	Min	Max	Unit			
В0	CLKOUT	t _{CYC}	12	_	ns			
	Control Inputs							
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	_	ns			
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9	_	ns			
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0	_	ns			
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	_	ns			
	Data Inputs							
B4	Data input (D[31:16]) valid to CLKOUT high	t _{DIVCH}	4	_	ns			
B5	CLKOUT high to data input (D[31:16]) invalid	t _{CHDII}	0	_	ns			

Timing specifications have been indicated taking into account the full drive strength for the pads.

TEA and TA pins are being referred to as control inputs.

³ Refer to figure A-19.

Timings listed in Table 12 are shown in Figure 7.

* The timings are also valid for inputs sampled on the negative clock edge.

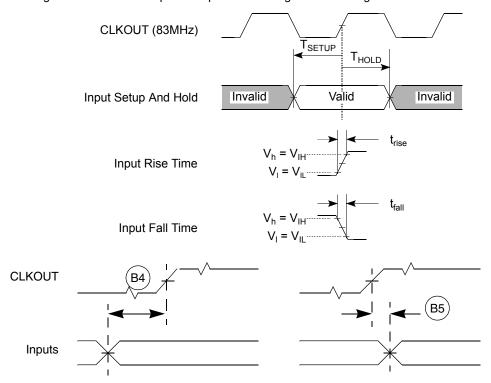


Figure 7. General Input Timing Requirements

8.7 Processor Bus Output Timing Specifications

Table 13 lists processor bus output timings.

Table 13. External Bus Output Timing Specifications

Name	Characteristic	Symbol	Min	Max	Unit			
	Control Outputs							
B6a	CLKOUT high to chip selects (CS[7:0]) valid ¹	t _{CHCV}	_	0.5t _{CYC} + 5.5	ns			
B6b	CLKOUT high to byte enables (BS[3:2]) valid ¹	t _{CHBV}	_	0.5t _{CYC} + 5.5	ns			
B6c	CLKOUT high to output enable (OE) valid ¹	t _{CHOV}	_	0.5t _{CYC} + 5.5	ns			
B7	CLKOUT high to control output (BS[3:2], OE) invalid	t _{CHCOI}	0.5t _{CYC} + 1.0	_	ns			
В7а	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} + 1.0	_	ns			
	Address and Attribut	te Outputs						
B8	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], \overline{TIP} , R/ \overline{W}) valid	t _{CHAV}	_	9	ns			
B9	CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.0	_	ns			

Figure 9 shows a bus cycle terminated by \overline{TA} showing timings listed in Table 13.

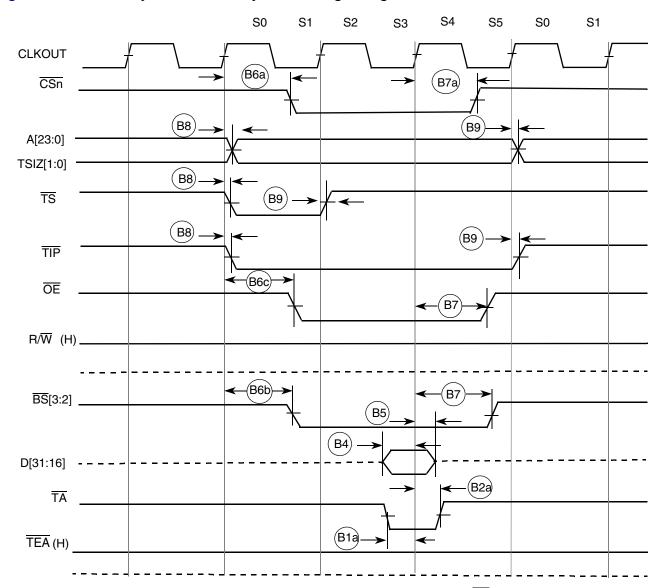


Figure 9. SRAM Read Bus Cycle Terminated by TA

Figure 10 shows an SRAM bus cycle terminated by TEA showing timings listed in Table 13.

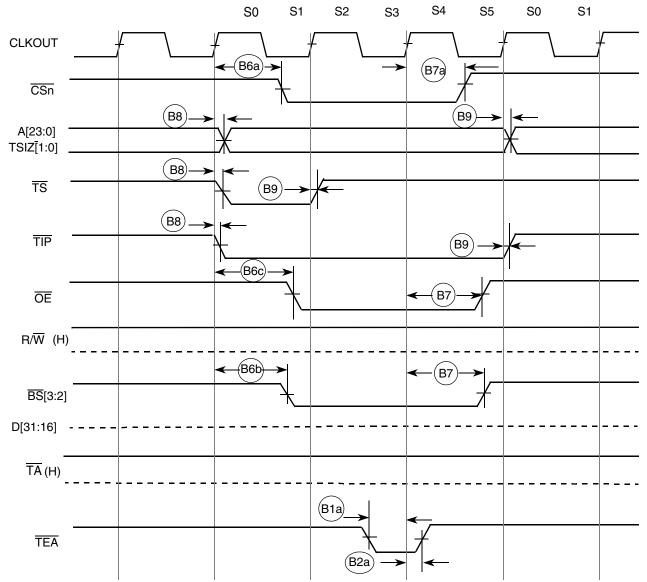


Figure 10. SRAM Read Bus Cycle Terminated by TEA

Table 15. DDR Timing (continued)

NUM	Characteristic ¹	Symbol	Min	Max	Unit
DD13	DQS input read preamble width (t _{RPRE})	t _{RPRE}	0.9	1.1	t _{CK}
DD14	DQS input read postamble width (t _{RPST})	t _{RPST}	0.4	0.6	t _{CK}
DD15	DQS output write preamble width (t _{WPRE})	t _{WPRE}	0.25	_	t _{CK}
DD16	DQS output write postamble width (t _{WPST})	t _{WPST}	0.4	0.6	t _{CK}

All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.

Figure 13 shows a DDR SDRAM write cycle.

Figure 12. DDR_CLKOUT and DDR_CLKOUT Crossover Timing

² DDR_CLKOUT operates at half the frequency of the PLLMRFM output and the ColdFire core.

 $^{^3}$ $t_{CKH} + t_{CKL}$ must be less than or equal to t_{CK} .

⁴ D[31:24] is relative to SD_DQS3 and D[23:16] is relative to SD_DQS2.

The first data beat is valid before the first rising edge of SD_DQS and after the SD_DQS write preamble. The remaining data beats are valid for each subsequent SD_DQS edge

Data input skew is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).

⁷ Data input hold is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the first data line becomes invalid.

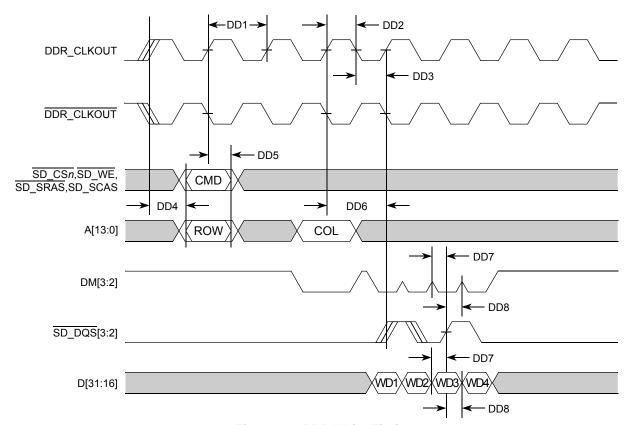


Figure 13. DDR Write Timing

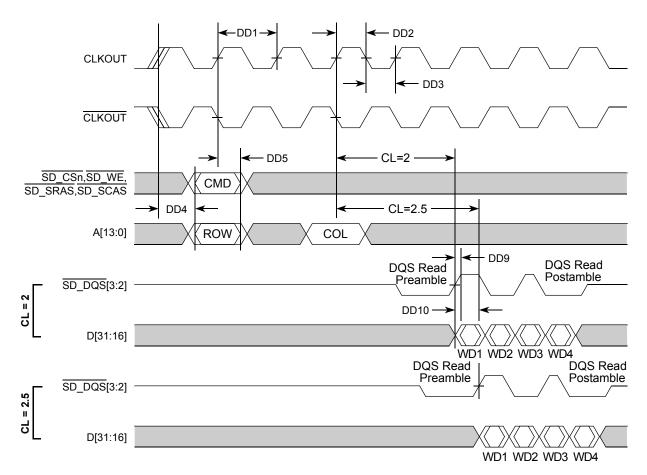


Figure 14. DDR Read Timing

8.9 General Purpose I/O Timing

GPIO can be configured for certain pins of the QSPI, DDR control, timers, UARTS, FEC0, FEC1, Interrupts and USB interfaces. When in GPIO mode the timing specification for these pins is given in Table 16 and Figure 15.

NUM Characteristic **Symbol** Min Max Unit CLKOUT High to GPIO Output Valid G1 10 t_{CHPOV} ns G2 CLKOUT High to GPIO Output Invalid 1.0 t_{CHPOI} G3 GPIO Input Valid to CLKOUT High 9 ns t_{PVCH} G4 CLKOUT High to GPIO Input Invalid 1.5 t_{CHPI}

Table 16. GPIO Timing

USB Interface AC Timing Specifications 8.11.5

Table 22 lists USB Interface timings.

Table 22. USB Interface Timing

Num	Characteristic	Min	Max	Units
US1	USB_CLK frequency of operation	48	48	MHz
US2	USB_CLK fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	2	ns
US3	USB_CLK rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	2	ns
US4	USB_CLK duty cycle (at 0.5 x O V _{DD})	45	55	%
Data Inputs				
US5	USB_RP, USB_RN, USB_RXD valid to USB_CLK high	6	_	ns
US6	USB_CLK high to USB_RP, USB_RN, USB_RXD invalid	6	_	ns
Data Outputs				
US7	USB_CLK high to USB_TP, USB_TN, USB_SUSP valid	_	12	ns
US8	USB_CLK high to USB_TP, USB_TN, USB_SUSP invalid	3	_	ns

Figure 20 shows USB interface timings listed in Table 22.

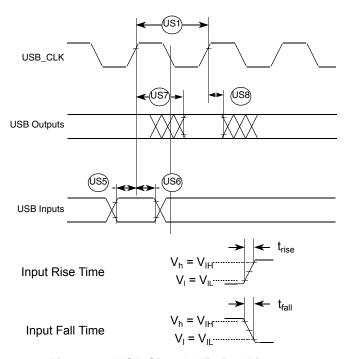


Figure 20. USB Signals Timing Diagram

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4 Freescale Semiconductor 37