

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	166MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART, USB
Peripherals	DMA, WDT
Number of I/O	69
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5274lcvm166

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF5275 Family Configurations

In addition, the MCF5275 family features an enhanced multiply accumulate unit (EMAC), large on-chip memory (64 Kbytes SRAM, 16 Kbytes configurable cache), and a 16-bit DDR SDRAM memory controller.

These devices are ideal for cost-sensitive applications requiring significant control processing for file management, connectivity, data buffering, and user interface, as well as signal processing in a variety of key markets such as security, imaging, networking, gaming, and medical. This leading package of integration and high performance allows fast time to market through easy code reuse and extensive third party tool support.

To locate any published errata or updates for this document, refer to the ColdFire products website at http://www.freescale.com/coldfire.

1 MCF5275 Family Configurations

Module	MCF5274L	MCF5275L	MCF5274	MCF5275
ColdFire Version 2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•
System Clock		up to 1	66 MHz	L
Performance (Dhrystone 2.1 MIPS)		up to	o 159	
Instruction/Data Cache		16 Kbytes (d	configurable)	
Static RAM (SRAM)		64 K	bytes	
Interrupt Controllers (INTC)	2	2	2	2
Edge Port Module (EPORT)	•	•	•	•
External Interface Module (EIM)	•	•	•	•
4-channel Direct-Memory Access (DMA)	•	•	•	•
DDR SDRAM Controller	•	•	•	•
Fast Ethernet Controller (FEC)	1	1	2	2
Watchdog Timer Module (WDT)	•	•	•	•
4-channel Programmable Interval Timer Module (PIT)	•	•	•	•
32-bit DMA Timers	4	4	4	4
USB	•	•	•	•
QSPI	•	•	•	•
UART(s)	3	3	3	3
I ² C	•	•	•	•
PWM	4	4	4	4
General Purpose I/O Module (GPIO)	•	•	•	•
CIM = Chip Configuration Module + Reset Controller Module	•	•	•	•
Debug BDM	•	•	•	•
JTAG - IEEE 1149.1 Test Access Port	•	•	•	•
Hardware Encryption	_	•	_	•
Package	196 M/	APBGA	256 M/	APBGA

Table 1. MCF5275 Family Configurations

Signal Descriptions

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF5275 signals, consult the *MCF5275 Reference Manual* (MCF5275RM).

Table 2 lists the signals for the MCF5275 in functional group order. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA			
	Reset								
RESET	—	—	_	Ι	N15	K12			
RSTOUT	—	—	—	0	N14	L12			
			Clock						
EXTAL	—	—	—	Ι	L16	M14			
XTAL	—	—	—	0	M16	N14			
CLKOUT	—	—	—	0	T12	P9			
		Mode	Selection						
CLKMOD[1:0]	—	—	—	Ι	N13, P13	M11, N11			
RCON	_	_		Ι	P8	M6			
	Ex	ternal Memor	y Interface a	nd Po	rts				
A[23:21]	PADDR[7:5]	<u>CS</u> [6:4]	—	0	A11, B11, C11	A8, B8, C8			
A[20:0]	_	_	_	0	A12, B12, C12, A13, B13, C13, A14, B14, C14, B15, C15, B16, C16, D14, D15, E14:16, F14:16	B9, D9, C9, C10, B10, A11, C11, B11, A12, D11, C12, B13, C13, D12, E11, D13, E12, F11, D14, E13, F13			

Table 2. MCF5274 and MCF5275 Signal Info	ormation and Muxing
--	---------------------

Signal Descriptions

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
D[31:16]	_		_	0	M1, N1, N2, N3, P1, P2, R1, R2, P3, R3, T3, N4, P4, R4, T4, N5	J3, L1, K2, K3, M1, L2, L3, L4, K4, J4, M2, N1, N2, M3, M4, N3
BS[3:2]	PBS[3:2]	CAS[3:2]	—	0	M3, R5	K1, L5
ŌĒ	PBUSCTL[7]	_	—	0	K1	H4
TA	PBUSCTL[6]	_	—	I	L13	K14
TEA	PBUSCTL[5]	DREQ1	—	Ι	Т8	—
R/W	PBUSCTL[4]	_	—	0	P7	L6
TSIZ1	PBUSCTL[3]	DACK1	—	0	D16	B14
TSIZ0	PBUSCTL[2]	DACK0	—	0	G16	E14
TS	PBUSCTL[1]	DACK2	—	0	L4	H2
TIP	PBUSCTL[0]	DREQ0	—	0	P6	—
		Chij	o Selects			
CS[7:1]	PCS[7:1]	_	_	0	D10:13, E13, F13, N7	D8, A9, A10, D10, B12, C14, P4
CS0		_		0	R6	N5
		DDR SDR	AM Controll	er		
DDR_CLKOUT				0	T7	P6
DDR_CLKOUT		_		0	Т6	P5
SD_CS[1:0]	PSDRAM[7:6]	CS[3:2]	_	0	M2, T5	H3, M5
SD_SRAS	PSDRAM[5]	_	_	0	L2	H1
SD_SCAS	PSDRAM[4]	_	—	0	L1	G3
SD_WE	PSDRAM[3]	_	—	0	K2	G4
SD_A10	—	_	—	0	N6	N4
SD_DQS[3:2]	PSDRAM[2:1]	_	—	I/O	M4, P5	J2, P3
SD_CKE	PSDRAM[0]	_	—	0	L3	J1
SD_VREF	—	_	—	Ι	A15, T2	A13, P2
		External	Interrupts Po	ort		
IRQ[7:5]	PIRQ[7:5]	_	_	Ι	G13, H16, H15	F14, G13, G14
IRQ[4]	PIRQ[4]	DREQ2	—	Ι	H14	H11
IRQ[3:2]	PIRQ[3:2]	DREQ[3:2]	_	Ι	J14, J13	H14, H12

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Design Recommendations

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
VSSPLL	_	—	—	Ι	K16	L13
VSS	1	_	_	I	A1, A10, A16, E5, E12, F6, F11, G7:10, H7:10, J1, J7:10, K7:10, L6, L11, M5, N16, R7, T1, T16	F7, F8, G6:9, H6:9, J7, J8
OVDD	_	_	_	I	E6:8, F5, F7, F8, G5, G6, H5, H6, J11, J12, K11, K12, L9, L10, L12, M9:11	E5:7, F5, F6, H10, J9, J10, K8:10
VDD	_	_	—	I	D8, H13, K4, N8	D6, G5, G12, L7
SD_VDD	_	_	_	I	E9:11, F9, F10, F12, G11, G12, H11, H12, J5, J6, K5, K6, L5, L7, L8, M6, M7, M8	E8:10, F9, F10, G10, H5, J5, J6, K5:7

Table 2. MCF5274 and MCF5275 Signa	al Information and Muxing	(continued)
J		· · · · · · · · · · · · · · · · · · ·

¹ Refers to pin's primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.

² If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

5 Design Recommendations

5.1 Layout

- Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF5275.
- See application note AN1259 System Design and Layout Techniques for Noise Reduction in MCU-Based Systems.
- Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing.

5.2 Power Supply

• 33uF, 0.1 μ F, and 0.01 μ F across each power supply

Mechanicals/Pinouts

6.3 196 MAPBGA Pinout

Figure 5 is a consolidated MCF5274L/75L pinout for the 196 MAPBGA package. Table 2 lists the signals by group and shows which signals are muxed and bonded on each of the device packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
А	NC	FEC0_ CRS	FEC0_ MDIO	U0RXD	U0TXD	U1RXD	I2C_SCL	A23	CS6	CS5	A15	A12	SD_ VREF	NC	A
в	FEC0_ RXD2	FEC0_ RXD1	FEC0_ RXCLK	FEC0_ COL	UORTS	U1RTS	I2C_SDA	A22	A20	A16	A13	CS3	A9	TSIZ1	В
с	FEC0_ TXCLK	FEC0_ TXER	FEC0_ TXEN	FEC0_ RXDV	FEC0_ MDC	UOCTS	U1CTS	A21	A18	A17	A14	A10	A8	CS2	с
D	FEC0_ TXD3	FEC0_ TXD0	FEC0_ TXD1	FEC0_ RXD3	FEC0_ RXD0	VDD	U1TXD	CS7	A19	CS4	A11	A7	A5	A2	D
Е	DT0IN	DT0OUT	FEC0_ TXD2	FEC0_ RXER	OVDD	OVDD	OVDD	SD_VDD2	SD_VDD2	SD_VDD2	A6	A4	A1	TSIZ0	E
F	DT1IN	DT1OUT	DT2IN	DT2OUT	OVDD	OVDD	VSS	VSS	SD_VDD2	SD_VDD2	A3	USB_CLK	A0	IRQ7	F
G	DT3OUT	DT3IN	SD_CAS	SD_WE	VDD	VSS	VSS	VSS	VSS	SD_VDD2	USB_ SPEED	VDD	IRQ6	IRQ5	G
н	SD_SRAS	TS	SD_CS1	OE	SD_VDD1	VSS	VSS	VSS	VSS	OVDD	IRQ4	IRQ2	USB_RN	IRQ3	Н
J	SD_CKE	SD_DQS3	D31	D22	SD_VDD1	SD_VDD1	VSS	VSS	OVDD	OVDD	USB_RP	USB_TP	IRQ1	USB_TN	J
к	BS3	D29	D28	D23	SD_VDD1	SD_VDD1	SD_VDD1	OVDD	OVDD	OVDD	TDO/DSO	RESET	USB_ TXEN	TA	к
L	D30	D26	D25	D24	BS2	R/W	VDD	PST2	DDATA0	QSPI_ DOUT	QSPI_CLK	RSTOUT	VSSPLL	USB_RXD	L
м	D27	D21	D18	D17	SD_CS0	RCON	DDATA3	PST1	QSPI_ CS0	QSPI_DIN	CLKMOD1	TDI/DSI	VDDPLL	EXTAL	М
Ν	D20	D19	D16	SD_A10	CS0	TEST	DDATA2	PST0	QSPI_ CS2	QSPI_ CS1	CLKMOD0	TMS/BKPT	USB_ SUSP	XTAL	N
Ρ	NC	SD_ VREF	SD_DQS2	CS1	DDR_CLK OUT	DDR_CLK OUT	PST3	DDATA1	CLKOUT	QSPI_ CS3	JTAG_EN	TCLK/PST CLK	TRST/DSC LK	NC	Ρ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 5. MCF5274L and MCF5275L Pinout (196 MAPBGA)

6.4 Package Dimensions - 196 MAPBGA

Figure 6 shows MCF5275 196 MAPBGA package dimensions.

Figure 6. 196 MAPBGA Package Dimensions

Ordering Information

7 Ordering Information

Table 6. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF5274LVM166	MCE5274L BISC Microprocessor		166 MHz	0° to +70° C
MCF5274LCVM166		130 MAI BOA		-40° to +85° C
MCF5274VM166	MCE5274 BISC Microprocessor		166 MHz	0° to +70° C
MCF5274CVM166	Mor 3274 moc Microprocessor	230 MAI DUA		-40° to +85° C
MCF5275LCVM166	MCF5275L RISC Microprocessor	196 MAPBGA	166 MHz	-40° to +85° C
MCF5275CVM166	MCF5275 RISC Microprocessor	256 MAPBGA	166 MHz	-40° to +85° C

8 Electrical Characteristics

This appendix contains electrical specification tables and reference timing diagrams for the MCF5275 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5275.

NOTE

The parameters specified in this appendix supersede any values found in the module specifications.

8.1 Maximum Ratings

 Table 7. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Core Supply Voltage	V _{DD}	- 0.5 to +2.0	V
I/O Pad Supply Voltage (3.3V)	OV _{DD}	- 0.3 to +4.0	V
Memory Interface SSTL 2.5V Pad Supply Voltage	SDV _{DD}	- 0.3 to + 2.8	V
Memory Interface SSTL 3.3V Pad Supply Voltage	SDV _{DD}	- 0.3 to +4.0	V
PLL Supply Voltage	V _{DDPLL}	- 0.3 to +4.0	V
Digital Input Voltage ³	V _{IN}	- 0.3 to + 4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{4, 5}	۱ _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L - T _H)	– 40 to 85	°C
Storage Temperature Range	T _{stg}	– 65 to 150	°C

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or O V_{DD}).
- ³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- $^4\,$ All functional non-supply pins are internally clamped to V_{SS} and O V_{DD}.
- ⁵ Power supply must maintain regulation within operating O V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > O V_{DD}$) is greater than I_{DD} , the injection current may flow out of O V_{DD} and could result in external power supply going out of regulation. Ensure the external O V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock).Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions.

8.2 Thermal Characteristics

 Table 8 lists thermal resistance values

Characteristic	Symbol	256MBGA	196MBGA	Unit	
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	26 ^{1,2}	32 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	23 ^{1,2}	29 ^{1,2}	°C/W
Junction to board		θ_{JB}	15 ³	20 ³	°C/W
Junction to case		θ^{JC}	10 ⁴	10 ⁴	°C/W
Junction to top of package	Natural convection	Ψ _{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	105	105	°C

Table 8. Thermal characteristics

¹ θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

² Per JEDEC JESD51-6 with the board horizontal.

³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
(1)

Where:

 $\begin{array}{ll} \mathsf{T}_{\mathsf{A}} & = \mathsf{Ambient \, Temperature, \, °C} \\ \Theta_{\mathsf{JMA}} & = \mathsf{Package \, Thermal \, Resistance, \, Junction-to-Ambient, \, °C/W} \\ \mathsf{P}_{\mathsf{D}} & = \mathsf{P}_{\mathsf{INT}} + \mathsf{P}_{\mathsf{I/O}} \end{array}$

 P_{INT} = $I_{DD} \times V_{DD}$, Watts - Chip Internal Power $P_{I/O}$ = Power Dissipation on Input and Output Pins — User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{\rm D} = K \div (T_{\rm I} + 273^{\circ}C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \text{ °C}) + \Theta_{JMA} \times P_D^2 (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

8.3 ESD Protection

Table 9. ESD Protection Characteristics^{1, 2}

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V
ESD Target for Machine Model	MM	200	V
HBM Circuit Description	R _{series}	1500	Ω
	С	100	pF
MM Circuit Description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) positive pulses negative pulses		1	-
Number of pulses per pin (MM) positive pulses negative pulses		3 3	-
Interval of Pulses	—	1	sec

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Name	Characteristic S		Min	Max	Unit				
Data Outputs									
B11	CLKOUT high to data output (D[31:16]) valid	t _{CHDOV}	_	9	ns				
B12	CLKOUT high to data output (D[31:16]) invalid	t _{CHDOI}	1.0	—	ns				
B13	CLKOUT high to data output (D[31:16]) high impedance	t _{CHDOZ}	_	9	ns				

Table 13. External Bus Output Timing Specifications (continued)

 1 CS, BS, and OE transition after the falling edge of CLKOUT.

Read/write bus timings listed in Table 13 are shown in Figure 8, Figure 9, and Figure 10.

Figure 8. Read/Write (Internally Terminated) SRAM Bus Timing

Figure 9 shows a bus cycle terminated by \overline{TA} showing timings listed in Table 13.

Figure 9. SRAM Read Bus Cycle Terminated by TA

8.8 DDR SDRAM AC Timing Characteristics

The DDR SDRAM controller uses SSTL2 and I/O drivers. Class I or Class II drive strength is available and is user programmable. DDR Clock timing specifications are given in Table 14 and Figure 11.

Symbol	Characteristic	Min	Мах	Unit
V _{MP}	Clock output mid-point voltage	1.05	1.45	V
V _{OUT}	Clock output voltage level	-0.3	SDV _{DD} + 0.3	V
V _{ID}	Clock output differential voltage (peak to peak swing)	0.7	SDV _{DD} + 0.6	V
V _{IX}	Clock crossing point voltage	1.05	1.45	V

Table 14. DDR Clock Timing Specifications¹

¹ SD V_{DD} is nominally 2.5V.

Figure 11. DDR Clock Timing Diagram

When using the DDR SDRAM controller the timing numbers in Table 15 must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the two DQS byte lanes.

NUM	Characteristic ¹	Symbol	Min	Мах	Unit
	Frequency of operation ²		TBD	83	MHz
DD1	Clock Period (DDR_CLKOUT)	t _{CK}	12	TBD	ns
DD2	Pulse Width High ³	t _{СКН}	0.45	0.55	t _{CK}
DD3	Pulse Width Low ³	t _{CKI}	0.45	0.55	t _{CK}
DD4	DDR_CLKOUT high to DDR address, SD_CKE, SD_CS[1:0], SD_SCAS, SD_SRAS, SD_WE valid	t _{CMV}	—	0.5 x t _{CK} + 1	ns
DD5	DDR_CLKOUT high to DDR address, SD_CKE, SD_CS, SD_SCAS, SD_SRAS, SD_WE invalid	t _{СМН}	2	—	ns
DD6	Write command to first SD_DQS Latching Transition	t _{DQSS}	—	1.25	t _{CK}
DD7	SD_DQS high to Data and DM valid (write) - setup ^{4,5}	t _{QS}	1.5	—	ns
DD8	SD_DQS high to Data and DM invalid (write) - hold ⁴	t _{QH}	1	—	ns
DD9	SD_DQS high to Data valid (read) - setup ⁶	t _{IS}	—	1	ns
DD10	SD_DQS high to Data invalid (read) - hold ⁷	t _{IH}	0.25 x t _{CK} + 1	—	ns
DD11	SD_DQS falling edge to CLKOUT high - setup	t _{DSS}	0.5	—	ns
DD12	SD_DQS falling edge to CLKOUT high - hold	t _{DSH}	0.5	—	ns

Table 15. DDR Timing

Table 15. DDR Timing (continued)

NUM	Characteristic ¹	Symbol	Min	Мах	Unit
DD13	DQS input read preamble width (t _{RPRE})	t _{RPRE}	0.9	1.1	t _{CK}
DD14	DQS input read postamble width (t _{RPST})	t _{RPST}	0.4	0.6	t _{CK}
DD15	DQS output write preamble width (t _{WPRE})	t _{WPRE}	0.25	_	t _{CK}
DD16	DQS output write postamble width (t _{WPST})	t _{WPST}	0.4	0.6	t _{CK}

All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins. 1

2 DDR_CLKOUT operates at half the frequency of the PLLMRFM output and the ColdFire core.

 3 t_{CKH} + t_{CKL} must be less than or equal to t_{CK}.

⁴ D[31:24] is relative to SD_DQS3 and D[23:16] is relative to SD_DQS2.

⁵ The first data beat is valid before the first rising edge of SD_DQS and after the SD_DQS write preamble. The remaining data beats are valid for each subsequent SD_DQS edge

- 6 Data input skew is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- 7 Data input hold is derived from each SD_DQS clock edge. It begins with a SD_DQS transition and ends when the first data line becomes invalid.

Figure 13 shows a DDR SDRAM write cycle.

DDR_CLKOUT

Figure 12. DDR CLKOUT and DDR CLKOUT Crossover Timing

Figure 15. GPIO Timing

8.10 **Reset and Configuration Override Timing**

Table 17. Reset and Configuration	Override Timing
(V _{DD} = 2.7 to 3.6 V, V _{SS} = 0 V, T	$_{\Lambda} = T_{L} \text{ to } T_{H})^{1}$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RESET Input valid to CLKOUT High	t _{RVCH}	9	—	ns
R2	CLKOUT High to RESET Input invalid	t _{CHRI}	1.5	—	ns
R3	RESET Input valid Time ²	t _{RIVT}	5	—	t _{CYC}
R4	CLKOUT High to RSTOUT Valid	t _{CHROV}	—	10	ns
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	—	ns
R6	Configuration Override Setup Time to RSTOUT invalid	t _{COS}	20	—	t _{CYC}
R7	Configuration Override Hold Time after RSTOUT invalid	t _{COH}	0	—	ns
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}	—	1 x t _{CYC}	ns

 All AC timing is shown with respect to 50% OV_{DD} levels unless otherwise noted.
 ² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

1. Refer to the Coldfire Integration Module (CIM) section for more information.

8.11 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.

8.11.1 MII Receive Signal Timing (FEC*n*_RXD[3:0], FEC*n*_RXDV, FEC*n*_RXER, and FEC*n*_RXCLK)

The receiver functions correctly up to a FEC n_RXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FEC n_RXCLK frequency.

Table 18 lists MII receive channel timings.

Num	Characteristic	Min	Мах	Unit
M1	FEC <i>n</i> _RXD[3:0], FEC <i>n</i> _RXDV, FEC <i>n</i> _RXER to FEC <i>n</i> _RXCLK setup	5	_	ns
M2	FEC <i>n_</i> RXCLK to FEC <i>n_</i> RXD[3:0], FEC <i>n_</i> RXDV, FEC <i>n_</i> RXER hold	5		ns
МЗ	FEC <i>n</i> _RXCLK pulse width high	35%	65%	FEC <i>n_</i> RXCLK period
M4	FEC <i>n</i> _RXCLK pulse width low	35%	65%	FEC <i>n_</i> RXCLK period

Table 18. MII Receive Signal Timing

Figure 16 shows MII receive signal timings listed in Table 18.

Figure 16. MII Receive Signal Timing Diagram

8.11.2 MII Transmit Signal Timing (FEC*n*_TXD[3:0], FEC*n*_TXEN, FEC*n*_TXER, FEC*n*_TXCLK)

Table 19 lists MII transmit channel timings.

The transmitter functions correctly up to a FEC n_TXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the FEC n_TXCLK frequency.

Num	Characteristic	Min	Мах	Unit
M5	FEC <i>n</i> _TXCLK to FEC <i>n</i> _TXD[3:0], FEC <i>n</i> _TXEN, FEC <i>n</i> _TXER invalid	5	_	ns
M6	FEC <i>n</i> _TXCLK to FEC <i>n</i> _TXD[3:0], FEC <i>n</i> _TXEN, FEC <i>n</i> _TXER valid	_	25	ns
M7	FEC <i>n</i> _TXCLK pulse width high	35%	65%	FECn_TXCLK period
M8	FECn_TXCLK pulse width low	35%	65%	FECn_TXCLK period

Table 19. MII Transmit Channel Timing

Figure 17 shows MII transmit signal timings listed in Table 19.

Figure 17. MII Transmit Signal Timing Diagram

8.11.3 MII Async Inputs Signal Timing (FEC*n*_CRS and FEC*n*_COL)

Table 20 lists MII asynchronous inputs signal timing.

Table 20. MII Asynchronous Input Signal Timing

Num	Characteristic	Min	Max	Unit
M9	FECn_CRS, FECn_COL minimum pulse width	1.5	_	FECn_TXCLK period

Figure 18 shows MII asynchronous input timings listed in Table 20.

Figure 18. MII Async Inputs Timing Diagram

8.12 I²C Input/Output Timing Specifications

Table 23 lists specifications for the I^2C input timing parameters shown in Figure 21.

Num	Characteristic	Min	Max	Units
11	Start condition hold time	2 x t _{CYC}	_	ns
12	Clock low period	8 x t _{CYC}	—	ns
13	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	1	ms
14	Data hold time	0	—	ns
15	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	1	ms
16	Clock high time	4 x t _{CYC}	—	ns
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2 x t _{CYC}	_	ns
19	Stop condition setup time	2 x t _{CYC}	_	ns

Table 23. I²C Input Timing Specifications between I2C_SCL and I2C_SDA

Table 24 lists specifications for the I²C output timing parameters shown in Figure 21.

Table 24. I ²	² C Output	Timing	Specifications	between I	2C_	SCL and	12C_	SDA
--------------------------	-----------------------	--------	----------------	-----------	-----	---------	------	-----

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6 x t _{CYC}	_	ns
12 ¹	Clock low period	10 x t _{CYC}	_	ns
13 ²	I2C_SCL/I2C_SDA rise time $(V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V})$	—	_	μs
14 ¹	Data hold time	7 x t _{CYC}	_	ns
15 ³	I2C_SCL/I2C_SDA fall time $(V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V})$	—	3	ns
l6 ¹	Clock high time	10 x t _{CYC}	_	ns
17 ¹	Data setup time	2 x t _{CYC}	_	ns
18 ¹	Start condition setup time (for repeated start condition only)	20 x t _{CYC}	_	ns
19 ¹	Stop condition setup time	10 x t _{CYC}	_	ns

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 24. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 24 are minimum values.

² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

8.15 JTAG and Boundary Scan Timing

Table 27. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4 x t _{CYC}	_	ns
J3	TCLK Clock Pulse Width	t _{JCW}	26	—	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	—	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	—	ns
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	—	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

1

8.16 Debug AC Timing Specifications

Table 28 lists specifications for the debug AC timing parameters shown in Figure 28.

Num	Characteristic	166 N	Unite	
Num	Characteristic	Min	Max	Units
D0	PSTCLK cycle time	_	0.5	t _{CYC}
D1	PST, DDATA to PSTCLK setup	4	_	ns
D2	CLKOUT to PST, DDATA hold	1.0		ns
D3	DSI-to-DSCLK setup	1 x t _{CYC}	_	ns
D4 ¹	DSCLK-to-DSO hold	4 x t _{CYC}	_	ns
D5	DSCLK cycle time	5 x t _{CYC}		ns
D6	BKPT input data setup time to PSTCLK Rise	4	_	ns
D7	BKPT input data hold time to PSTCLK Rise	1.5	_	ns
D8	PSTCLK high to BKPT high Z	0.0	10.0	ns

Table 28. Debug AC Timing Specification

DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

Figure 27 shows real-time trace timing for the values in Table 28.

Figure 27. Real-Time Trace AC Timing

Figure 28 shows BDM serial port AC timing for the values in Table 28.

