

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	166MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART, USB
Peripherals	DMA, WDT
Number of I/O	61
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-MAPBGA (15x15)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5274lvm166j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Block Diagram

The superset device in the MCF5275 family comes in a 256 Mold Array Plastic Ball Grid Array (MAPBGA) package. Figure 1 shows a top-level block diagram of the MCF5275, the superset device.

Figure 1. MCF5275 Block Diagram

3 Features

For a detailed feature list see the MCF5275 Reference Manual (MCF5275RM).

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF5275 signals, consult the *MCF5275 Reference Manual* (MCF5275RM).

Table 2 lists the signals for the MCF5275 in functional group order. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Signal Name	ignal Name GPIO		Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA				
Reset										
RESET	—	—	_	Ι	N15	K12				
RSTOUT	—	—	—	0	N14	L12				
			Clock							
EXTAL	—	—	—	Ι	L16	M14				
XTAL	—	—	—	0	M16	N14				
CLKOUT	—	—	— O		T12	P9				
		Mode	Selection							
CLKMOD[1:0]	—	—	—	Ι	N13, P13	M11, N11				
RCON	_	_		Ι	P8	M6				
	Ex	ternal Memor	y Interface a	nd Po	rts					
A[23:21]	PADDR[7:5]	<u>CS</u> [6:4]	—	0	A11, B11, C11	A8, B8, C8				
A[20:0]	_	_	O A12, B12, C12 A13, B13, C13 A14, B14, C14 B15, C15, B16 C16, D14, D15 E14:16, F14:1		A12, B12, C12, A13, B13, C13, A14, B14, C14, B15, C15, B16, C16, D14, D15, E14:16, F14:16	B9, D9, C9, C10, B10, A11, C11, B11, A12, D11, C12, B13, C13, D12, E11, D13, E12, F11, D14, E13, F13				

Table 2. MCF5274 and MCF5275 Signal Info	ormation and Muxing
--	---------------------

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA		
D[31:16]	_		_	0	M1, N1, N2, N3, P1, P2, R1, R2, P3, R3, T3, N4, P4, R4, T4, N5	J3, L1, K2, K3, M1, L2, L3, L4, K4, J4, M2, N1, N2, M3, M4, N3		
BS[3:2]	PBS[3:2]	CAS[3:2]	—	0	M3, R5	K1, L5		
ŌĒ	PBUSCTL[7]	_	—	0	K1	H4		
TA	PBUSCTL[6]	_	—	I	L13	K14		
TEA	PBUSCTL[5]	DREQ1	—	Ι	Т8	—		
R/W	PBUSCTL[4]	_	—	0	P7	L6		
TSIZ1	PBUSCTL[3]	DACK1	—	0	D16	B14		
TSIZ0	PBUSCTL[2]	DACK0	—	0	G16	E14		
TS	PBUSCTL[1]	DACK2	—	0	L4	H2		
TIP	PBUSCTL[0]	DREQ0	—	0	P6	—		
		Chij	o Selects					
CS[7:1]	PCS[7:1]	_	_	0	D10:13, E13, F13, N7	D8, A9, A10, D10, B12, C14, P4		
CS0		_		0	R6	N5		
		DDR SDR	AM Controll	er				
DDR_CLKOUT				0	T7	P6		
DDR_CLKOUT		_		0	Т6	P5		
SD_CS[1:0]	PSDRAM[7:6]	CS[3:2]	_	0	M2, T5	H3, M5		
SD_SRAS	PSDRAM[5]	_	_	0	L2	H1		
SD_SCAS	PSDRAM[4]	_	—	0	L1	G3		
SD_WE	PSDRAM[3]	_	—	0	K2	G4		
SD_A10	—	_	—	0	N6	N4		
SD_DQS[3:2]	PSDRAM[2:1]	_	—	I/O	M4, P5	J2, P3		
SD_CKE	PSDRAM[0]	_	—	0	L3	J1		
SD_VREF	—	_	—	Ι	A15, T2	A13, P2		
External Interrupts Port								
IRQ[7:5]	PIRQ[7:5]	_	_	Ι	G13, H16, H15	F14, G13, G14		
IRQ[4]	PIRQ[4]	DREQ2	—	Ι	H14	H11		
IRQ[3:2]	PIRQ[3:2]	DREQ[3:2]	_	I J14, J13 H14,		H14, H12		

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

			-		• •				
Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA			
l ² C									
I2C_SDA	PFECI2C[1]	U2RXD	_	I/O	B10	B7			
I2C_SCL	PFECI2C[0]	U2TXD	—	I/O	C10	A7			
			DMA						
DACK[3:0] and Please PCS3/PWM3 f DACK1, TSIZ0 DREQ2	DREQ[3:0] do n e refer to the follo or DACK3, PCS for DACK0, IRC 2, TEA for DREC	ot have a dedic owing pins for r 2/PWM2 for D/ 13 for DREQ3, 11, and TIP for	cated bond pa muxing: ACK2, TSIZ1 IRQ2 and TA DREQ0.	ads. for for	_	_			
			QSPI						
QSPI_CS[3:2]	PQSPI[6:5]	PWM[3:2]	DACK[3:2]	0	R13, N12	P10, N9			
QSPI_CS1	PQSPI[4]			0	T14	N10			
QSPI_CS0	PQSPI[3]			0	P12	M9			
QSPI_CLK	PQSPI[2]	I2C_SCL		0	T15	L11			
QSPI_DIN	PQSPI[1]	I2C_SDA		Ι	T13	M10			
QSPI_DOUT	PQSPI[0]	—		0	R12	L10			
		ι	JARTs						
U2RXD	PUARTH[3]	—	—	Ι	Т9	—			
U2TXD	PUARTH[2]	—	—	0	R9	—			
U2CTS	PUARTH[1]	PWM1	_	Ι	P9	_			
U2RTS	PUARTH[0]	PWM0	_	0	R8				
U1RXD	PUARTL[7]	_	_	Ι	A9	A6			
U1TXD	PUARTL[6]	_	_	0	B9	D7			
U1CTS	PUARTL[5]	_	_	Ι	C9	C7			
U1RTS	PUARTL[4]	_	_	0	D9	B6			
U0RXD	PUARTL[3]	_	_	Ι	A8	A4			
U0TXD	PUARTL[2]	_	_	0	B8	A5			
UOCTS	PUARTL[1]	—	—	Ι	C8	C6			
UORTS	PUARTL[0]			0	D7	B5			
			USB	_					
USB_SPEED	PUSBH[0]	_	_	I/O	G14	G11			
USB_CLK	PUSBL[7]	_	_	Ι	G15	F12			

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

					9.1	,
Signal Name	GPIO	Alternate1	Alternate2 Dir. ¹		MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
USB_RN	PUSBL[6]	_	_	J16	H13	
USB_RP	PUSBL[5]	_	_	Ι	J15	J11
USB_RXD	PUSBL[4]	_	—	I	L15	L14
USB_SUSP	PUSBL[3]	_	—	0	M13	N13
USB_TN	PUSBL[2]	_	—	0	K14	J14
USB_TP	PUSBL[1]	_	—	0	K15	J12
USB_TXEN	PUSBL[0]	_	—	0	L14	K13
		Timers	(and PWMs)			
DT3IN	PTIMERH[3]	DT3OUT	U2RTS	Ι	J4	G2
DT3OUT	PTIMERH[2]	PWM3	U2CTS	0	K3	G1
DT2IN	PTIMERH[1]	DT2OUT	—	I	J2	F3
DT2OUT	PTIMERH[0]	PWM2	—	0	J3	F4
DT1IN	PTIMERL[3]	DT1OUT	—	I	H1	F1
DT1OUT	PTIMERL[2]	PWM1	—	0	H2	F2
DT0IN	PTIMERL[1]	DT0OUT	—	Ι	H3	E1
DT0OUT	PTIMERL[0]	PWM0	—	0	G3	E2
		BD	M/JTAG ²			
DSCLK	—	TRST	—	Ι	P14	P13
PSTCLK	—	TCLK	—	0	P16	P12
BKPT	—	TMS	—	Ι	R15	N12
DSI	—	TDI	—	Ι	R16	M12
DSO	—	TDO	—	0	P15	K11
JTAG_EN	—	_	—	Ι	R14	P11
DDATA[3:0]	_	_	—	0	P10, N10, P11, N11	M7, N7, P8, L9
PST[3:0]	— — — O T10, R10, T11, R11		P7, L8, M8, N8			
			Test			
TEST	_	_	_	Ι	N9	N6
PLL_TEST				Ι	M14	
		Powe	r Supplies			
VDDPLL	—	_	—	Ι	M15	M13

 Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Design Recommendations

Signal Name	GPIO	Alternate1	Alternate1 Alternate2		e1 Alternate2 Dir.		MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
VSSPLL	_	—	—	Ι	K16	L13		
VSS	1	— — I A1, A10, A16, E5, E12, F6, F11, G7:10, H7:10, J1, J7:10, K7:10, L6, L11, M5, N16, R7, T1, T16				F7, F8, G6:9, H6:9, J7, J8		
OVDD	_	_	_	I	E6:8, F5, F7, F8, G5, G6, H5, H6, J11, J12, K11, K12, L9, L10, L12, M9:11	E5:7, F5, F6, H10, J9, J10, K8:10		
VDD	_	_	—	I	D8, H13, K4, N8	D6, G5, G12, L7		
SD_VDD	D_VDD — — I		I	E9:11, F9, F10, F12, G11, G12, H11, H12, J5, J6, K5, K6, L5, L7, L8, M6, M7, M8	E8:10, F9, F10, G10, H5, J5, J6, K5:7			

Table 2. MCF5274 and MCF5275 Signa	al Information and Muxing	(continued)
J		· · · · · · · · · · · · · · · · · · ·

¹ Refers to pin's primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.

² If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

5 Design Recommendations

5.1 Layout

- Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF5275.
- See application note AN1259 System Design and Layout Techniques for Noise Reduction in MCU-Based Systems.
- Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing.

5.2 Power Supply

• 33uF, 0.1 μ F, and 0.01 μ F across each power supply

Design Recommendations

5.7 Interface Recommendations

5.7.1 DDR SDRAM Controller

5.7.1.1 SDRAM Controller Signals in Synchronous Mode

Table 3 shows the behavior of SDRAM signals in synchronous mode.

Table 3. Synchronous DRAM Signal Connections

Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SDRAM_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
SD_WE	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF5275. One SDRAM_CS signal selects one SDRAM block and connects to the corresponding \overline{CS} signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
<u>BS</u> [3:2]	Column address strobe. For synchronous operation, BS[3:2] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
DDR_CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5275 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Signal Description	MCF5275 Pin
Transmit clock	FECn_TXCLK
Transmit enable	FECn_TXEN
Transmit data	FECn_TXD[3:0]
Transmit error	FECn_TXER

Table 4. Mll Mode

Mechanicals/Pinouts

6 Mechanicals/Pinouts

6.1 256 MAPBGA Pinout

Figure 3 is a consolidated MCF5274/75 pinout for the 256 MAPBGA package. Table 2 lists the signals by group and shows which signals are muxed and bonded on each of the device packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Γ
А	VSS	FEC1_ RXD1	FEC1_ RXDV	FEC1_ CRS	FEC1_ COL	FEC0_ COL	FEC0_ MDIO	U0RXD	U1RXD	VSS	A23	A20	A17	A14	SD_ VREF	VSS	А
в	FEC1_ RXD3	FEC1_ RXD2	FEC1_ RXD0	FEC1_ RXCLK	FEC0_ RXDV	FEC0_ RXCLK	FEC0_ MDC	U0TXD	U1TXD	I2C_ SDA	A22	A19	A16	A13	A11	A9	в
с	FEC1_ TXCLK	FEC1_ RXER	FEC0_ TXCLK	FEC0_ RXER	FEC0_ RXD2	FEC0_ RXD0	FEC0_ CRS	UOCTS	U1CTS	I2C_ SCL	A21	A18	A15	A12	A10	A8	с
D	FEC1_ TXER	FEC1_ TXEN	FEC0_ TXER	FEC0_ TXEN	FEC0_ RXD3	FEC0_ RXD1	UORTS	VDD	U1RTS	CS7	CS6	CS5	CS4	A7	A6	TSIZ1	D
Е	FEC1_ TXD3	FEC1_ TXD2	FEC0_ TXD3	NC	VSS	OVDD	OVDD	OVDD	SD_VDD	SD_VDD	SD_VDD	VSS	CS3	A5	A4	A3	E
F	FEC1_ TXD0	FEC1_ TXD1	FEC0_ TXD2	FEC0_ TXD1	OVDD	VSS	OVDD	OVDD	SD_VDD	SD_VDD	VSS	SD_VDD	CS2	A2	A1	A0	F
G	FEC1_ MDIO	FEC1_ MDC	DT0OUT	FEC0_ TXD0	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	IRQ7	USB_ SPEED	USB_ CLK	TSIZ0	G
н	DT1IN	DT1OUT	DT0IN	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	VDD	IRQ4	IRQ5	IRQ6	н
J	VSS	DT2IN	DT2OUT	DT3IN	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	IRQ2	IRQ3	USB_RP	USB_RN	J
к	ŌĒ	SD_WE	DT3OUT	VDD	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	IRQ1	USB_TN	USB_TP	VSSPLL	к
L	SD_ SCAS	SD_ SRAS	SD_CKE	TS	SD_VDD	VSS	SD_VDD	SD_VDD	OVDD	OVDD	VSS	OVDD	TA	USB_ TXEN	USB_ RXD	EXTAL	L
М	D31	SD_CS1	BS3	SD_DQS3	VSS	SD_VDD	SD_VDD	SD_VDD	OVDD	OVDD	OVDD	NC	USB_ SUSP	PLL_ TEST	VDDPLL	XTAL	М
N	D30	D29	D28	D20	D16	SD_A10	CS1	VDD	TEST	DDATA2	DDATA0	QSPI_ CS2	CLK MOD1	RSTOUT	RESET	VSS	N
Ρ	D27	D26	D23	D19	SD_DQS2	TIP	R/W	RCON	U2CTS	DDATA3	DDATA1	QSPI_ CS0	CLK MOD0	TRST/ DSCLK	TDO/ DSO	TCLK/ PSTCLK	Ρ
R	D25	D24	D22	D18	BS2	CS0	VSS	U2RTS	U2TXD	PST2	PST0	QSPI_ DOUT	QSPI_ CS3	JTAG_ EN	TMS/ BKPT	TDI/DSI	R
т	VSS	SD_ VREF	D21	D17	SD_CS0	DDR_CLK OUT	DDR_CLK OUT	TEA	U2RXD	PST3	PST1	CLKOUT	QSPI_ DIN	QSPI_ CS1	QSPI_ CLK	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Ī

Figure 3. MCF5274 and MCF5275 Pinout (256 MAPBGA)

6.2 Package Dimensions - 256 MAPBGA

Figure 6 shows MCF5275 256 MAPBGA package dimensions.

Figure 4. 256 MAPBGA Package Dimensions

Ordering Information

7 Ordering Information

Table 6. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF5274LVM166	MCE5274L BISC Microprocessor		166 MHz	0° to +70° C
MCF5274LCVM166		130 MAI BOA		-40° to +85° C
MCF5274VM166	MCE5274 BISC Microprocessor		166 MHz	0° to +70° C
MCF5274CVM166	Mor 3274 moc Microprocessor	230 MAI DUA		-40° to +85° C
MCF5275LCVM166	MCF5275L RISC Microprocessor	196 MAPBGA	166 MHz	-40° to +85° C
MCF5275CVM166	MCF5275 RISC Microprocessor	256 MAPBGA	166 MHz	-40° to +85° C

8 Electrical Characteristics

This appendix contains electrical specification tables and reference timing diagrams for the MCF5275 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5275.

NOTE

The parameters specified in this appendix supersede any values found in the module specifications.

8.1 Maximum Ratings

 Table 7. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Core Supply Voltage	V _{DD}	- 0.5 to +2.0	V
I/O Pad Supply Voltage (3.3V)	OV _{DD}	- 0.3 to +4.0	V
Memory Interface SSTL 2.5V Pad Supply Voltage	SDV _{DD}	- 0.3 to + 2.8	V
Memory Interface SSTL 3.3V Pad Supply Voltage	SDV _{DD}	- 0.3 to +4.0	V
PLL Supply Voltage	V _{DDPLL}	- 0.3 to +4.0	V
Digital Input Voltage ³	V _{IN}	- 0.3 to + 4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{4, 5}	۱ _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L - T _H)	– 40 to 85	°C
Storage Temperature Range	T _{stg}	– 65 to 150	°C

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or O V_{DD}).
- ³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- $^4\,$ All functional non-supply pins are internally clamped to V_{SS} and O V_{DD}.
- ⁵ Power supply must maintain regulation within operating O V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > O V_{DD}$) is greater than I_{DD} , the injection current may flow out of O V_{DD} and could result in external power supply going out of regulation. Ensure the external O V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock).Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions.

8.2 Thermal Characteristics

 Table 8 lists thermal resistance values

Characteristic		Symbol	256MBGA	196MBGA	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	26 ^{1,2}	32 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	23 ^{1,2}	29 ^{1,2}	°C/W
Junction to board		θ_{JB}	15 ³	20 ³	°C/W
Junction to case		θ^{JC}	10 ⁴	10 ⁴	°C/W
Junction to top of package	Natural convection	Ψ _{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	105	105	°C

Table 8. Thermal characteristics

¹ θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

² Per JEDEC JESD51-6 with the board horizontal.

³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
(1)

Where:

 $\begin{array}{ll} \mathsf{T}_{\mathsf{A}} & = \mathsf{Ambient \, Temperature, \, °C} \\ \Theta_{\mathsf{JMA}} & = \mathsf{Package \, Thermal \, Resistance, \, Junction-to-Ambient, \, °C/W} \\ \mathsf{P}_{\mathsf{D}} & = \mathsf{P}_{\mathsf{INT}} + \mathsf{P}_{\mathsf{I/O}} \end{array}$

 P_{INT} = $I_{DD} \times V_{DD}$, Watts - Chip Internal Power $P_{I/O}$ = Power Dissipation on Input and Output Pins — User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{\rm D} = K \div (T_{\rm I} + 273^{\circ}C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \text{ °C}) + \Theta_{JMA} \times P_D^2 (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

8.3 ESD Protection

Table 9. ESD Protection Characteristics^{1, 2}

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V
ESD Target for Machine Model	MM	200	V
HBM Circuit Description	R _{series}	1500	Ω
	С	100	pF
MM Circuit Description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) positive pulses negative pulses		1	-
Number of pulses per pin (MM) positive pulses negative pulses		3 3	—
Interval of Pulses	—	1	sec

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

8.4 DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Core Supply Voltage	V _{DD}	1.4	1.6	V
I/O Pad Supply Voltage	OV _{DD}	3.0	3.6	V
PLL Supply Voltage	V _{DDPLL}	3.0	3.6	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	2.3	2.7	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	3.0	3.6	V
SSTL Memory pads reference voltage (SD V_{DD} = 2.5V)	V _{REF}	0.5 SD V _{DD}	2	V
SSTL Memory pads reference voltage (SD V _{DD} = 3.3V)	V _{REF}	0.45 SD V _{DD}	2	V
Input High Voltage 3.3V I/O Pads	V _{IH}	0.7 x OV _{DD}	OV _{DD} + 0.3	V
Input Low Voltage 3.3V I/O Pads	V _{IL}	V _{SS} – 0.3	0.35 x OV _{DD}	V
Output High Voltage 3.3V I/O Pads $I_{OH} = -2.0 \text{ mA}$	V _{OH}	OV _{DD} - 0.5		V
Output Low Voltage 3.3V I/O Pads I _{OL} = 2.0mA	V _{OL}		0.5	V
Input Hysteresis 3.3V I/O Pads	V _{HYS}	0.06 x V _{DD}	_	mV
Input High Voltage SSTL 3.3V/2.5V ³	V _{IH}	V _{REF} + 0.3	SDV _{DD} + 0.3	V
Input Low Voltage SSTL 3.3V/2.5V ³	V _{IL}	V _{SS} - 0.3	V _{REF} - 0.3	V
Output High Voltage SSTL 3.3V/2.5V ⁴ $I_{OH} = -5.0 \text{ mA}$	V _{OH}	SDV _{DD} - 0.25V	_	V
Output Low Voltage SSTL 3.3V/2.5V ⁴ I _{OL} = 5.0 mA	V _{OL}		0.35	V
Input Leakage Current V _{in} = V _{DD} or V _{SS} , Input-only pins	l _{in}	-1.0	1.0	μA
High Impedance (Off-State) Leakage Current V _{in} = V _{DD} or V _{SS} , All input/output and output pins	I _{OZ}	-1.0	1.0	μA
Weak Internal Pull Up Device Current, tested at V _{IL} Max. ⁵	I _{APU}	-10	-130	μA
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF

Table 10. DC Electrical Specifications¹

Characteristic	Symbol	Min	Мах	Unit
Load Capacitance ⁷ Low Drive Strength High Drive Strength	CL		25 50	pF
Core Operating Supply Current ⁸ Master Mode WAIT DOZE STOP	I _{DD}		175 15 10 100	mA mA mA μA
I/O Pad Operating Supply Current Master Mode Low Power Modes	OI _{DD}		250 250	mA μA
DC Injection Current ^{3, 9, 10, 11} $V_{NEGCLAMP} = V_{SS} - 0.3 V$, $V_{POSCLAMP} = V_{DD} + 0.3$ Single Pin Limit Total MCU Limit, Includes sum of all stressed pins	lıc	-1.0 -10	1.0 10	mA

Table 10. DC Electrical Specifications¹ (continued)

¹ Refer to Table 11 for additional PLL specifications.

² V_{BEE} is specified as a nominal value only instead of a range, so no maximum value is listed.

³ This specification is guaranteed by design and is not 100% tested.

⁴ The actual V_{OH} and V_{OL} values for SSTL pads are dependent on the termination and drive strength used. The specifications numbers assume no parallel termination.

⁵ Refer to the MCF5274 signals chapter for pins having weak internal pull-up devices.

⁶ This parameter is characterized before qualification rather than 100% tested.

⁷ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination.

⁸ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

⁹ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

¹⁰ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

¹¹ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

8.5 Oscillator and Phase Lock Loop (PLLMRFM) Electrical Specifications

Characteristic	Symbol	Min	Мах	Unit
PLL Reference Frequency Range Crystal reference External reference 1:1 Mode (NOTE: f _{sys/2} = 2 × fref_1:1)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 83	MHz
Core frequency CLKOUT Frequency ² External reference	f _{core}	0	166 83	MHz MHz
On-Chip PLL Frequency	f _{sys/2}	f _{ref} / 32	83	MHz
Loss of Reference Frequency ^{3, 5}	f _{LOR}	100	1000	kHz
Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	TBD	TBD	MHz
Crystal Start-up Time ^{5, 6}	t _{cst}	—	10	ms
EXTAL Input High Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V _{IHEXT} V _{IHEXT}	TBD TBD	TBD TBD	V
EXTAL Input Low Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V _{ILEXT} V _{ILEXT}	TBD TBD	TBD TBD	V
XTAL Output High Voltage I _{OH} = 1.0 mA	V _{OH}	TBD	_	V
XTAL Output Low Voltage I _{OL} = 1.0 mA	V _{OL}	_	TBD	V
XTAL Load Capacitance ⁷		5	30	pF
PLL Lock Time ⁸	t _{lpll}	—	750	μS
Power-up To Lock Time ^{6, 9} With Crystal Reference Without Crystal Reference ¹⁰	t _{lplk}		11 750	ms μs
1:1 Mode Clock Skew (between CLKOUT and EXTAL) ¹¹	t _{skew}	-1	1	ns
Duty Cycle of reference ⁵	t _{dc}	40	60	% f _{sys/2}
Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
CLKOUT Period Jitter, ^{5, 6, 9,12, 13} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5 .01	% f _{sys/2}
Frequency Modulation Range Limit ¹⁴ , ¹⁵ (f _{sys/2} Max must not be exceeded)	C _{mod}	0.8	2.2	% f _{sys/2}
ICO Frequency. $f_{ico} = f_{ref} \cdot 2 \cdot (MFD+2)^{16}$	f _{ico}	48	83	MHz

Table 11. PLL Electrical Specifications¹

¹ All values given are initial design targets and subject to change.

² All internal registers retain data at 0 Hz.

³ "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

Name	Characteristic	Symbol	Min	Max	Unit
Data Outputs					
B11	CLKOUT high to data output (D[31:16]) valid	t _{CHDOV}	_	9	ns
B12	CLKOUT high to data output (D[31:16]) invalid	t _{CHDOI}	1.0	—	ns
B13	CLKOUT high to data output (D[31:16]) high impedance	t _{CHDOZ}	_	9	ns

Table 13. External Bus Output Timing Specifications (continued)

 1 CS, BS, and OE transition after the falling edge of CLKOUT.

Read/write bus timings listed in Table 13 are shown in Figure 8, Figure 9, and Figure 10.

Figure 8. Read/Write (Internally Terminated) SRAM Bus Timing

Figure 9 shows a bus cycle terminated by \overline{TA} showing timings listed in Table 13.

Figure 9. SRAM Read Bus Cycle Terminated by TA

8.8 DDR SDRAM AC Timing Characteristics

The DDR SDRAM controller uses SSTL2 and I/O drivers. Class I or Class II drive strength is available and is user programmable. DDR Clock timing specifications are given in Table 14 and Figure 11.

Symbol	Characteristic	Min	Мах	Unit
V _{MP}	Clock output mid-point voltage	1.05	1.45	V
V _{OUT}	Clock output voltage level	-0.3	SDV _{DD} + 0.3	V
V _{ID}	Clock output differential voltage (peak to peak swing)	0.7	SDV _{DD} + 0.6	V
V _{IX}	Clock crossing point voltage	1.05	1.45	V

Table 14. DDR Clock Timing Specifications¹

¹ SD V_{DD} is nominally 2.5V.

Figure 11. DDR Clock Timing Diagram

When using the DDR SDRAM controller the timing numbers in Table 15 must be followed to properly latch or drive data onto the memory bus. All timing numbers are relative to the two DQS byte lanes.

NUM	Characteristic ¹	Symbol	Min	Мах	Unit
	Frequency of operation ²		TBD	83	MHz
DD1	Clock Period (DDR_CLKOUT)	t _{CK}	12	TBD	ns
DD2	Pulse Width High ³	t _{СКН}	0.45	0.55	t _{CK}
DD3	Pulse Width Low ³	t _{CKI}	0.45	0.55	t _{CK}
DD4	DDR_CLKOUT high to DDR address, SD_CKE, SD_CS[1:0], SD_SCAS, SD_SRAS, SD_WE valid	t _{CMV}	—	0.5 x t _{CK} + 1	ns
DD5	DDR_CLKOUT high to DDR address, SD_CKE, SD_CS, SD_SCAS, SD_SRAS, SD_WE invalid	t _{СМН}	2	—	ns
DD6	Write command to first SD_DQS Latching Transition	t _{DQSS}	—	1.25	t _{CK}
DD7	SD_DQS high to Data and DM valid (write) - setup ^{4,5}	t _{QS}	1.5	—	ns
DD8	SD_DQS high to Data and DM invalid (write) - hold ⁴	t _{QH}	1	—	ns
DD9	SD_DQS high to Data valid (read) - setup ⁶	t _{IS}	—	1	ns
DD10	SD_DQS high to Data invalid (read) - hold ⁷	t _{IH}	0.25 x t _{CK} + 1	—	ns
DD11	SD_DQS falling edge to CLKOUT high - setup	t _{DSS}	0.5	—	ns
DD12	SD_DQS falling edge to CLKOUT high - hold	t _{DSH}	0.5	—	ns

Table 15. DDR Timing

8.15 JTAG and Boundary Scan Timing

Table 27. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4 x t _{CYC}	_	ns
J3	TCLK Clock Pulse Width	t _{JCW}	26	—	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	—	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	—	ns
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	—	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

1

8.16 Debug AC Timing Specifications

Table 28 lists specifications for the debug AC timing parameters shown in Figure 28.

Num	Characteristic	166 N	lHz	Unite	
Num	Characteristic	Min	Max	Units	
D0	PSTCLK cycle time	_	0.5	t _{CYC}	
D1	PST, DDATA to PSTCLK setup	4	_	ns	
D2	CLKOUT to PST, DDATA hold	1.0		ns	
D3	DSI-to-DSCLK setup	1 x t _{CYC}	_	ns	
D4 ¹	DSCLK-to-DSO hold	4 x t _{CYC}	_	ns	
D5	DSCLK cycle time	5 x t _{CYC}		ns	
D6	BKPT input data setup time to PSTCLK Rise	4	_	ns	
D7	BKPT input data hold time to PSTCLK Rise	1.5	_	ns	
D8	PSTCLK high to BKPT high Z	0.0	10.0	ns	

Table 28. Debug AC Timing Specification

DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

Figure 27 shows real-time trace timing for the values in Table 28.

Figure 27. Real-Time Trace AC Timing

Figure 28 shows BDM serial port AC timing for the values in Table 28.

