

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	SH2A
Core Size	32-Bit Single-Core
Speed	160MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f72374adfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2.5 T Bit

SH2-A/SH2A-FPU CPU		Description	Examp	Example of Other CPU	
CMP/GE	R1,R0	T bit is set when $R0 \ge R1$.	CMP.W	R1,R0	
BT	TRGET0	The program branches to TRGET0	BGE	TRGET0	
BF	TRGET1	when $R0 \ge R1$ and to TRGET1 when $R0 < R1$.	BLT	TRGET1	
ADD	#−1,R0	T bit is not changed by ADD.	SUB.W	#1,R0	
CMP/EQ	#0,R0	T bit is set when $R0 = 0$.	BEQ	TRGET	
BT	TRGET	The program branches if $R0 = 0$.			

(10) Immediate Data

Byte immediate data is located in an instruction code. Word or longword immediate data is not located in instruction codes but in a memory table. The memory table is accessed by an immediate data transfer instruction (MOV) using the PC relative addressing mode with displacement.

With the SH-2A/SH2A-FPU, 17- to 28-bit immediate data can be located in an instruction code. However, for 21- to 28-bit immediate data, an OR instruction must be executed after the data is transferred to a register.

Classification	SH-2A/SH2A-FPU CPU		Exampl	e of Other CPU
8-bit immediate	MOV	#H'12,R0	MOV.B	#H'12,R0
16-bit immediate	MOVI20	#H'1234,R0	MOV.W	#H'1234,R0
20-bit immediate	MOVI20	#H'12345,R0	MOV.L	#H'12345,R0
28-bit immediate	mediate MOVI20S #H'12345,R0		MOV.L	#H'1234567,R0
	OR	#H'67,R0		
32-bit immediate	MOV.L	@(disp,PC),R0	MOV.L	#H'12345678,R0
	.DATA.L	H'12345678		

Table 2.6 Immediate Data Accessing

Note: @(disp, PC) accesses the immediate data.

4.2 Input/Output Pins

Table 4.1 lists the clock pulse generator pins and their functions.

Table 4.1 Pin Configuration and Functions of the Clock Pulse Generator

Pin Name	Symbol	I/O	Function
pins (clock input	XTAL	Output	Connected to the crystal resonator. (Leave this pin open when the crystal resonator is not in use.)
pins)	EXTAL	Input	Connected to the crystal resonator or used to input an external clock.
Clock output pin	CK*	Output	Clock output pin. This pin can be placed in high-impedance state.
Note: * Can be	used for the	SH723	9A and SH7237A only.

To use the clock output (CK) pin, appropriate settings may be needed in the pin function controller (PFC) in some cases. For details, refer to section 21, Pin Function Controller (PFC).

5.3 Address Errors

5.3.1 Address Error Sources

Address errors occur when instructions are fetched or data read or written, as shown in table 5.6.

Table 5.6 Bus Cycles and Address Errors

Bus Cycle			
Туре	Bus Master	Bus Cycle Description	Address Errors
Instruction	CPU	Instruction fetched from even address	None (normal)
fetch		Instruction fetched from odd address	Address error occurs
		Instruction fetched from other than on-chip peripheral module space*	None (normal)
		Instruction fetched from on-chip peripheral module space*	Address error occurs
		Instruction fetched from external memory space in single-chip mode	Address error occurs
Data	CPU, DMAC, vrite or DTC	Word data accessed from even address	None (normal)
read/write		Word data accessed from odd address	Address error occurs
		Longword data accessed from a longword boundary	None (normal)
		Longword data accessed from other than a long-word boundary	Address error occurs
		Byte or word data accessed in on-chip peripheral module space*	None (normal)
		Double longword data accessed from a double longword boundary	None (normal)
		Double Longword data accessed from other than a double longword boundary	Address error occurs

6.10.4 Notes on Canceling Software Standby Mode with an IRQx Interrupt Request

When canceling software standby mode using an IRQx interrupt request, change the IRQ sense select setting of ICRx in a state in which no IRQx interrupt requests are generated and clear the IRQxF flag in IRQRRx to 0 by the automatic clearing function of the IRQx interrupt processing.

If the IRQxF flag in the IRQ interrupt request register x (IRQRRx) is 1, changing the setting of the IRQ sense select bits in the interrupt control register x (ICRx) or clearing the IRQxF flag in IRQRRx to 0 will clear the relevant IRQx interrupt request but will not clear the software standby cancellation request.

Table 11.34 TIOC4B Output Level Select Function

Bit 4	Function						
			Compare Match Output				
OLS3P	Initial Output	Active Level	Up Count	Down Count			
0	High level	Low level	Low level	High level			
1	Low level	High level	High level	Low level			

Table 11.35 TIOC4C Output Level Select Function

Bit 3	Function					
			Compare Match Output			
OLS2N	Initial Output	Active Level	Up Count	Down Count		
0	High level	Low level	High level	Low level		
1	Low level	High level	Low level	High level		
Notes Th		voveform initial or	tout value shanges	to the estive level ofter elence of		

Note: The reverse phase waveform initial output value changes to the active level after elapse of the dead time after count start.

Table 11.36 TIOC4A Output Level Select Function

Bit 2	Function						
			Compare Match Output				
OLS2P	Initial Output	Active Level	Up Count	Down Count			
0	High level	Low level	Low level	High level			
1	Low level	High level	High level	Low level			

Table 11.37 TIOC3D Output Level Select Function

Bit 1	Function						
		Compare Match Output					
OLS1N	Initial Output	Active Level	Up Count	Down Count			
0	High level	Low level	High level	Low level			
1	Low level	High level	Low level	High level			

Note: The reverse phase waveform initial output value changes to the active level after elapse of the dead time after count start.

Μφ		
TCNT input clock		
TCNT	N N + 1	
TGR	N	
Compare match signal		
TIOC pin	χ	

Figure 11.98 Output Compare Output Timing (Complementary PWM Mode/Reset Synchronous PWM Mode)

(3) Input Capture Signal Timing

Figure 11.99 shows input capture signal timing.

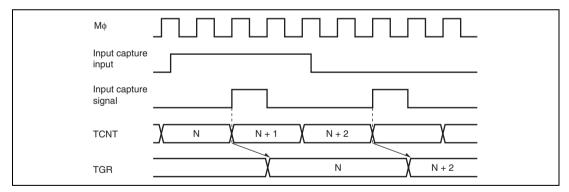


Figure 11.99 Input Capture Input Signal Timing

Bit	Bit Name	Initial Value	R/W	Description
12	MTU2P3CZE	1	R/(W)*1	MTU2 Port 3 Output Comparison/High-Impedance Enable
				Specifies whether to compare output levels for the MTU2 high-current PE13/TIOC4B and PE15/TIOC4D pins and to place them in high-impedance state when the OSF1 bit is set to 1 while the OCE1 bit is 1 or when either the selected POE pin flag* ² or MTU2CH34HIZ bits is set to 1.
				0: Does not compare output levels or place the pins in high-impedance state
				1: Compares output levels and places the pins in high-impedance state
11	—	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
10	MTU2SP1CZE	1	R/(W)*1	MTU2S Port 1 Output Comparison/High-Impedance Enable
				Specifies whether to compare output levels for the MTU2S high-current PE5/TIOC3BS and PE6/TIOC3DS pins and to place them in high-impedance state when the OSF2 bit is set to 1 while the OCE2 bit is 1 or when either the selected POE pin flag* ² or MTU2SHIZ bits is set to 1.
				0: Does not compare output levels or place the pins in high-impedance state.
				1: Compares output levels and places the pins in high-impedance state.

13.4.1 Input Level Detection Operation

If the input conditions set by ICSR1 to ICSR3 occur on the POE0, POE4 and POE8 pins, the highcurrent pins and the pins for channel 0 of the MTU2 are placed in high-impedance state. Note however, that these high-current and MTU2 pins enter high-impedance state only when general input/output function, MTU2 function, or MTU2S function is selected for these pins.

(1) Falling Edge Detection

When a change from a high to low level is input to the POE0, POE4 and POE8 pins, the highcurrent pins and the pins for channel 0 of the MTU2 are placed in high-impedance state.

Figure 13.2 shows the sample timing after the level changes in input to the $\overline{POE0}$, $\overline{POE4}$ and $\overline{POE8}$ pins until the respective pins enter high-impedance state.

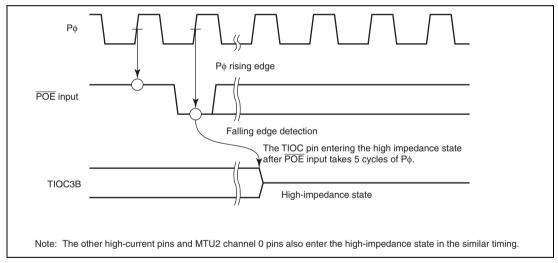


Figure 13.2 Falling Edge Detection

(2) Low-Level Detection

Figure 13.3 shows the low-level detection operation. Sixteen continuous low levels are sampled with the sampling clock selected by ICSR1 to ICSR3. If even one high level is detected during this interval, the low level is not accepted.

The timing when the high-current pins enter the high-impedance state after the sampling clock is input is the same in both falling-edge detection and in low-level detection.

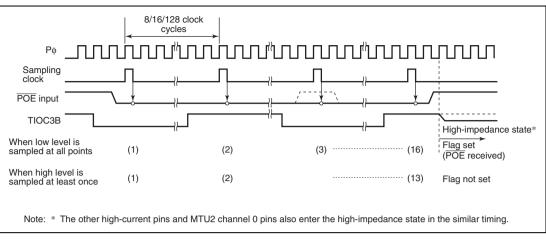


Figure 13.3 Low-Level Detection Operation

13.4.2 Output-Level Compare Operation

Figure 13.4 shows an example of the output-level compare operation for the combination of TIOC3B and TIOC3D. The operation is the same for the other pin combinations.

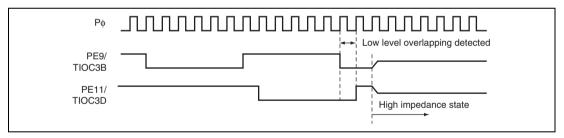
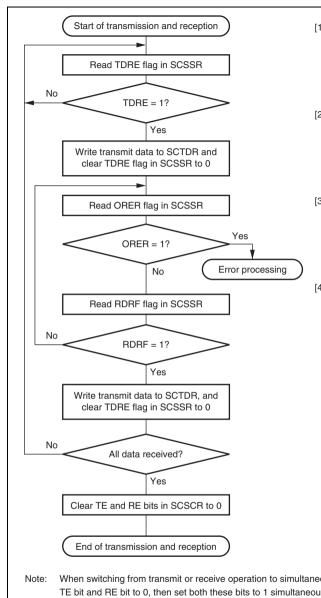



Figure 13.4 Output-Level Compare Operation

- [1] SCI status check and transmit data write: Read SCSSR and check that the TDRE flag is set to 1, then write transmit data to SCTDR and clear the TDRE flag to 0. Transition of the TDRE flag from 0 to 1 can also be identified by a TXI interrupt.
- [2] Receive error processing: If a receive error occurs, read the ORER flag in SCSSR, and after performing the appropriate error processing, clear the ORER flag to 0. Reception cannot be resumed if the ORER flag is set to 1.
- [3] SCI status check and receive data read: Read SCSSR and check that the RDRF flag is set to 1, then read the receive data in SCRDR and clear the RDRF flag to 0. Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt.
- [4] Serial transmission/reception continuation procedure:

To continue serial transmission/reception. before the MSB (bit 7) of the current frame is received, finish reading the RDRF flag, reading SCRDR, and clearing the RDRF flag to 0. Also, before the MSB (bit 7) of the current frame is transmitted, read 1 from the TDRE flag to confirm that writing is possible. Then write data to SCTDR and clear the TDRE flag to 0. Checking and clearing of the TDRE flag is automatic when the DTC is activated by a transmit data empty interrupt (TXI) request and data is written to SCTDR. Also, the RDRF flag is cleared automatically when the DTC is activated by a receive data full interrupt (RXI) request and the SCRDR value is read.

When switching from transmit or receive operation to simultaneous transmit and receive operations, first clear the TE bit and RE bit to 0, then set both these bits to 1 simultaneously.

Figure 16.15 Sample Flowchart for Transmitting/Receiving Serial Data

16.7 Usage Notes

16.7.1 SCTDR Writing and TDRE Flag

The TDRE flag in the serial status register (SCSSR) is a status flag indicating transferring of transmit data from SCTDR into SCTSR. The SCI sets the TDRE flag to 1 when it transfers data from SCTDR to SCTSR.

Data can be written to SCTDR regardless of the TDRE bit status.

If new data is written in SCTDR when TDRE is 0, however, the old data stored in SCTDR will be lost because the data has not yet been transferred to SCTSR. Before writing transmit data to SCTDR, be sure to check that the TDRE flag is set to 1.

16.7.2 Multiple Receive Error Occurrence

If multiple receive errors occur at the same time, the status flags in SCSSR are set as shown in table 16.18. When an overrun error occurs, data is not transferred from the receive shift register (SCRSR) to the receive data register (SCRDR) and the received data will be lost.

Table 16.19 SCSSR Status Flag Values and Transfer of Received Data

	SCSSR Status Flags				Receive Data Transfer from SCRSR to
Receive Errors Generated	RDRF	ORER	FER	PER	SCRDR
Overrun error	1	1	0	0	Not transferred
Framing error	0	0	1	0	Transferred
Parity error	0	0	0	1	Transferred
Overrun error + framing error	1	1	1	0	Not transferred
Overrun error + parity error	1	1	0	1	Not transferred
Framing error + parity error	0	0	1	1	Transferred
Overrun error + framing error + parity error	1	1	1	1	Not transferred

17.3.13 Serial Extended Mode Register (SCSEMR)

SCSEMR is an 8-bit register that extends the SCIF functions. The transfer rate can be doubled by setting the basic clock in asynchronous mode.

Be sure to set this register to H'00 in clocked synchronous mode. SCSEMR is initialized to H'00 by a power-on reset.

Bit:	7	6	5	4	3	2	1	0
	ABCS	-	-	-	-	-	-	-
Initial value: B/W:	0 B/W	0 B/W	0 R/W	0 R/W	0 R/W	0 B/W	0 B/W	0 B/W
n/w.								

		Initial		
Bit	Bit Name	Value	R/W	Description
7	ABCS	0	R/W	Asynchronous Basic Clock Select
				Selects the basic clock for 1-bit period in asynchronous mode.
				Setting of ABCS is valid when the asynchronous mode bit (C/ \overline{A} in SCSMR) = 0.
				0: Basic clock with a frequency of 16 times the transfer rate
				1: Basic clock with a frequency of 8 times the transfer rate
6 to 0	_	All 0	R/W	Reserved
				These bits are always read as 0. The write value should always be 0.

18.4.3 RSPI System Configuration Example

(1) Single Master/Single Slave (with This LSI Acting as Master)

Figure 18.2 shows a single-master/single-slave RSPI system configuration example when this LSI is used as a master. In the single-master/single-slave configuration, the SSL0 to SSL3 outputs of this LSI (master) are not used. The SSL input of the RSPI slave is fixed to 0, and the RSPI slave is always maintained in a select state. In the transfer format corresponding to the case where the CPHA bit in the RSPI control register (SPCR) is 0, there are slave devices for which the SSL signal cannot be fixed to the active level. In situations where the SSL signal cannot be fixed, the SSL output of this LSI should be connected to the SSL input of the slave device.

This LSI (master) always drives the RSPCK and MOSI signals. The RSPI slave always drives the MISO signal.

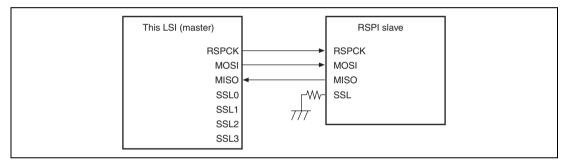


Figure 18.2 Single-Master/Single-Slave Configuration Example (This LSI = Master)

(1) Master Control Register (MCR)

The Master Control Register (MCR) is a 16-bit read/write register that controls RCAN-ET.

• MCR (Address = H'000)

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MCR	15 MCR14	-	-	-		TST[2:0]		MCR7	MCR6	MCR5	-	-	MCR2	MCR1	MCR0
Initial value: 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
R/W: R/W	/ R/W	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W

Bit 15 — ID Reorder (MCR15): This bit changes the order of STDID, RTR, IDE and EXTID of both message control and LAFM.

Bit15 : MCR15	Description
0	RCAN-ET is the same as HCAN2
1	RCAN-ET is not the same as HCAN2 (Initial value)

MCR15 (ID Reord	er) = 0																				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
H'100 + N*32	0	STDID[10:0] RTR IDE EXTID[17:16										[17:16]	Word/LW	Control 0							
H'102 + N*32		EXTID[15:0]										Word	Control 0								
H'104 + N*32	0					STDI	D_LAFN	A[10:0]					0	IDE_ LAFM	EXTID [17	_LAFM :16]	Word/LW LAFM Field				
H'106 + N*32							F	XTID_L	AEM[15	-01							144.001	LAFINI FIEID			
									su intro	.0]							Word				
	er) = 1 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	wora	I			
	,	14 RTR	13	12	11	10		8	7 TDID[10	6	5	4	3	2	1 EXTID	0 [17:16]	Word/LW	Castal			
MCR15 (ID Reord	15		-	12	11	10		8 S	7	6	5	4	3	2	1 EXTID	-		Control 0			
MCR15 (ID Reord H'100 + N*32	15		-	12	11	10		8 S EXTII	7 TDID[10	6	5	4	3	2	EXTID	-	Word/LW	Control 0			

Figure 20.6 ID Reorder

This bit can be modified only in reset mode.

Bit 2— **Message Transmission in progress Flag (GSR2):** Flag that indicates to the CPU if the RCAN-ET is in Bus Off or transmitting a message or an error/overload flag due to error detected during transmission. The timing to set TXACK is different from the time to clear GSR2. TXACK is set at the 7th bit of End Of Frame. GSR2 is set at the 3rd bit of intermission if there are no more messages ready to be transmitted. It is also set by arbitration lost, bus idle, reception, reset or halt transition.

Bit 2 : GSR2	Description
0	RCAN-ET is in Bus Off or a transmission is in progress
1	[Setting condition] Not in Bus Off and no transmission in progress (Initial value)

Bit 1—Transmit/Receive Warning Flag (GSR1): Flag that indicates an error warning.

Bit 1 : GSR1	Description
0	[Reset condition] When (TEC < 96 and REC < 96) or Bus Off (Initial value)
1	[Setting condition] When $96 \le TEC < 256$ or $96 \le REC < 256$

Note: REC is incremented during Bus Off to count the recurrences of 11 recessive bits as requested by the Bus Off recovery sequence. However the flag GSR1 is not set in Bus Off.

Bit 0—Bus Off Flag (GSR0): Flag that indicates that RCAN-ET is in the bus off state.

Bit 0 : GSR0	Description
0	[Reset condition] Recovery from bus off state or after a HW or SW reset (Initial value)
1	[Setting condition] When TEC \ge 256 (bus off state)

Note: Only the lower 8 bits of TEC are accessible from the user interface. The 9th bit is equivalent to GSR0.

The following table shows conditions to access registers.

		HOAR-ET Hegisters											
Status Mode	MCR GSR	IRR IMR	BCR	MBIMR	Flag_register	mailbox (ctrl0, LAFM)		mailbox (ctrl1)					
Reset	yes	yes	yes	yes	yes	yes	yes	yes					
Transmission Reception Halt Request	yes	yes	no*1	yes	yes	no*1 yes*2	yes*2	no* ¹ yes* ²					
Halt	yes	yes	no*1	yes	yes	yes	yes	yes					
Sleep	yes	yes	no	no	no	no	no	no					

RCAN-ET Registers

Notes: 1. No hardware protection

2. When TXPR is not set.

Bit	Bit Name	Initial Value	R/W	Description
3	SUSRDY	0	R	Suspend Ready
				Indicates whether the FCU is ready to accept a P/E suspend command.
				0: The FCU cannot accept a P/E suspend command
				1: The FCU can accept a P/E suspend command
				[Setting condition]
				 After initiating programming/erasure, the FCU has entered a state where it is ready to accept a P/E suspend command.
				[Clearing conditions]
				• The FCU has accepted a P/E suspend command.
				The FCU has entered a command-locked state
				during programming or erasure.
2	_	0	R	Reserved
				This bit is always read as 0. Correct operation is not guaranteed if 1 is written to this bit.
1	ERSSPD	0	R	Erasure-Suspended Status
				Indicates that the FCU has entered an erasure suspension process or an erasure-suspended status (see section 23.6.4, Suspending Operation).
				0: The FCU is in a status other than the below- mentioned.
				1: The FCU is in an erasure suspension process or an erasure-suspended status.
				[Setting condition]
				The FCU has initiated an erasure suspend command.
				[Clearing condition]
				• The FCU has accepted a resume command.

(3) 256-Byte Programming

In response to a 256-byte programming command sent from the host, this LSI programs the ROM. After completing ROM programming successfully, this LSI returns a response (H'06). If an error has occurred during ROM programming, this LSI returns an error response (H'D0).

Command	H'50		Programmi	ng Address		
	Data	Data		Data		
	SUM					
Response	H'06					
	ГТ		I			
Error response	H'D0	Error				
[Legend]						
Programming add	ress (4 bytes):	Target add	lress of progra	mming		
		To program specified.	m the ROM, a	256-byte bour	ndary address shou	ld be
		To termina	ate programmi	ng, H'FFFFFF	FF should be spec	ified.
Data (256 bytes):	Programming	data				
	H'FF should b	e specified for	or the bytes that	at do not need	to be programmed	l.
		• • •	-	-	ecified (only the	
	programming	address and	SUM should b	e sent in that c	order).	
SUM (1 byte):	Checksum					
Error (1 byte):	Error code					
	H'11: Checks	um error				
	H'2A: Addres	s error (the sp	pecified addres	ss is not in the	target MAT)	
	H'53: Program	nming cannot	be done due t	o a programm	ing error	

Module Name	Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
MTU2	TGRB_1										
	TICCR	—	_	—	—	I2BE	I2AE	I1BE	I1AE		
	TCR_2	—	CCL	R[1:0]	CKE	G[1:0]		TPSC[2:0]			
	TMDR_2 TIOR_2	—		—	—	MD[3:0]					
			IOB	[3:0]			IOA[3	:0]			
	TIER_2	TTGE		TCIEU	TCIEV	_	—	TGIEB	TGIEA		
	TSR_2	TCFD	_	TCFU	TCFV	—	—	TGFB	TGFA		
	TCNT_2										
	TGRA_2										
	TGRB_2										
	TCR_3		CCLR[2:0]		CKE	G[1:0]		TPSC[2:0]			
	TMDR_3	_	_	BFB	BFA		MD[3				
	TIORH_3		IOB	[3:0]			IOA[3				
	TIORL_3			[3:0]		IOC[3:0]					
	TIER_3	TTGE	_	_	TCIEV	TGIED TGIEC TGIEB TGIEA					
	TSR_3	TCFD		_	TCFV	TGFD	TGFC	TGFB	TGFA		
	TCNT_3										
	TGRA_3										
	TGRB_3										
	TGRC_3										
	TGRD_3										
	TBTM_3		_					TTSB	TTSA		
	TCR_4		CCLR[2:0]		CKE	G[1:0]	1	TPSC[2:0]	1		
	TMDR_4	_	_	BFB	BFA		MD[3	:0]			
	TIORH_4		IOB	[3:0]	I		IOA[3	:0]			
	TIORL_4		IOD	[3:0]			IOC[3	:0]			

Table 29.6 Permissible Output Currents

Item	Symbol	Min.	Тур.	Max.	Unit
Permissible output low current (per pin)	I _{ol}	_	—	2.0*	mA
Permissible output low current (total)	$\Sigma I_{_{OL}}$	_	—	80	mA
Permissible output high current (per pin)	$-\mathbf{I}_{_{\mathrm{OH}}}$	_	—	2*	mA
Permissible output high current (total)	$\Sigma - I_{_{OH}}$	_	_	25	mA

Note: * TIOC3B, TIOC3D, TIOC4A to TIOC4D, TIOC3BS, TIOC3DS, TIOC4AS to TIOC4DS: SH7239B and SH7237B; $I_{oL} = 15 \text{ mA} (Max.)/-I_{OH} = 5 \text{ mA} (Max.)$, SH7239A and SH7237A; $I_{oL} = 10 \text{ mA} (Max.)/-I_{OH} = 5 \text{ mA} (Max.)$. Of these pins, the number of pins from which current more than 2.0 mA runs evenly should be 3 or less.

Caution: To protect the LSI's reliability, do not exceed the output current values in table 29.6.