

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f688-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16F688 is covered by this data sheet. It is available in 14-pin PDIP, SOIC, TSSOP and QFN packages. Figure 1-1 shows a block diagram of the PIC16F688 device. Table 1-1 shows the pinout description.

FIGURE 1-1: PIC16F688 BLOCK DIAGRAM

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on	Page
			2	2	2	2		2	2	POR/BOR	90
Bank 2	1	1								1	T
100h	INDF	Addressing	this locatior	n uses conte	ents of FSR to	o address da	ata memory (not a physic	al register)	XXXX XXXX	20, 117
101h	TMR0	Timer0 Mo	dule's registe	er						xxxx xxxx	45, 117
102h	PCL	Program C	ounter's (PC) Least Sigr	nificant Byte					0000 0000	19, 117
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	13, 117
104h	FSR	Indirect Da	ta Memory A	ddress Poir	nter					XXXX XXXX	20, 117
105h	PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	33, 117
106h	—	Unimpleme	ented							—	—
107h	PORTC	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 0000	42, 117
108h	_	Unimpleme	ented							—	—
109h	_	Unimpleme	ented							—	—
10Ah	PCLATH	_	_		Write Buffe	r for upper 5	bits of Prog	ram Counter		0 0000	19, 117
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	15, 117
10Ch	_	Unimpleme	Unimplemented							_	_
10Dh	_	Unimpleme	Jnimplemented							_	_
10Eh	_	Unimpleme	ented								—
10Fh	_	Unimpleme	ented								—
110h	—	Unimpleme	ented							_	—
111h	_	Unimpleme	ented							—	_
112h	_	Unimpleme	ented							—	_
113h	_	Unimpleme	ented							—	_
114h	_	Unimpleme	ented							—	_
115h	_	Unimpleme	ented							—	_
116h	_	Unimpleme	ented							—	_
117h	_	Unimpleme	ented							_	_
118h	_	Unimpleme	ented							_	_
119h	_	Unimpleme	ented							_	_
11Ah	_	Unimpleme	ented							_	_
11Bh		Unimpleme	ented							_	_
11Ch	_	Unimpleme	ented							_	_
11Dh	_	Unimpleme	ented							_	_
11Eh	_	Unimpleme	ented							_	_
11Fh	_	Unimpleme	ented							_	_

PIC16F688 SPECIAL REGISTERS SUMMARY BANK 2 **TABLE 2-3:**

Note

Legend: - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. 1:

MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the 2: mismatched exists.

4.2 Additional Pin Functions

Every PORTA pin on the PIC16F688 has an interrupton-change option and a weak pull-up option. PORTA also provides an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 ANSEL REGISTER

The ANSEL register is used to configure the Input mode of an I/O pin to analog. Refer to Register 4-3. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit of the OPTION register. A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

4.2.3 INTERRUPT-ON-CHANGE

Each of the PORTA pins is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-5. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RAIF) in the INTCON register.

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then
- b) Clear the flag bit RAIF.

A mismatch condition will continue to set flag bit RAIF. Reading PORTA will end the mismatch condition and allow flag bit RAIF to be cleared. The <u>latch</u> holding the last read value is not affected by a MCLR nor BOR Reset. After these Resets, the RAIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RAIF interrupt flag may not get set.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at F	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit		x = Bit is unki	nown				

REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

bit 7-0 ANS<7:0>: Analog Select bits

Analog select between analog or digital function on pins AN<7:0>, respectively.

1 =Analog input. Pin is assigned as analog input⁽¹⁾.

0 = Digital I/O. Pin is assigned to port or special function.

-

-

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

4.3.1 RC0/AN4/C2IN+

Figure 4-7 shows the diagram for this pin. The RC0 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D Converter
- an analog input to the comparator

4.3.2 RC1/AN5/C2IN-

Figure 4-7 shows the diagram for this pin. The RC1 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D Converter
- an analog input to the comparator

4.3.3 RC2/AN6

Figure 4-8 shows the diagram for this pin. The RC2 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D Converter

4.3.4 RC3/AN7

Figure 4-8 shows the diagram for this pin. The RC3 is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D Converter

FIGURE 4-8: BLOCK DIAGRAM OF RC2 AND RC3

FIGURE 7-2: COMPARATOR C1 OUTPUT BLOCK DIAGRAM

FIGURE 7-3: COMPARATOR C2 OUTPUT BLOCK DIAGRAM

8.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Results formatting

8.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding Port section for more information.

Note:	Analog voltages on any pin that is defined						
	as a digital input may cause the input						
	buffer to conduct excess current.						

8.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 8.2** "**ADC Operation**" for more information.

8.1.3 ADC VOLTAGE REFERENCE

The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference.

8.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 8-3.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 14.0 "Electrical Specifications"** for more information. Table 8-1 gives examples of appropriate ADC clock selections.

Note:	Unless using the FRC, any changes in the						
	system clock frequency will change the						
	ADC clock frequency, which may						
	adversely affect the ADC result.						

REGISTER 8-3:	ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0
---------------	--

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
ADRES9	ADRES8	ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2		
bit 7							bit 0		
Legend:									
R = Readable bit $W = Writable bit$			it	U = Unimplemented bit, read as '0'					

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result

REGISTER 8-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
ADRES1	ADRES0	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un			x = Bit is unkno	wn			

bit 7-6	ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result
bit 5-0	Reserved: Do not use.

REGISTER 8-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x	R/W-x						
—	—	—	—	—	—	ADRES9	ADRES8
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result

REGISTER 8-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	s 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result

				SYNC = 0	, BRGH	= 1, BRG16	G16 = 1 or SYNC = 1, BRG16 = 1					
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			Fosc = 8.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	300.0	0.00	6666
1200	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	1200	-0.02	1666
2400	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	2401	0.04	832
9600	9597	-0.03	520	9600	0.00	479	9600	0.00	287	9615	0.16	207
10417	10417	0.00	479	10425	0.08	441	10433	0.16	264	10417	0	191
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	19.23k	0.16	103
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	57.14k	-0.79	34
115.2k	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	117.6k	2.12	16

TABLE 10-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

				SYNC = 0	, BRGH	= 1, BRG16	G16 = 1 or SYNC = 1, BRG16 = 1					
BAUD	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.01	3332	300.0	0.00	3071	299.9	-0.02	1666	300.1	0.04	832
1200	1200	0.04	832	1200	0.00	767	1199	-0.08	416	1202	0.16	207
2400	2398	0.08	416	2400	0.00	383	2404	0.16	207	2404	0.16	103
9600	9615	0.16	103	9600	0.00	95	9615	0.16	51	9615	0.16	25
10417	10417	0.00	95	10473	0.53	87	10417	0.00	47	10417	0.00	23
19.2k	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	25	19.23k	0.16	12
57.6k	58.82k	2.12	16	57.60k	0.00	15	55.56k	-3.55	8	—	—	—
115.2k	111.1k	-3.55	8	115.2k	0.00	7	_	—	—	—	—	—

10.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCTL register starts the auto-boot sequence (Figure 10-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 10-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in SPBRGH, SPBRG register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRG register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 10-6. During ABD, both the SPBRGH and SPBRG registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRG registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 10.3.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Detect feature.
 - During the auto-baud process, the autobaud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRG register pair.

TABLE 10-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 10-6: AUTOMATIC BAUD RATE CALCULATION

11.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device configurations as shown in Register 11-1. These bits are mapped in program memory location 2007h.

Note:	Address 2007h is beyond the user program
	memory space. It belongs to the special
	configuration memory space
	(2000h-3FFFh), which can be accessed
	only during programming. See
	"PIC12F6XX/16F6XX Memory Program-
	ming Specification" (DS41204) for more
	information.

FIGURE 11-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR)

FIGURE 11-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)

11.4 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and Status registers). This must be implemented in software.

Since the lower 16 bytes of all banks are common in the PIC16F688 (see Figure 2-2), temporary holding registers, W_TEMP and STATUS_TEMP, should be placed in here. These 16 locations do not require banking and therefore, make it easier to context save and restore. The same code shown in Example 11-1 can be used to:

- Store the W register
- Store the Status register
- Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- Restore the W register

Note:	The PIC	16F68	8 norm	ally d	oes n	ot requ	uire
	saving	the	PCLA	TH.	How	/ever,	if
	compute	ed GOT	o' <mark>s are</mark>	used	in the	e ISR a	and
	the ma	in cod	e, the	PCL	ATH	must	be
	saved a	nd rest	ored in	the I	SR.		

EXAMPLE 11-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
		;Swaps are used because they do not affect the status bits
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		;Insert user code here
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVW OPTION F
	Before Instruction
	OPTION = 0xFF
	W = 0x4F
	W = 0x4F

MOVLW	Move literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example:	MOVLW 0x5A				
	After Instruction W = 0x5A				

NOP	No Operation				
Syntax:	[label] NOP				
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Description:	No operation.				
Words:	1				
Cycles:	1				
Example:	NOP				

|--|

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param				Max	Units	Conditions			
No.	Device Characteristics	wiin	турт			Vdd	Note		
D020E	Power-down Base Current (IPD) ⁽²⁾	—	0.05	9	μA	2.0	WDT, BOR, Comparators, VREF and T1OSC disabled		
		—	0.15	11	μA	3.0			
		—	0.35	15	μA	5.0			
D021E		—	1	28	μA	2.0	WDT Current ⁽¹⁾		
		—	2	30	μA	3.0			
		—	3	35	μA	5.0			
D022E		_	42	65	μΑ	3.0	BOR Current ⁽¹⁾		
		—	85	127	μA	5.0			
D023E			32	45	μΑ	2.0	Comparator Current ⁽¹⁾ , both comparators enabled		
		—	60	78	μΑ	3.0			
		—	120	160	μA	5.0			
D024E		—	30	70	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)		
		—	45	90	μΑ	3.0			
		—	75	120	μA	5.0			
D025E*		—	39	91	μΑ	2.0	CVREF Current ⁽¹⁾ (low range)		
		—	59	117	μΑ	3.0			
		—	98	156	μΑ	5.0			
D026E			4.5	25	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz		
		—	5	30	μΑ	3.0			
		—	6	40	μA	5.0			
D027E		_	0.30	12	μA	3.0	A/D Current ⁽¹⁾ , no conversion in		
		_	0.36	16	μA	5.0	progress		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

FIGURE 14-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

FIGURE 15-21: CVREF IPD vs. VDD OVER TEMPERATURE (HIGH RANGE)

