

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f688t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR	Page
Bank 0											
00h	INDF	Addressing	g this locatio	on uses conte	ents of FSR t	o address da	ta memory (not a physica	al register)	xxxx xxxx	20, 117
01h	TMR0	Timer0 Mo	dule's regis	ter						xxxx xxxx	45, 117
02h	PCL	Program C	counter's (P	C) Least Sigi	nificant Byte					0000 0000	19, 117
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	13, 117
04h	FSR	Indirect Da	ata Memory	Address Poir	nter					XXXX XXXX	20, 117
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	33, 117
06h	_	Unimpleme	ented							—	_
07h	PORTC	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 0000	42, 117
08h	_	Unimpleme	ented							—	_
09h	—	Unimpleme	ented							—	_
0Ah	PCLATH	_	_	_	Write Buffer	r for upper 5 l	oits of Progr	am Counter		0 0000	19, 117
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RAIE	T0IF	INTF	RAIF ⁽²⁾	0000 000x	15, 117
0Ch	PIR1	EEIF	ADIF	RCIF	C2IF	C1IF	OSFIF	TXIF	TMR1IF	0000 0000	17, 117
0Dh	_	Unimpleme	ented	—	_						
0Eh	TMR1L	Holding Re	Holding Register for the Least Significant Byte of the 16-bit TMR1								48, 117
0Fh	TMR1H	Holding Re	egister for th	ie Most Signi	ficant Byte o	f the 16-bit TI	MR1			xxxx xxxx	48, 117
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	51, 117
11h	BAUDCTL	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	94, 117
12h	SPBRGH	USART Ba	aud Rate Hig	gh Generator						0000 0000	95, 117
13h	SPBRG	USART Ba	aud Rate Ge	enerator						0000 0000	95, 117
14h	RCREG	USART Re	eceive Regis	ster						0000 0000	87, 117
15h	TXREG	USART Tra	ansmit Regi	ster						0000 0000	87, 117
16h	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	92, 117
17h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	93, 117
18h	WDTCON	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	124, 117
19h	CMCON0	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	61, 117
1Ah	CMCON1	_	_	_	_	_	_	T1GSS	C2SYNC	10	62, 117
1Bh	_	Unimpleme	ented	•		•	•	•		—	_
1Ch	_	Unimpleme	ented							—	-
1Dh	—	Unimpleme	ented							—	_
1Eh	ADRESH	Most Signi	ficant 8 bits	of the left sh	ifted A/D res	ult or 2 bits of	f right shifte	d result		xxxx xxxx	72, 117
1Fh	ADCON0	ADFM	VCFG	—	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	71, 117
		•			•		•	•			

TABLE 2-1. PIC16F688 SPECIAL REGISTERS SUMMARY BANK 0

Legend: - = Unimplemented locations read as $\frac{0'}{0}$, u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note

1:

Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. MCLR and WDT Reset does not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set again if the 2: mismatched exists.

2.2.2.6 PCON Register

The Power Control (PCON) register (see Register 2-6) contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the Ultra Low-Power Wake-up and software enable of the BOR.

REGISTER 2-6: PCON: POWER CONTROL REGISTER

U-0	U-0	R/W-0	R/W-1	U-0	U-0	R/W-0	R/W-x
—	—	ULPWUE	SBOREN ⁽¹⁾	—	—	POR	BOR
bit 7							bit 0

Legend:								
R = Readable	bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'				
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7-6	Unimplemen	ited: Read as '0'						
bit 5	ULPWUE: UI	tra Low-Power Wake-up Ena	able bit					
	1 = Ultra low- 0 = Ultra low-	power wake-up enabled power wake-up disabled						
bit 4	SBOREN: Sc	oftware BOR Enable bit ⁽¹⁾						
	1 = BOR ena 0 = BOR disa	bled abled						
bit 3-2	Unimplemen	ited: Read as '0'						
bit 1	POR: Power-	on Reset Status bit						
	1 = No Power 0 = A Power-	r-on Reset occurred on Reset occurred (must be	set in software after a Powe	er-on Reset occurs)				
bit 0	BOR: Brown-	-out Reset Status bit						
	1 = No Brown 0 = A Brown-	n-out Reset occurred out Reset occurred (must be	e set in software after a Brov	vn-out Reset occurs)				

2.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-4.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1:	INDIRECT ADDRESSING

М	OVLW	0x20	;initialize pointer			
М	OVWF	FSR	;to RAM			
NEXT C	LRF	INDF	;clear INDF register			
I	NCF	FSR	;inc pointer			
В	TFSS	FSR,4	;all done?			
G	OTO	NEXT	;no clear next			
CONTINUE			;yes continue			

FIGURE 2-4: DIRECT/INDIRECT ADDRESSING PIC16F688

3.4.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 3-3). The mode selects a low, medium or high gain setting of the internal inverteramplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals. This mode is designed to drive only 32.768 kHz tuning fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 3-3 and Figure 3-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 3-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω).

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

PIC16F688

IGURE 3-6:	INTERNAL OSCILLATOR SWITCH TIMING
HF → LF ⁽¹⁾ 36370030000 3	FINTOSC (FBCSS and WOT disabled)
HFINTOSC	
LFINTOSC	
IRCF <2:0>	$\neq 0$ $= 0$
System Clock	
Store to Vitaa	n gearag fream Ciff to MIR.
\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$	LENNY COSIC (ENNY ar SECAN OF WILLY analysisci)
HFINTOSC	
LFINTOSC .	
IRCF <2:0>	$\neq 0 \qquad \qquad X = 0$
System Clock	
USBN2030 1	ATMATOSO
LEBATOSC.	Image: Strategy in the second strategy in the
MERCOSO .	
\$9:0F <2:6>	<u>4.9.</u> <u>4.9</u>
System Chock	

PIC16F688

TABLE 3-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
CONFIG ⁽²⁾	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 000x	0000 000x
OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS	HTS	LTS	SCS	-110 x000	-110 x000
OSCTUNE	_	_	—	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
PIE1	EEIE	ADIE	RCIE	C2IE	C1IE	OSFIE	TXIE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	C2IF	C1IF	OSFIF	TXIF	TMR1IF	0000 0000	0000 0000

 $\label{eq:local_$

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (CONFIG) for operation of all register bits.

4.2 Additional Pin Functions

Every PORTA pin on the PIC16F688 has an interrupton-change option and a weak pull-up option. PORTA also provides an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 ANSEL REGISTER

The ANSEL register is used to configure the Input mode of an I/O pin to analog. Refer to Register 4-3. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit of the OPTION register. A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

4.2.3 INTERRUPT-ON-CHANGE

Each of the PORTA pins is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-5. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RAIF) in the INTCON register.

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then
- b) Clear the flag bit RAIF.

A mismatch condition will continue to set flag bit RAIF. Reading PORTA will end the mismatch condition and allow flag bit RAIF to be cleared. The <u>latch</u> holding the last read value is not affected by a MCLR nor BOR Reset. After these Resets, the RAIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RAIF interrupt flag may not get set.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x		x = Bit is unki	nown						

REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

bit 7-0 ANS<7:0>: Analog Select bits

Analog select between analog or digital function on pins AN<7:0>, respectively.

1 =Analog input. Pin is assigned as analog input⁽¹⁾.

0 = Digital I/O. Pin is assigned to port or special function.

-

-

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CMCON1	—	—	—	—	_	_	T1GSS	C2SYNC	10	0010
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 000x	0000 000x
PIE1	EEIE	ADIE	RCIE	C2IE	C1IE	OSFIE	TXIE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	RCIF	C2IF	C1IF	OSFIF	TXIF	TMR1IF	0000 0000	0000 0000
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of t	he 16-bit TMI	R1 Register			XXXX XXXX	սսսս սսսս
TMR1L	Holding Reg	gister for the		XXXX XXXX	սսսս սսսս					
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	սսսս սսսս

 $\label{eq:Legend: Legend: Legend: u = unchanged, - = unimplemented, read as `0`. Shaded cells are not used by the Timer1 module.$

FIGURE 7-7: COMPARATOR INTERRUPT TIMING WITH CMCON0 READ

- Note 1: If a change in the CM1CON0 register (CxOUT) occurs when a read operation is being executed (start of the Q2 cycle), then the CxIF Interrupt Flag bit of the PIR1 register may not get set.
 - 2: When either comparator is first enabled, bias circuitry in the comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μ s for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

7.6 Operation During Sleep

The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in **Section 14.0** "**Electrical Specifications**". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. The comparator is turned off by selecting mode CM<2:0> = 000 or CM<2:0> = 111 of the CMCON0 register.

A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CxIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine.

7.7 Effects of a Reset

A device Reset forces the CMCON0 and CMCON1 registers to their Reset states. This forces the comparator module to be in the Comparator Reset mode (CM<2:0> = 000). Thus, all comparator inputs are analog inputs with the comparator disabled to consume the smallest current possible.

TABLE 8-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (VDD \geq 3.0V)

ADC Clock	Period (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	20 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	100 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	200 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs ⁽²⁾	4.0 μs		
Fosc/8	001	400 ns ⁽²⁾	1.0 μs ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	101	800 ns ⁽²⁾	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.6 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾		
Fosc/64	110	3.2 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾		
FRC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)		

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 4 μ s for VDD > 3.0V.

2: These values violate the minimum required TAD time.

- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

FIGURE 8-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

TCY to TAD TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	TAD9	TAD10	TAD11	-
$\uparrow \uparrow \uparrow$	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
Conver	sion St	arts									
Holding Capa	acitor is	s Disco	nnecte	d from	Analog	g Input	(typica	lly 100	ns)		
l Set GO/DONE	bit									gistore	
						GO b	it is cle	ared,	LOLIE	gisters	are loaded,
						ADIF	bit is s	et, ocitor i		otod to	analog input
						Holdii	ng capa	acitor is	s conne	ected to	analog inpi

PIC16F688

NOTES:

11.5 Watchdog Timer (WDT)

The WDT has the following features:

- Operates from the LFINTOSC (31 kHz)
- Contains a 16-bit prescaler
- Shares an 8-bit prescaler with Timer0
- Time-out period is from 1 ms to 268 seconds
- · Configuration bit and software controlled

WDT is cleared under certain conditions described in Table 11-7.

11.5.1 WDT OSCILLATOR

The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit does not reflect that the LFINTOSC is enabled.

The value of WDTCON is `---0 1000' on all Resets. This gives a nominal time base of 16 ms, which is compatible with the time base generated with previous PIC16F688 microcontroller versions.

Note:	When the Oscillator Start-up Timer (OST)
	is invoked, the WDT is held in Reset,
	because the WDT Ripple Counter is used
	by the OST to perform the oscillator delay
	count. When the OST count has expired,
	the WDT will begin counting (if enabled).

A new prescaler has been added to the path between the INTRC and the multiplexers used to select the path for the WDT. This prescaler is 16 bits and can be programmed to divide the INTRC by 32 to 65536, giving the WDT a nominal range of 1 ms to 268s.

11.5.2 WDT CONTROL

The WDTE bit is located in the Configuration Word register. When set, the WDT runs continuously.

When the WDTE bit in the Configuration Word register is set, the SWDTEN bit of the WDTCON register has no effect. If WDTE is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it.

The PSA and PS<2:0> bits of the OPTION register have the same function as in previous versions of the PIC16F688 family of microcontrollers. See **Section 5.0 "Timer0 Module"** for more information.

FIGURE 11-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 11-7: WDT STATUS

Conditions	WDT		
WDTE = 0			
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		

U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
	—	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN
bit 7			•	•	•	•	bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-1	WDTPS<3:0>	-: Watchdog Ti	mer Period Se	elect bits			
	Bit Value = P	rescale Rate					
	0000 = 1:32						
	0001 = 1:64						
	0010 = 1:12	8					
	0011 = 1 :25	6					
	0100 = 1:51	2 (Reset value)				
	0101 = 1:10	24					
	0110 = 1:20	48					
	0111 = 1:40	96					
	1000 = 1:81	92					
	1001 = 1:16	384					
	1010 = 1:32	768					
	1011 = 1:65	536					
	1100 = Rese	erved					
	1101 = Rese	erved					
	1110 = Rese	erved					
	1111 = Rese	erved			(4)		
bit 0	SWDTEN: So	oftware Enable	or Disable the	Watchdog Tir	mer ⁽¹⁾		
	1 = WDT is tu	irned on					
	0 = WDT is tu	Irned off (Rese	t value)				
Note 1: If	WDTE Configura onfiguration bit =	ation bit = 1, the 0, then it is po	en WDT is alw ssible to turn '	/ays enabled, i WDT on/off wit	rrespective of the this control bi	nis control bit. I t.	f WDTE

REGISTER 11-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER

TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
WDTCON	—	—	—	WDTPS3	WDTPS2	WSTPS1	WDTPS0	SWDTEN	0 1000	0 1000
OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
CONFIG	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	_	_

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 11.0 for operation of all Configuration Word register bits.

TABLE 14-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standar Operatir	Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
30	ТмсL	MCLR Pulse Width (low)	2 5			μS μS	VDD = 5V, -40°C to +85°C VDD = 5V	
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	10 10	16 16	29 31	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V	
32	Tost	Oscillation Start-up Timer Period ^(1, 2)		1024		Tosc	(NOTE 3)	
33*	TPWRT	Power-up Timer Period	40	65	140	ms		
34*	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset			2.0	μS		
35	VBOR	Brown-out Reset Voltage	2.0		2.2	V	(NOTE 4)	
36*	VHYST	Brown-out Reset Hysteresis		50		mV		
37*	TBOR	Brown-out Reset Minimum Detection Period	100	_	—	μS	$VDD \leq VBOR$	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: By design.
 - 3: Period of the slower clock.
 - 4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 14-6: COMPARATOR SPECIFICATIONS

Standa Operation	Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristics		Min	Тур†	Мах	Units	Comments	
CM01	Vos	Input Offset Voltage		—	± 5.0	± 10	mV	(Vdd - 1.5)/2	
CM02	Vсм	Input Common Mode Voltage		0		Vdd - 1.5	V		
CM03*	CMRR	Common Mode Rejection Ratio		+55	_	—	dB		
CM04*	Trt	Response Time	Falling	_	150	600	ns	(NOTE 1)	
			Rising		200	1000	ns		
CM05*	Тмc2coV	Comparator Mode Change to Output Valid				10	μS		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

TABLE 14-7: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS

Standard Operating Co	onditions (unless otherwise stated)
Operating temperature	-40°C < TA < +125°C

- F									
Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments		
CV01*	CLSB	Step Size ⁽²⁾		VDD/24	_	V	Low Range (VRR = 1)		
			—	VDD/32		V	High Range (VRR = 0)		
CV02*	CACC	Absolute Accuracy	—	—	± 1/2	LSb	Low Range (VRR = 1)		
			—	—	± 1/2	LSb	High Range (VRR = 0)		
CV03*	CR	Unit Resistor Value (R)	—	2k	_	Ω			
CV04*	CST	Settling Time ⁽¹⁾	_		10	μS			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: See Section 7.10 "Comparator Voltage Reference" for more information.

FIGURE 15-26: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)

FIGURE 15-37: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)

FIGURE 15-38: TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85°C)

16.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	_	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		14		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	Е	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	¢	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	_	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B