E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	132MHz
Connectivity	CANbus, EBI/EMI, Ethernet, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	220
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 40x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	416-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc5553mzp132

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

· Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm^2

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

3.5 ESD (Electromagnetic Static Discharge) Characteristics

Characteristic	Symbol	Value	Unit	
ESD for human body model (HBM)		2000	V	
HPM aircuit description	R1	1500	Ω	
	С	100	pF	
ESD for field induced charge model (EDCM)		500 (all pins)		
		750 (corner pins)	V	
Number of pulses per pin:				
Positive pulses (HBM)	—	1	—	
Negative pulses (HBM)	—	1	—	
Interval of pulses	—	1	second	

Table 5. ESD Ratings ^{1, 2}

¹ All ESD testing conforms to CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² Device failure is defined as: 'If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.

3.6 Voltage Regulator Controller (V_{RC}) and Power-On Reset (POR) Electrical Specifications

The following table lists the V_{RC} and POR electrical specifications:

Spec	Charact	eristic	Symbol	Min.	Max.	Units
1	1.5 V (V _{DD}) POR ¹	Negated (ramp up) Asserted (ramp down)	V _{POR15}	1.1 1.1	1.35 1.35	V
2	3.3 V (V _{DDSYN}) POR ¹	Asserted (ramp up) Negated (ramp up) Asserted (ramp down) Negated (ramp down)	V _{POR33}	0.0 2.0 2.0 0.0	0.30 2.85 2.85 0.30	V
3	RESET pin supply (V _{DDEH6}) POR ^{1, 2}	Negated (ramp up) Asserted (ramp down)	V _{POR5}	2.0 2.0	2.85 2.85	V
4		Before V _{RC} allows the pass transistor to start turning on	V _{TRANS_START}	1.0	2.0	V
5	V _{RC33} voltage	When V_{RC} allows the pass transistor to completely turn on ^{3, 4}	V _{TRANS_ON}	2.0	2.85	V
6		When the voltage is greater than the voltage at which the V_{RC} keeps the 1.5 V supply in regulation ^{5, 6}	V _{VRC33REG}	3.0	_	v
	Current can be sourced	-40° C		11.0	_	mA
7	by V _{RCCTL} at Tj:	25° C	I _{VRCCTL} ⁷	9.0	—	mA
		150° C		7.5	—	mA
8	Voltage differential during power up su V _{DD33} can lag V _{DDSYN} or V _{DDEH6} befo V _{POR33} and V _{POR5} minimums respect	Voltage differential during power up such that: V_{DD33} can lag V_{DDSYN} or V_{DDEH6} before V_{DDSYN} and V_{DDEH6} reach the V_{POB33} and V_{POB5} minimums respectively.		_	1.0	V

Table 6. V_{RC} and POR Electrical Specifications

Spec	Characteristic	Symbol	Min	Max.	Unit
27a	Operating current 1.5 V supplies @ 132 MHz: ⁶				
	$ \begin{array}{l} V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.65 \ V \ typical \ use \ ^{7, \ 8} \\ V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.35 \ V \ typical \ use \ ^{7, \ 8} \\ V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.65 \ V \ high \ use \ ^{8, \ 9} \\ V_{DD} \mbox{ (including } V_{DDF} \mbox{ max current) } @ 1.35 \ V \ high \ use \ ^{8, \ 9} \\ \end{array} $	I _{DD} I _{DD} I _{DD} I _{DD}	 	460 360 510 410	mA mA mA mA
27b	Operating current 1.5 V supplies @ 114 MHz: ⁶				
	$ V_{DD} \text{ (including } V_{DDF} \text{ max current) } @ 1.65 \text{ V typical use } ^{7,8} \\ V_{DD} \text{ (including } V_{DDF} \text{ max current) } @ 1.35 \text{ V typical use } ^{7,8} \\ V_{DD} \text{ (including } V_{DDF} \text{ max current) } @ 1.65 \text{ V high use } ^{8,9} \\ V_{DD} \text{ (including } V_{DDF} \text{ max current) } @ 1.35 \text{ V high use } ^{8,9} $	I _{DD} I _{DD} I _{DD} I _{DD}	 	410 310 460 370	mA mA mA mA
27c	Operating current 1.5 V supplies @ 82 MHz: ⁶				
	$ V_{DD} \text{ (including V}_{DDF} \text{ max current) } @ 1.65 \text{ V typical use } ^{7,8} \\ V_{DD} \text{ (including V}_{DDF} \text{ max current) } @ 1.35 \text{ V typical use } ^{7,8} \\ V_{DD} \text{ (including V}_{DDF} \text{ max current) } @ 1.65 \text{ V high use } ^{8,9} \\ V_{DD} \text{ (including V}_{DDF} \text{ max current) } @ 1.35 \text{ V high use } ^{8,9} $	I _{DD} I _{DD} I _{DD} I _{DD}	 	330 225 385 290	mA mA mA mA
27d	RAM standby current. ¹⁰				
	I _{DD_STBY} @ 25° C V _{STBY} @ 0.8 V V _{STBY} @ 1.0 V V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY} I _{DD_STBY}	 	20 30 50	μΑ μΑ μΑ
	I _{DD_STBY} @ 60° C V _{STBY} @ 0.8 V V _{STBY} @ 1.0 V V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY} I _{DD_STBY}	 	70 100 200	μΑ μΑ μΑ
	I _{DD_STBY} @ 150 ^o C (Tj) V _{STBY} @ 0.8 V V _{STBY} @ 1.0 V V _{STBY} @ 1.2 V	I _{DD_STBY} I _{DD_STBY} I _{DD_STBY}	 _	1200 1500 2000	μΑ μΑ μΑ
28	Operating current 3.3 V supplies @ f _{MAX} MHz				
	V _{DD33} ¹¹	I _{DD_33}	_	2 + (values derived from procedure of footnote ¹¹)	mA
	V _{FLASH}	I _{VFLASH}	—	10	mA
	V _{DDSYN}	IDDSYN		15	mA
29	Operating current 5.0 V supplies (12 MHz ADCLK): V _{DDA} (V _{DDA0} + V _{DDA1}) Analog reference supply current (V _{RH} , V _{RL}) V _{PP}	I _{DD_A} I _{REF} I _{PP}		20.0 1.0 25.0	mA mA mA

Table 9. DC Electrical Specifications ($T_A = T_L \text{ to } T_H$) (continued)

Spec	Characteristic	Symbol	Min	Max.	Unit
30	Operating current V _{DDE} supplies: ¹² V _{DDE11} V _{DDE2} V _{DDE3} V _{DDE44} V _{DDE5} V _{DDE46} V _{DDE7} V _{DDE48} V _{DDE49}	I _{DD1} I _{DD2} I _{DD3} I _{DD4} I _{DD5} I _{DD6} I _{DD7} I _{DD8} I _{DD9}	 	Refer to footnote ¹²	mA mA mA mA mA mA mA
31	Fast I/O weak pullup current ¹³ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V Fast I/O weak pulldown current ¹³ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	I _{ACT_F}	10 20 20 10 20 20	110 130 170 100 130 170	μΑ μΑ μΑ μΑ μΑ
32	Slow and medium I/O weak pullup/down current ¹³ 3.0–3.6 V 4.5–5.5 V	I _{ACT_S}	10 20	150 170	μΑ μΑ
33	I/O input leakage current ¹⁴	I _{INACT_D}	-2.5	2.5	μA
34	DC injection current (per pin)	I _{IC}	-2.0	2.0	mA
35	Analog input current, channel off ¹⁵	I _{INACT_A}	-150	150	nA
35a	Analog input current, shared analog / digital pins (AN[12], AN[13], AN[14], AN[15])	I _{INACT_AD}	-2.5	2.5	μA
36	V_{SS} to V_{SSA} differential voltage ¹⁶	$V_{SS} - V_{SSA}$	-100	100	mV
37	Analog reference low voltage	V _{RL}	V _{SSA} – 0.1	V _{SSA} + 0.1	V
38	V _{RL} differential voltage	V _{RL} – V _{SSA}	-100	100	mV
39	Analog reference high voltage	V _{RH}	V _{DDA} – 0.1	V _{DDA} + 0.1	V
40	V _{REF} differential voltage	V _{RH} – V _{RL}	4.5	5.25	V
41	V_{SSSYN} to V_{SS} differential voltage	$V_{\rm SSSYN} - V_{\rm SS}$	-50	50	mV
42	V_{RCVSS} to V_{SS} differential voltage	$V_{\rm RCVSS} - V_{\rm SS}$	-50	50	mV
43	V_{DDF} to V_{DD} differential voltage	$V_{DDF} - V_{DD}$	-100	100	mV
43a	V _{RC33} to V _{DDSYN} differential voltage	V _{RC33} – V _{DDSYN}	-0.1	0.1 ¹⁷	V
44	Analog input differential signal range (with common mode 2.5 V)	V _{IDIFF}	-2.5	2.5	V
45	Operating temperature range, ambient (packaged)	$T_A = (T_L \text{ to } T_H)$	ΤL	Т _Н	°C
46	Slew rate on power-supply pins	—	—	50	V/ms

Table 9. DC Electrical Specifications ($T_A = T_L$ to T_H) (continued)

¹ V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if SIU_ECCR[EBTS] = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if SIU_ECCR[EBTS] = 1.

3.8.1 I/O Pad Current Specifications

The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a segment. The output pin current can be calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 10.

Spec	Pad Type	Symbol	Frequency (MHz)	Load ² (pF)	Voltage (V)	Drive Select / Slew Rate Control Setting	Current (mA)	
1			25	50	5.25	11	8.0	
2	Slow	1 .	10	50	5.25	01	3.2	
3	31070	'DRV_SH	2	50	5.25	00	0.7	
4			2	200	5.25	00	2.4	
5			50	50	5.25	11	17.3	
6	Medium	I	20	50	5.25	01	6.5	
7	Weddin	'DRV_MH	3.33	50	5.25	00	1.1	
8			3.33	200	5.25	00	3.9	
9			66	10	3.6	00	2.8	
10			66	20	3.6	01	5.2	
11			66	30	3.6	10	8.5	
12			66	50	3.6	11	11.0	
13			66	10	1.98	00	1.6	
14			66	20	1.98	01	2.9	
15			66	30	1.98	10	4.2	
16			66	50	1.98	11	6.7	
17				56	10	3.6	00	2.4
18			56	20	3.6	01	4.4	
19			56	30	3.6	10	7.2	
20	Fact	I	56	50	3.6	11	9.3	
21	1 431	'DRV_FC	56	10	1.98	00	1.3	
22			56	20	1.98	01	2.5	
23			56	30	1.98	10	3.5	
24			56	50	1.98	11	5.7	
25			40	10	3.6	00	1.7	
26			40	20	3.6	01	3.1	
27			40	30	3.6	10	5.1	
28			40	50	3.6	11	6.6	
29			40	10	1.98	00	1.0	
30			40	20	1.98	01	1.8	
31			40	30	1.98	10	2.5	
32			40	50	1.98	11	4.0	

Table 10. I/O Pad Average DC Current $(T_A = T_L \text{ to } T_H)^1$

¹ These values are estimates from simulation and are not tested. Currents apply to output pins only.

² All loads are lumped.

3.8.2 I/O Pad V_{DD33} Current Specifications

The power consumption of the V_{DD33} supply dependents on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin V_{DD33} currents for all I/O segments. The output pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all fast (pad_fc) pins. The input pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all pad_sh and pad_mh pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 11.

Spec	Pad Type	Symbol	Frequency (MHz)	Load ² (pF)	V _{DD33} (V)	V _{DDE} (V)	Drive Select	Current (mA)	
	Inputs								
1	Slow	I _{33_SH}	66	0.5	3.6	5.5	NA	0.003	
2	Medium	I _{33_МН}	66	0.5	3.6	5.5	NA	0.003	
				Output	s				
3			66	10	3.6	3.6	00	0.35	
4			66	20	3.6	3.6	01	0.53	
5			66	30	3.6	3.6	10	0.62	
6			66	50	3.6	3.6	11	0.79	
7			66	10	3.6	1.98	00	0.35	
8			66	20	3.6	1.98	01	0.44	
9			66	30	3.6	1.98	10	0.53	
10			66	50	3.6	1.98	11	0.70	
11			56	10	3.6	3.6	00	0.30	
12			56	20	3.6	3.6	01	0.45	
13			56	30	3.6	3.6	10	0.52	
14	Foot		56	50	3.6	3.6	11	0.67	
15	Fasi	'33_FC	56	10	3.6	1.98	00	0.30	
16			56	20	3.6	1.98	01	0.37	
17			56	30	3.6	1.98	10	0.45	
18			56	50	3.6	1.98	11	0.60	
19			40	10	3.6	3.6	00	0.21	
20			40	20	3.6	3.6	01	0.31	
21			40	30	3.6	3.6	10	0.37	
22			40	50	3.6	3.6	11	0.48	
23			40	10	3.6	1.98	00	0.21	
24			40	20	3.6	1.98	01	0.27	
25			40	30	3.6	1.98	10	0.32	
26			40	50	3.6	1.98	11	0.42	

Table 11.		d Average	DC Current	(T∧ =	T ₁ to	T _⊔) ¹
	- 0033			N - A	- L	· П/

¹ These values are estimated from simulation and not tested. Currents apply to output pins for the fast pads only and to input pins for the slow and medium pads only.

² All loads are lumped.

Table 16 shows the FLASH_BIU settings versus frequency of operation. Refer to the device reference manual for definitions of these bit fields.

Maximum Frequency (MHz)	APC	RWSC	wwsc	DPFEN ²	IPFEN ²	PFLIM ³	BFEN ⁴
Up to and including 82 MHz ⁵	0b001	0b001	0b01	0b00 0b01 0b11	0b00 0b01 0b11	0b000 to 0b110	0b0 0b1
Up to and including 102 MHz ⁶	0b001	0b010	0b01	0b00 0b01 0b11	0b00 0b01 0b11	0b000 to 0b110	0b0 0b1
Up to and including 132 MHz ⁷	0b010	0b011	0b01	0b00 0b01 0b11	0b00 0b01 0b11	0b000 to 0b110	0b0 0b1
Default setting after reset	0b111	0b111	0b11	0b00	0b00	0b000	0b0

Table 16. FLASH_BIU Settings vs. Frequency of Operation ¹

¹ Illegal combinations exist. Use entries from the same row in this table.

² For maximum flash performance, set to 0b11.

³ For maximum flash performance, set to 0b110.

⁴ For maximum flash performance, set to 0b1.

⁵ 82 MHz parts allow for 80 MHz system clock + 2% frequency modulation (FM).

⁶ 102 MHz parts allow for 100 MHz system clock + 2% FM.

⁷ 132 MHz parts allow for 128 MHz system clock + 2% FM.

3.12 AC Specifications

3.12.1 Pad AC Specifications

Table 17. Pad AC Specifications ($V_{DDEH} = 5.0 \text{ V}, V_{DDE} = 1.8 \text{ V}$)¹

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
		11	26	15	50
		11	82	60	200
1	Slow bigb voltage (SH)	01	75	40	50
	Slow high voltage (SH)	01	137	80	200
		00	377	200	50
		00	476	260	200
		11	16	8	50
			43	30	200
2	Modium bigb voltage (MH)	01	34	15	50
2	Medium nigh voltage (Mi I)	01	61	35	200
		00	192	100	50
		00	239	125	200

3.13.2 IEEE 1149.1 Interface Timing

Table 20. JTAG Pin AC Electrical Characteristics ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	TCK cycle time	t _{JCYC}	100	—	ns
2	TCK clock pulse width (measured at $V_{DDE} \div 2$)	t _{JDC}	40	60	ns
3	TCK rise and fall times (40% to 70%)	t _{TCKRISE}	—	3	ns
4	TMS, TDI data setup time	t _{TMSS} , t _{TDIS}	5	—	ns
5	TMS, TDI data hold time	t _{TMSH} , t _{TDIH}	25	—	ns
6	TCK low to TDO data valid	t _{TDOV}	—	20	ns
7	TCK low to TDO data invalid	t _{TDOI}	0	—	ns
8	TCK low to TDO high impedance	t _{TDOHZ}	_	20	ns
9	JCOMP assertion time	t _{JCMPPW}	100	—	ns
10	JCOMP setup time to TCK low	t _{JCMPS}	40	—	ns
11	TCK falling-edge to output valid	t _{BSDV}	_	50	ns
12	TCK falling-edge to output valid out of high impedance	t _{BSDVZ}		50	ns
13	TCK falling-edge to output high impedance (Hi-Z)	t _{BSDHZ}	_	50	ns
14	Boundary scan input valid to TCK rising-edge	t _{BSDST}	50	—	ns
15	TCK rising-edge to boundary scan input invalid	t _{BSDHT}	50	—	ns

¹ These specifications apply to JTAG boundary scan only. JTAG timing specified at: $V_{DDE} = 3.0-3.6$ V and $T_A = T_L$ to T_H . Refer to Table 21 for Nexus specifications.

Figure 7. JTAG Test Access Port Timing

MPC5553 Microcontroller Data Sheet, Rev. 4

Electrical Characteristics

Figure 9. JTAG Boundary Scan Timing

Figure 18. DSPI Classic SPI Timing—Master, CPHA = 0

Figure 24. DSPI Modified Transfer Format Timing—Slave, CPHA = 0

Figure 25. DSPI Modified Transfer Format Timing—Slave, CPHA = 1

Figure 26. DSPI PCS Strobe (PCSS) Timing

MPC5553 Microcontroller Data Sheet, Rev. 4

3.13.9 eQADC SSI Timing

			•			
Spec	Rating	Symbol	Minimum	Typical	Maximum	Unit
2	FCK period ($t_{FCK} = 1 \div f_{FCK}$) ^{1, 2}	t _{FCK}	2		17	t _{SYS_CLK}
3	Clock (FCK) high time	t _{FCKHT}	t _{SYS_CLK} – 6.5	_	$9 \times (t_{SYS_CLK} + 6.5)$	ns
4	Clock (FCK) low time	t _{FCKLT}	t _{SYS_CLK} – 6.5	_	$8 \times (t_{SYS_CLK} + 6.5)$	ns
5	SDS lead / lag time	t _{SDS_LL}	-7.5	_	+7.5	ns
6	SDO lead / lag time	t _{SDO_LL}	-7.5	_	+7.5	ns
7	EQADC data setup time (inputs)	t _{EQ_SU}	22	_	—	ns
8	EQADC data hold time (inputs)	t _{EQ HO}	1	_	—	ns

Table 27. EQADC SSI Timing Characteristics

 \overline{SS} timing specified at V_{DDEH} = 3.0–5.25 V, T_A = T_L to T_H, and CL = 25 pF with SRC = 0b11. Maximum operating frequency varies depending on track delays, master pad delays, and slave pad delays.

 2 FCK duty cycle is not 50% when it is generated through the division of the system clock by an odd number.

Figure 27. EQADC SSI Timing

3.14.2 MII FEC Transmit Signal Timing FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER, FEC_TX_CLK

The transmitter functions correctly up to the FEC_TX_CLK maximum frequency of 25 MHz plus one percent. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the FEC_TX_CLK frequency.

The transmit outputs (FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER) can be programmed to transition from either the rising- or falling-edge of TX_CLK, and the timing is the same in either case. These options allow the use of non-compliant MII PHYs.

Refer to the Fast Ethernet Controller (FEC) chapter of the device reference manual for details of this option and how to enable it.

Table 29 lists MII FEC transmit channel timings.

Spec	Characteristic	Min.	Max	Unit
5	FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER invalid	5		ns
6	FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER valid	_	25	ns
7	FEC_TX_CLK pulse-width high	35%	65%	FEC_TX_CLK period
8	FEC_TX_CLK pulse-width low	35%	65%	FEC_TX_CLK period

Table 29. MII FEC Transmit Signal Timing

Figure 29 shows MII FEC transmit signal timings listed in Table 29.

Figure 29. MII FEC Transmit Signal Timing Diagram

3.14.3 MII FEC Asynchronous Inputs Signal Timing FEC_CRS and FEC_COL

Table 30 lists MII FEC asynchronous input signal timing.

Table 30. MII FEC Asynchronous Inputs Signal Timing

Spec	Characteristic	Min.	Мах	Unit
9	FEC_CRS, FEC_COL minimum pulse width	1.5		FEC_TX_CLK period

Figure 30 shows MII FEC asynchronous input timing listed in Table 30.

Figure 30. MII FEC Asynchronous Inputs Timing Diagram

3.14.4 MII FEC Serial Management Channel Timing FEC_MDIO and FEC_MDC

Table 31 lists MII FEC serial management channel timing. The FEC functions correctly with a maximum FEC_MDC frequency of 2.5 MHz.

Spec	Characteristic	Min.	Max	Unit
10	FEC_MDC falling-edge to FEC_MDIO output invalid (minimum propagation delay)	0	—	ns
11	FEC_MDC falling-edge to FEC_MDIO output valid (maximum propagation delay)	—	25	ns
12	FEC_MDIO (input) to FEC_MDC rising-edge setup	10	—	ns
13	FEC_MDIO (input) to FEC_MDC rising-edge hold	0	—	ns
14	FEC_MDC pulse-width high	40%	60%	FEC_MDC period
15	FEC_MDC pulse-width low	40%	60%	FEC_MDC period

Table 31. MII FEC Serial Management Channel Timing

Figure 31 shows MII FEC serial management channel timing listed in Table 31.

Figure 31. MII FEC Serial Management Channel Timing Diagram

Mechanicals

4 Mechanicals

4.1 MPC5553 208 MAP BGA Pinout

Figure 32 is a pinout for the MPC5553 208 MAP BGA package.

NOTE.

 V_{DDEH10} and V_{DDEH6} are connected internally on the 208-ball package and are listed as $V_{DDEH6}.$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	AN9	AN11	VDDA1	VSSA1	AN1	AN5	VRH	VRL	AN27	VSSA0	AN12	MDO2	MDO0	VDD33	VSS	A
В	VDD	VSS	AN38	AN21	AN0	AN4	REF BYPC	AN22	AN25	AN28	VDDA0	AN13	MDO3	MDO1	VSS	VDD	В
С	VSTBY	VDD	VSS	AN17	AN34	AN16	AN3	AN7	AN23	AN32	AN33	AN14	AN15	VSS	MSEO0	тск	С
D	VDD33	AN39	VDD	VSS	AN18	AN2	AN6	AN24	AN30	AN31	AN35	VDDEH 9	VSS	TMS	EVTO	TEST	D
Е	ETPUA 30	ETPUA 31	AN37	VDD									VDDE7	TDI	EVTI	MSEO1	Е
F	ETPUA 28	ETPUA 29	ETPUA 26	AN36									VDDEH 6	TDO	МСКО	JCOMP	F
G	ETPUA 24	ETPUA 27	ETPUA 25	ETPUA 21			VSS	VSS	VSS	VSS			SOUTB	PCSB3	SINB	PCSB0	G
н	ETPUA 23	ETPUA 22	ETPUA 17	ETPUA 18			VSS	VSS	VSS	VSS			PCSA3	PCSB4	PCSB2	PCSB1	Н
J	ETPUA 20	ETPUA 19	ETPUA 14	ETPUA 13			VSS	VSS	VSS	VSS			PCSB5	TXDA	PCSA2	SCKB	J
к	ETPUA 16	ETPUA 15	ETPUA 7	VDDEH 1		vss vss vss vss						CNTXC	RXDA	RSTOUT	VPP	к	
L	ETPUA 12	ETPUA 11	ETPUA 6	TCRCLK A									TXDB	CNRXC	WKP CFG	RESET	L
М	ETPUA 10	ETPUA 9	ETPUA 1	ETPUA 5									RXDB	PLL CFG0	BOOT CFG1	VSS SYN	М
Ν	ETPUA 8	ETPUA 4	ETPUA 0	VSS	VDD	VDD33	EMIOS 2	EMIOS 10	VDDEH 4	EMIOS 12	EMIOS 21	VDD33	VSS	VRC CTL	PLL CFG1	EXTAL	Ν
Ρ	ETPUA 3	ETPUA 2	VSS	VDD	GPIO 207	VDDE2	EMIOS 6	EMIOS 8	EMIOS 16	EMIOS 17	EMIOS 22	CNTXA	VDD	VSS	VRC33	XTAL	Ρ
R	CS0	VSS	VDD	GPIO 206	EMIOS 4	EMIOS 3	EMIOS 9	EMIOS 11	EMIOS 14	EMIOS 19	EMIOS 23	CNRXA	CNRXB	VDD	VSS	VDD SYN	R
т	VSS	VDD	OE	EMIOS 0	EMIOS 1	EMIOS 5	EMIOS 7	EMIOS 13	EMIOS 15	EMIOS 18	EMIOS 20	CNTXB	VDDE5	ENG CLK	VDD	VSS	Т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 32. MPC5553 208 Package

MPC5553 Microcontroller Data Sheet, Rev. 4

DETAIL K (ROTATED 90' CLOCKWISE)

NOTES:

5

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z.
- 4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
 - PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ARS23882W	REV: D
208 I/O MAP BG/	CASE NUMBER: 1159A-01 02 AUG			
	1 HOH	STANDARD: JE	DEC MO-151 AAF-1	

Figure 37. MPC5553 208 MAP BGA Package (continued)

MPC5553 Microcontroller Data Sheet, Rev. 4

Revision History for the MPC5553 Data Sheet

Table 33. Table and Figure Changes Between Rev. 2.0 and 3.0 (continued)

Location	Description of Changes
Table 7 (Pin	Status for Fast Pads During the Power Sequence) Power Sequence Pin Status for Fast Pads
	 Changed title to <i>Pin Status for Fast Pads During the Power Sequence</i> Changed preceding paragraph From: Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc., the state of the I/O pins during power up/down varies depending on power. Prior to exiting POR, the pads are in a high impedance state (Hi-Z). To: There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current
	spikes, and so on. Therefore, the state of the I/O pins during power up/down varies depending on which supplies are powered.
Table 8 (Pin	Status for Medium and Slow Pads During the Power Sequence) Power Sequence Pin Status for Medium/Slow Pads:
	 Changed title to <i>Pin Status for Medium and Slow Pads During the Power Sequence</i> Updated preceding paragraph.
Table 9 (DC	Electrical Specifications ($T_A = T_{L to} T_H$)) DC Electrical Specifications:
Table 9 (DC	 Electrical Specifications (T_A = T_{L to} T_H)) DC Electrical Specifications: Spelled the slash '/ as 'and' as well as 'I/O' as 'input/output'. Still very confusing. Deleted 'input/output'. Added footnote that reads: V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if EBTS = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if EBTS = 1. Spec 20, column 2, <i>Characteristics</i>, 'Slow and medium output high voltage (I_{OH_S} = -2.0 mA):' Created a left-justified second line and moved 'I_{OH_S} = -2.0 mA' from the 1st line to the second line and deleted the parentheses. Created a left-justified third line that reads 'I_{OH_S} = -1.0 mA.' Spec 20, column 4, <i>Min</i>.: Added a blank line before and after '0.80 × V_{DDEH}' and put '0.85 × V_{DDEH}' on the last line. Spec 22, column 2, <i>Slow and medium output low voltage (I_{OL_S} = 2.0 mA</i>):' Created a left-justified second line and moved 'I_{OL_S} = 1.0 mA.' Column 5, <i>Max</i>. Added a blank line before and after '0.20 × V_{DDEH}' and put '0.15 × V_{DDEH}' on the last line. Spec 26: Changed 'AN[12]_MA[1]_SDO' to 'AN[13]_MA[1]_SDO'. Spec 27: Operating current 1.5 V supplies @ 132 MHz changed to: 1.65 typical = 360 1.65 typical = 360 1.65 typical = 310 1.35 typical = 310 1.35 typical = 310 1.65 typical = 310 Spec 27, Operating current 1.5 V supplies @ 82 MHz changed to: 1.65 typical = 330
	 1.35 typical = 225 1.65 high = 385 1.35 high = 290 Spec 28: Changed 132 MHz to f_{MAX} MHz. Footnote 3 changed to read: If standby operation is not required, connect V_{STBY} to ground. Footnote 6 is now: Figure 3 (Power-Up Sequence (VRC33 Grounded))shows an illustration of the IDD_STBY values interpolated for these temperature values. Deleted footnote 9: 'Preliminary. Final specification pending characterization.' Deleted duplicate footnote: 'Absolute value of current, measured at V_{IL} and V_{IH}.

Revision History for the MPC5553 Data Sheet

Table 33. Table and Figure Changes Between Rev. 2.0 and 3.0 (continued)

Location	Description of Changes
Table 17 (Pa Specification	ad AC Specifications (VDDEH = 5.0 V, VDDE = 1.8 V)) Pad AC Specifications and Table 18 (Derated Pad AC ns (VDDEH = 3.3 V, VDDE = 3.3 V)) Derated Pad AC Specifications: The changes are identical in the tables.
	 Table 17 Pad AC Specifications ONLY: Footnote 1, changed 'V_{DDEH} = 4.5–5.5;' to 'V_{DDEH} = 4.5–5.25;' Footnote 1, deleted 'F_{SYS} = 132 MHz.' Footnote 2, changed from 'tested' to '(not tested).' Footnote 3, changed from 'Out delay' to 'The output delay', Changed from 'Add a maximum of one system clock to the output delay to get the output delay with respect to the system clock' to 'To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.' Footnote 4: changed 'Delay' to 'The output delay.' Footnote 5: deleted 'before qualification.' Changed from 'This parameter is supplied for reference and is not guaranteed by design and not tested' to 'This parameter is supplied for reference and is guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not tested' to 'This parameter is not guaranteed by design and not t
Table 19 (Re	eset and Configuration Pin Timing) Reset and Configuration Pin Timing: Footnote 1, deleted 'F _{SYS} = 132 MHz.'
Table 20 (JT	AG Pin AC Electrical Characteristics) JTAG Pin AC Electrical Characteristics:
	Footnote 1, deleted: 'and CL = 30 pF with DSC = 0b10, SRC = 0b11,' changed 'functional' to 'Nexus.'
Table 21 (Ne	exus Debug Port Timing) Nexus Debug Port Timing. Changed Spec 12, TCK Low to TDO Data Valid: Changed 'VDDE = 3.0 to 3.6 volts' maximum value in column 4 from 9 to 10. Now reads 'V _{DDE} = 3.0–3.6 V' with a max value of 10.
Table 22 (B	 <i>us Operation Timing) Bus Operation Timing</i>: External Bus Frequency in the table heading: Added footnote that reads: Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM, and 132 MHz parts allow for 128 MHz system clock + 2% FM. Spec 1: Changed the values in Min. columns: 40 MHz from 25 to 24.4; 56 MHz from 17.9 to 17.5 Specs 7 and 8: Removed from external bus interface: BDIP, OE, WE/BE[0:1]; removed from the calibration bus interface CAL_CS[0, 2:3], CAL_WE/BE[0:1]. Deleted duplicate footnote: The EBTS = 0 timings are tested and valid at V_{DDE} = 2.25–3.6 V only, whereas EBTS = 1 timings are tested and valid at V_{DDE} = 1.6–3.6 V. Added a footnote each for the DATA[0:31], TEA, and WE/BE[0:3] signals in the table: Due to pin limitations, the DATA[16:31], TEA, and WE/BE[2:3] signals are not available on the 324 package.
Table 24 (27	 Footnote 1, changed 'V_{DDEH} = 4.5–5.5;' to 'V_{DDEH} = 4.5–5.25;' Footnote 1: Deleted 'F_{SYS} = 132 MHz.', 'V_{DD} = 1.35–1.65 V', 'V_{DD33} and V_{DDSYN} = 3.0–3.6 V.' and 'and CL = 200 pF with SRC = 0b11.' Deleted second figure after table 'External Interrupt Setup Timing.'
ומטו <i>פ 2</i> 4 (פ	 Footnump error finning Footnump error finning Footnote 1, changed 'V_{DDEH} = 4.5–5.5;' to 'V_{DDEH} = 4.5–5.25;' Footnote 1: Deleted 'F_{SYS} = 132 MHz.', 'V_{DD} = 1.35–1.65 V', 'V_{DD33} and V_{DDSYN} = 3.0–3.6' and 'and CL = 200 pF with SRC = 0b11.' Deleted second figure, '<i>eTPU Input/Output Timing</i>' after this table. Added Footnote 2: 'This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).'