

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Details	
Product Status	Obsolete
Туре	Fixed Point
Interface	CAN, SPI, SSP, TWI, UART
Clock Rate	500MHz
Non-Volatile Memory	External
On-Chip RAM	132kB
Voltage - I/O	2.50V, 3.30V
Voltage - Core	1.26V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	182-LFBGA, CSPBGA
Supplier Device Package	182-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf537bbc-5a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

Table 1. Processor Comparison

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors are members of the Blackfin[®] family of products, incorporating the Analog Devices, Inc./Intel Micro Signal Architecture (MSA). Blackfin processors combine a dual-MAC, state-of-the-art signal processing engine, the advantages of a clean, orthogonal RISC-like microprocessor instruction set, and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture.

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors are completely code and pin compatible. They differ only with respect to their performance, on-chip memory, and presence of the Ethernet MAC module. Specific performance, memory, and feature configurations are shown in Table 1.

-							
Features		ADSP-BF534	ADSP-BF536	ADSP-BF537			
Ethernet MAC		_	1	1			
CAN		1	1	1			
TWI		1	1	1			
SPORTs		2	2	2			
UARTs		2	2	2			
SPI		1	1	1			
GP Timers		8	8	8			
Watchdog Time	ers	1	1	1			
RTC		1	1	1			
Parallel Periphe	eral Interface	1	1	1			
GPIOs		48	48	48			
	L1 Instruction SRAM/Cache	16K bytes	16K bytes	16K bytes			
	L1 Instruction SRAM	48K bytes	48K bytes	48K bytes			
Memory Configuration	L1 Data SRAM/Cache	32K bytes	32K bytes	32K bytes			
	L1 Data SRAM	32K bytes	_	32K bytes			
L1 Scratchpad L3 Boot ROM		4K bytes	4K bytes	4K bytes			
		2K bytes	2K bytes	2K bytes			
Maximum Spee	ed Grade	500 MHz	400 MHz	600 MHz			
Package Options: CSP_BGA CSP_BGA		208-Ball 182-Ball	208-Ball 182-Ball	208-Ball 182-Ball			

By integrating a rich set of industry-leading system peripherals and memory, the Blackfin processors are the platform of choice for next-generation applications that require RISC-like programmability, multimedia support, and leading-edge signal processing in one integrated package.

PORTABLE LOW POWER ARCHITECTURE

Blackfin processors provide world-class power management and performance. They are produced with a low power and low voltage design methodology and feature on-chip dynamic power management, which is the ability to vary both the voltage and frequency of operation to significantly lower overall power consumption. This capability can result in a substantial reduction in power consumption, compared with just varying the frequency of operation. This allows longer battery life for portable appliances.

SYSTEM INTEGRATION

The Blackfin processor is a highly integrated system-on-a-chip solution for the next generation of embedded network-connected applications. By combining industry-standard interfaces with a high performance signal processing core, cost-effective applications can be developed quickly, without the need for costly external components. The system peripherals include an IEEE-compliant 802.3 10/100 Ethernet MAC (ADSP-BF536 and ADSP-BF537 only), a CAN 2.0B controller, a TWI controller, two UART ports, an SPI port, two serial ports (SPORTs), nine general-purpose 32-bit timers (eight with PWM capability), a real-time clock, a watchdog timer, and a parallel peripheral interface (PPI).

BLACKFIN PROCESSOR PERIPHERALS

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors contain a rich set of peripherals connected to the core via several high bandwidth buses, providing flexibility in system configuration as well as excellent overall system performance (see Figure 1). The processors contain dedicated network communication modules and high speed serial and parallel ports, an interrupt controller for flexible management of interrupts from the on-chip peripherals or external sources, and power management control functions to tailor the performance and power characteristics of the processor and system to many application scenarios.

All of the peripherals, except for the general-purpose I/O, CAN, TWI, real-time clock, and timers, are supported by a flexible DMA structure. There are also separate memory DMA channels dedicated to data transfers between the processor's various memory spaces, including external SDRAM and asynchronous memory. Multiple on-chip buses running at up to 133 MHz provide enough bandwidth to keep the processor core running along with activity on all of the on-chip and external peripherals.

The Blackfin processors include an on-chip voltage regulator in support of the processors' dynamic power management capability. The voltage regulator provides a range of core voltage levels when supplied from V_{DDEXT} . The voltage regulator can be bypassed at the user's discretion.

Core Event Controller (CEC)

The CEC supports nine general-purpose interrupts (IVG15–7), in addition to the dedicated interrupt and exception events. Of these general-purpose interrupts, the two lowest priority interrupts (IVG15–14) are recommended to be reserved for software interrupt handlers, leaving seven prioritized interrupt inputs to support the peripherals of the Blackfin processor. Table 2 describes the inputs to the CEC, identifies their names in the event vector table (EVT), and lists their priorities.

Table 2. Core Event Controller (CEC)

Priority		
(0 Is Highest)	Event Class	EVT Entry
0	Emulation/Test Control	EMU
1	Reset	RST
2	Nonmaskable Interrupt	NMI
3	Exception	EVX
4	Reserved	—
5	Hardware Error	IVHW
6	Core Timer	IVTMR
7	General-Purpose Interrupt 7	IVG7
8	General-Purpose Interrupt 8	IVG8
9	General-Purpose Interrupt 9	IVG9
10	General-Purpose Interrupt 10	IVG10
11	General-Purpose Interrupt 11	IVG11
12	General-Purpose Interrupt 12	IVG12
13	General-Purpose Interrupt 13	IVG13
14	General-Purpose Interrupt 14	IVG14
15	General-Purpose Interrupt 15	IVG15

System Interrupt Controller (SIC)

The system interrupt controller provides the mapping and routing of events from the many peripheral interrupt sources to the prioritized general-purpose interrupt inputs of the CEC. Although the processor provides a default mapping, the user can alter the mappings and priorities of interrupt events by writing the appropriate values into the interrupt assignment registers (IAR). Table 3 describes the inputs into the SIC and the default mappings into the CEC. Table 3. System Interrupt Controller (SIC)

Peripheral Interrupt Event	Default Mapping	Peripheral Interrupt ID
PLL Wakeup	IVG7	0
DMA Error (Generic)	IVG7	1
DMAR0 Block Interrupt	IVG7	1
DMAR1 Block Interrupt	IVG7	1
DMAR0 Overflow Error	IVG7	1
DMAR1 Overflow Error	IVG7	1
CAN Error	IVG7	2
Ethernet Error (ADSP-BF536 and ADSP-BF537 only)	IVG7	2
SPORT 0 Error	IVG7	2
SPORT 1 Error	IVG7	2
PPI Error	IVG7	2
SPI Error	IVG7	2
UART0 Error	IVG7	2
UART1 Error	IVG7	2
Real-Time Clock	IVG8	3
DMA Channel 0 (PPI)	IVG8	4
DMA Channel 3 (SPORT 0 Rx)	IVG9	5
DMA Channel 4 (SPORT 0 Tx)	IVG9	6
DMA Channel 5 (SPORT 1 Rx)	IVG9	7
DMA Channel 6 (SPORT 1 Tx)	IVG9	8
TWI	IVG10	9
DMA Channel 7 (SPI)	IVG10	10
DMA Channel 8 (UARTO Rx)	IVG10	11
DMA Channel 9 (UARTO Tx)	IVG10	12
DMA Channel 10 (UART1 Rx)	IVG10	13
DMA Channel 11 (UART1 Tx)	IVG10	14
CAN Rx	IVG10	15
CAN Tx	IVG11	16
DMA Channel 1 (Ethernet Rx, ADSP-BF536 and ADSP-BF537 only)	IVG11	17
Port H Interrupt A	IVG11	17
DMA Channel 2 (Ethernet Tx, ADSP-BF536 and ADSP-BF537 only)	IVG11	18
Port H Interrupt B	IVG11	18
Timer 0	IVG12	19
Timer 1	IVG12	20
Timer 2	IVG12	21
Timer 3	IVG12	22
Timer 4	IVG12	23
Timer 5	IVG12	24
Timer 6	IVG12	25
Timer 7	IVG12	26
Port F, G Interrupt A	IVG12	27
Port G Interrupt B	IVG12	28

SERIAL PORTS (SPORTs)

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors incorporate two dual-channel synchronous serial ports (SPORT0 and SPORT1) for serial and multiprocessor communications. The SPORTs support the following features:

- I²S capable operation.
- Bidirectional operation Each SPORT has two sets of independent transmit and receive pins, enabling eight channels of I²S stereo audio.
- Buffered (8-deep) transmit and receive ports Each port has a data register for transferring data words to and from other processor components and shift registers for shifting data in and out of the data registers.
- Clocking Each transmit and receive port can either use an external serial clock or generate its own, in frequencies ranging from ($f_{SCLK}/131,070$) Hz to ($f_{SCLK}/2$) Hz.
- Word length Each SPORT supports serial data words from 3 bits to 32 bits in length, transferred most significant bit first or least significant bit first.
- Framing Each transmit and receive port can run with or without frame sync signals for each data word. Frame sync signals can be generated internally or externally, active high or low, and with either of two pulse widths and early or late frame sync.
- Companding in hardware Each SPORT can perform A-law or μ-law companding according to ITU recommendation G.711. Companding can be selected on the transmit and/or receive channel of the SPORT without additional latencies.
- DMA operations with single-cycle overhead Each SPORT can automatically receive and transmit multiple buffers of memory data. The processor can link or chain sequences of DMA transfers between a SPORT and memory.
- Interrupts Each transmit and receive port generates an interrupt upon completing the transfer of a data word or after transferring an entire data buffer, or buffers, through DMA.
- Multichannel capability Each SPORT supports 128 channels out of a 1024-channel window and is compatible with the H.100, H.110, MVIP-90, and HMVIP standards.

SERIAL PERIPHERAL INTERFACE (SPI) PORT

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors have an SPI-compatible port that enables the processor to communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins (Master Output-Slave Input, MOSI, and Master Input-Slave Output, MISO) and a clock pin (serial clock, SCK). An SPI chip select input pin (SPISS) lets other SPI devices select the processor, and seven SPI chip select output pins (SPISEL7–1) let the processor select other SPI devices. The SPI select pins are reconfigured programmable flag pins. Using these pins, the SPI port provides a full-duplex, synchronous serial interface, which supports both master/slave modes and multimaster environments.

The SPI port's baud rate and clock phase/polarities are programmable, and it has an integrated DMA controller, configurable to support transmit or receive data streams. The SPI's DMA controller can only service unidirectional accesses at any given time.

The SPI port's clock rate is calculated as:

$$SPI Clock Rate = \frac{f_{SCLK}}{2 \times SPI_BAUD}$$

where the 16-bit SPI_BAUD register contains a value of 2 to 65,535.

During transfers, the SPI port simultaneously transmits and receives by serially shifting data in and out on its two serial data lines. The serial clock line synchronizes the shifting and sampling of data on the two serial data lines.

UART PORTS

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors provide two full-duplex universal asynchronous receiver and transmitter (UART) ports, which are fully compatible with PCstandard UARTs. Each UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. A UART port includes support for five to eight data bits, one or two stop bits, and none, even, or odd parity. Each UART port supports two modes of operation:

- PIO (programmed I/O) The processor sends or receives data by writing or reading I/O mapped UART registers. The data is double-buffered on both transmit and receive.
- DMA (direct memory access) The DMA controller transfers both transmit and receive data. This reduces the number and frequency of interrupts required to transfer data to and from memory. The UART has two dedicated DMA channels, one for transmit and one for receive. These DMA channels have lower default priority than most DMA channels because of their relatively low service rates.

Each UART port's baud rate, serial data format, error code generation and status, and interrupts are programmable:

- Supporting bit rates ranging from (f_{SCLK}/1,048,576) to (f_{SCLK}/16) bits per second.
- Supporting data formats from 7 bits to 12 bits per frame.
- Both transmit and receive operations can be configured to generate maskable interrupts to the processor.

The UART port's clock rate is calculated as:

$$UART Clock Rate = \frac{f_{SCLK}}{16 \times UARTx_Divisor}$$

where the 16-bit *UARTx_Divisor* comes from the UARTx_DLH register (most significant 8 bits) and UARTx_DLL register (least significant 8 bits).

- Programmable Rx address filters, including a 64-bit address hash table for multicast and/or unicast frames, and programmable filter modes for broadcast, multicast, unicast, control, and damaged frames.
- Advanced power management supporting unattended transfer of Rx and Tx frames and status to/from external memory via DMA during low power sleep mode.
- System wake-up from sleep operating mode upon magic packet or any of four user-definable wake-up frame filters.
- Support for 802.3Q tagged VLAN frames.
- Programmable MDC clock rate and preamble suppression.
- In RMII operation, 7 unused pins can be configured as GPIO pins for other purposes.

PORTS

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors group the many peripheral signals to four ports—Port F, Port G, Port H, and Port J. Most of the associated pins are shared by multiple signals. The ports function as multiplexer controls. Eight of the pins (Port F7–0) offer high source/high sink current capabilities.

General-Purpose I/O (GPIO)

The processors have 48 bidirectional, general-purpose I/O (GPIO) pins allocated across three separate GPIO modules— PORTFIO, PORTGIO, and PORTHIO, associated with Port F, Port G, and Port H, respectively. Port J does not provide GPIO functionality. Each GPIO-capable pin shares functionality with other processor peripherals via a multiplexing scheme; however, the GPIO functionality is the default state of the device upon power-up. Neither GPIO output or input drivers are active by default. Each general-purpose port pin can be individually controlled by manipulation of the port control, status, and interrupt registers:

- GPIO direction control register Specifies the direction of each individual GPIO pin as input or output.
- GPIO control and status registers The processors employ a "write one to modify" mechanism that allows any combination of individual GPIO pins to be modified in a single instruction, without affecting the level of any other GPIO pins. Four control registers are provided. One register is written in order to set pin values, one register is written in order to clear pin values, one register is written in order to toggle pin values, and one register is written in order to specify a pin value. Reading the GPIO status register allows software to interrogate the sense of the pins.
- GPIO interrupt mask registers The two GPIO interrupt mask registers allow each individual GPIO pin to function as an interrupt to the processor. Similar to the two GPIO control registers that are used to set and clear individual pin values, one GPIO interrupt mask register sets bits to enable interrupt function, and the other GPIO interrupt mask register clears bits to disable interrupt function.

GPIO pins defined as inputs can be configured to generate hardware interrupts, while output pins can be triggered by software interrupts.

• GPIO interrupt sensitivity registers – The two GPIO interrupt sensitivity registers specify whether individual pins are level- or edge-sensitive and specify—if edge-sensitive whether just the rising edge or both the rising and falling edges of the signal are significant. One register selects the type of sensitivity, and one register selects which edges are significant for edge-sensitivity.

PARALLEL PERIPHERAL INTERFACE (PPI)

The processor provides a parallel peripheral interface (PPI) that can connect directly to parallel ADC and DAC converters, video encoders and decoders, and other general-purpose peripherals. The PPI consists of a dedicated input clock pin, up to three frame synchronization pins, and up to 16 data pins. The input clock supports parallel data rates up to half the system clock rate and the synchronization signals can be configured as either inputs or outputs.

The PPI supports a variety of general-purpose and ITU-R 656 modes of operation. In general-purpose mode, the PPI provides half-duplex, bidirectional data transfer with up to 16 bits of data. Up to three frame synchronization signals are also provided. In ITU-R 656 mode, the PPI provides half-duplex bidirectional transfer of 8- or 10-bit video data. Additionally, on-chip decode of embedded start-of-line (SOL) and start-of-field (SOF) preamble packets is supported.

General-Purpose Mode Descriptions

The general-purpose modes of the PPI are intended to suit a wide variety of data capture and transmission applications. Three distinct submodes are supported:

- 1. Input mode Frame syncs and data are inputs into the PPI.
- 2. Frame capture mode Frame syncs are outputs from the PPI, but data are inputs.
- 3. Output mode Frame syncs and data are outputs from the PPI.

Input Mode

Input mode is intended for ADC applications, as well as video communication with hardware signaling. In its simplest form, PPI_FS1 is an external frame sync input that controls when to read data. The PPI_DELAY MMR allows for a delay (in PPI_ CLK cycles) between reception of this frame sync and the initiation of data reads. The number of input data samples is user programmable and defined by the contents of the PPI_COUNT register. The PPI supports 8-bit and 10-bit through 16-bit data, programmable in the PPI_CONTROL register.

Frame Capture Mode

Frame capture mode allows the video source(s) to act as a slave (for frame capture for example). The ADSP-BF534/ ADSP-BF536/ADSP-BF537 processors control when to read from the video source(s). PPI_FS1 is an HSYNC output and PPI_FS2 is a VSYNC output.

(VCO) and the system clock. SCLK divider values are 1 through 15. Table 6 illustrates typical system clock ratios.

Signal Name	Divider Ratio	Example Frequency Ratios (MHz)		
SSEL3-0		VCO	SCLK	
0001	1:1	100	100	
0110	6:1	300	50	
1010	10:1	500	50	

Table 6. Example System Clock Ratios

Note that the divisor ratio must be chosen to limit the system clock frequency to its maximum of f_{SCLK} . The SSEL value can be changed dynamically without any PLL lock latencies by writing the appropriate values to the PLL divisor register (PLL_DIV).

The core clock (CCLK) frequency can also be dynamically changed by means of the CSEL1–0 bits of the PLL_DIV register. Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in Table 7. This programmable core clock capability is useful for fast core frequency modifications.

Table 7. Core Clock Ratios

Signal Name	Divider Ratio	Example Frequency Ratio (MHz)		
CSEL1-0	VCO:CCLK	VCO	CCLK	
00	1:1	300	300	
01	2:1	300	150	
10	4:1	500	125	
11	8:1	200	25	

The maximum CCLK frequency not only depends on the part's speed grade (see Ordering Guide on Page 67), it also depends on the applied V_{DDINT} voltage (see Table 10, Table 11, and Table 12 on Page 24 for details). The maximal system clock rate (SCLK) depends on the chip package and the applied V_{DDEXT} voltage (see Table 14 on Page 24).

BOOTING MODES

The ADSP-BF534/ADSP-BF536/ADSP-BF537 processor has six mechanisms (listed in Table 8) for automatically loading internal and external memory after a reset. A seventh mode is provided to execute from external memory, bypassing the boot sequence.

Table 8. Booting Modes

BMODE2-0	Description
000	Execute from 16-bit external memory (bypass boot ROM)
001	Boot from 8-bit or 16-bit memory (EPROM/flash)
010	Reserved
011	Boot from serial SPI memory (EEPROM/flash)
100	Boot from SPI host (slave mode)

Table 8. Booting Modes (Continued)

BMODE2-0	Description
101	Boot from serial TWI memory (EEPROM/flash)
110	Boot from TWI host (slave mode)
111	Boot from UART host (slave mode)

The BMODE pins of the reset configuration register, sampled during power-on resets and software-initiated resets, implement the following modes:

- Execute from 16-bit external memory Execution starts from address 0x2000 0000 with 16-bit packing. The boot ROM is bypassed in this mode. All configuration settings are set for the slowest device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup).
- Boot from 8-bit and 16-bit external flash memory The 8-bit or 16-bit flash boot routine located in Boot ROM memory space is set up using asynchronous memory bank 0. All configuration settings are set for the slowest device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup). The Boot ROM evaluates the first byte of the boot stream at address 0x2000 0000. If it is 0x40, 8-bit boot is performed. A 0x60 byte assumes a 16-bit memory device and performs 8-bit DMA. A 0x20 byte also assumes 16-bit memory but performs 16-bit DMA.
- Boot from serial SPI memory (EEPROM or flash) 8-, 16-, or 24-bit addressable devices are supported as well as AT45DB041, AT45DB081, AT45DB161, AT45DB321, AT45DB642, and AT45DB1282 DataFlash[®] devices from Atmel. The SPI uses the PF10/SPI SSEL1 output pin to select a single SPI EEPROM/flash device, submits a read command and successive address bytes (0x00) until a valid 8-, 16-, or 24-bit, or Atmel addressable device is detected, and begins clocking data into the processor.
- Boot from SPI host device The Blackfin processor operates in SPI slave mode and is configured to receive the bytes of the .LDR file from an SPI host (master) agent. To hold off the host device from transmitting while the boot ROM is busy, the Blackfin processor asserts a GPIO pin, called host wait (HWAIT), to signal the host device not to send any more bytes until the flag is deasserted. The flag is chosen by the user and this information is transferred to the Blackfin processor via bits 10:5 of the FLAG header.
- Boot from UART Using an autobaud handshake sequence, a boot-stream-formatted program is downloaded by the host. The host agent selects a baud rate within the UART's clocking capabilities. When performing the autobaud, the UART expects an "@" (boot stream) character (8 bits data, 1 start bit, 1 stop bit, no parity bit) on the RXD pin to determine the bit rate. It then replies with an acknowledgement that is composed of 4 bytes: 0xBF, the value of UART_DLL, the value of UART_DLH, and 0x00. The host can then download the boot stream. When the processor needs to hold off the host, it deasserts CTS. Therefore, the host must monitor this signal.

Table 9. Pin Descriptions (Continued)

Pin Name	Туре	Function	Driver Type ¹
<i>Port H: GPIO/10/100 Ethernet MAC</i> (On ADSP-BF534, these pins are GPIO only)			
PH0 – GPIO/ <i>ETxD0</i>	I/O	GPIO/Ethernet MII or RMII Transmit D0	E
PH1 – GPIO/ <i>ETxD1</i>	I/O	GPIO/Ethernet MII or RMII Transmit D1	E
PH2 – GPIO/ <i>ETxD2</i>	I/O	GPIO/Ethernet MII Transmit D2	E
PH3 – GPIO/ <i>ETxD3</i>	I/O	GPIO/Ethernet MII Transmit D3	E
PH4 – GPIO/ <i>ETxEN</i>	I/O	GPIO/Ethernet MII or RMII Transmit Enable	E
PH5 – GPIO/ <i>MII TxCLK/RMII REF_CLK</i>	I/O	GPIO/Ethernet MII Transmit Clock/RMII Reference Clock	E
PH6 – GPIO/ <i>MII <mark>PHYINT</mark>/RMII <mark>MDINT</mark></i>	I/O	GPIO/Ethernet MII PHY Interrupt/RMII Management Data Interrupt (This pin should be pulled high when used as a hibernate wake-up.)	E
PH7 – GPIO/ <i>COL</i>	I/O	GPIO/Ethernet Collision	E
PH8 – GPIO/ <i>ERxD0</i>	I/O	GPIO/Ethernet MII or RMII Receive D0	E
PH9 – GPIO/ERxD1	I/O	GPIO/Ethernet MII or RMII Receive D1	E
PH10 – GPIO/ <i>ERxD2</i>	I/O	GPIO/Ethernet MII Receive D2	E
PH11 – GPIO/ <i>ERxD3</i>	I/O	GPIO/Ethernet MII Receive D3	E
PH12 – GPIO/ERxDV/TACLK5	I/O	GPIO/Ethernet MII Receive Data Valid/Alternate Timer5 Input Clock	E
PH13 – GPIO/ <i>ERxCLK/TACLK6</i>	I/O	GPIO/Ethernet MII Receive Clock/Alternate Timer6 Input Clock	E
PH14 – GPIO/ERxER/TACLK7	I/O	GPIO/Ethernet MII or RMII Receive Error/Alternate Timer7 Input Clock	E
PH15 – GPIO/ <i>MII CRS/RMII CRS_DV</i>	I/O	GPIO/Ethernet MII Carrier Sense/Ethernet RMII Carrier Sense and Receive Data Valid	E
Port J: SPORT0/TWI/SPI Select/CAN			
PJO – MDC	0	Ethernet Management Channel Clock (On ADSP-BF534 processors, do not connect this pin.)	E
PJ1 – MDIO	I/O	Ethernet Management Channel Serial Data (On ADSP-BF534 processors, tie this pin to ground.)	E
PJ2 – SCL	I/O	TWI Serial Clock (This pin is an open-drain output and requires a pull-up resistor.)	F
PJ3 – SDA	I/O	TWI Serial Data (This pin is an open-drain output and requires a pull-up resistor.)	F
PJ4 – DROSEC/CANRX/TACIO	I	SPORT0 Receive Data Secondary/CAN Receive/Timer0 Alternate Input Capture	
PJ5 – DTOSEC/CANTX/SPI SSEL7	0	SPORT0 Transmit Data Secondary/CAN Transmit/SPI Slave Select Enable 7	С
PJ6 – RSCLK0/TACLK2	I/O	SPORT0 Receive Serial Clock/Alternate Timer2 Clock Input	D
PJ7 – RFSO/TACLK3	I/O	SPORT0 Receive Frame Sync/Alternate Timer3 Clock Input	С
PJ8 – DROPRI/TACLK4	I	SPORT0 Receive Data Primary/Alternate Timer4 Clock Input	
PJ9 – TSCLK0/TACLK1	I/O	SPORT0 Transmit Serial Clock/Alternate Timer1 Clock Input	D
PJ10 – TFSO/SPI SSEL3	I/O	SPORT0 Transmit Frame Sync/SPI Slave Select Enable 3	С
PJ11 – DTOPRI/SPI SSEL2	0	SPORT0 Transmit Data Primary/SPI Slave Select Enable 2	С
Real-Time Clock			
RTXI	I	RTC Crystal Input (This pin should be pulled low when not used.)	
RTXO	0	RTC Crystal Output (Does not three-state in hibernate.)	
JTAG Port			
ТСК	I	JTAG Clock	
TDO	0	JTAG Serial Data Out	С
TDI	1	JTAG Serial Data In	
TMS	1	JTAG Mode Select	
TRST	I	JTAG Reset (This pin should be pulled low if the JTAG port is not used.)	
EMU	0	Emulation Output	С

SPECIFICATIONS

Note that component specifications are subject to change without notice.

OPERATING CONDITIONS

Param	eter	Conditions	Min	Nominal	Max	Unit
V _{DDINT}	Internal Supply Voltage ¹	Nonautomotive 300 MHz, 400 MHz, and 500 MHz speed grade models ²	0.8	1.2	1.32	V
V _{DDINT}	Internal Supply Voltage ¹	Nonautomotive 533 MHz speed grade models ²	0.8	1.25	1.375	v
V _{DDINT}	Internal Supply Voltage ¹	Nonautomotive 600 MHz speed grade models ²	0.8	1.3	1.43	v
V _{DDINT}	Internal Supply Voltage ¹	Automotive grade models and +105°C nonautomotive grade models ²	0.95	1.2	1.32	V
V _{DDEXT}	External Supply Voltage	Nonautomotive grade models ²	2.25	2.5 or 3.3	3.6	V
V _{DDEXT}	External Supply Voltage	Automotive grade models and +105°C nonautomotive grade models ²	2.7	3.0 or 3.3	3.6	V
V _{DDRTC}	Real-Time Clock Power Supply Voltage		2.25		3.6	V
V _{IH}	High Level Input Voltage ^{3, 4}	V _{DDEXT} = Maximum	2.0			V
VIHCLKIN	High Level Input Voltage⁵	V _{DDEXT} = Maximum	2.2			V
V _{IH5V}	5.0 V Tolerant Pins, High Level Input Voltage ⁶		$0.7 \times V_{DDEXT}$			V
V _{IH5V}	5.0 V Tolerant Pins, High Level Input Voltage ⁷	V _{DDEXT} = Maximum	2.0			V
V _{IL}	Low Level Input Voltage ^{3, 8}	V _{DDEXT} = Minimum			+0.6	V
V _{IL5V}	5.0 V Tolerant Pins, Low Level Input Voltage ⁶				$0.3 \times V_{DDEXT}$	V
V _{IL5V}	5.0 V Tolerant Pins, Low Level Input Voltage ⁷	V _{DDEXT} = Minimum			+0.8	V
Tj	Junction Temperature	208-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ $T_{AMBIENT} = -40^{\circ}C$ to +105°C	-40		+120	°C
TJ	Junction Temperature	208-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ $T_{AMBIENT} = -40^{\circ}C$ to +85°C	-40		+105	°C
TJ	Junction Temperature	208-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ $T_{AMBIENT} = 0^{\circ}C$ to +70°C	0		+95	°C
TJ	Junction Temperature	182-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ $T_{AMBIENT} = -40^{\circ}C$ to +85°C	-40		+105	°C
TJ	Junction Temperature	182-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ $T_{AMBIENT} = 0^{\circ}C$ to +70°C	0		+100	°C

¹The regulator can generate V_{DDINT} at levels of 0.85 V to 1.2 V with -5% to +10% tolerance, 1.25 V with -4% to +10% tolerance, and 1.3 V with -0% to +10% tolerance. The required V_{DDINT} is a function of speed grade and operating frequency. See Table 10, Table 11, and Table 12 for details.

² See Ordering Guide on Page 67.

³ Bidirectional pins (DATA15-0, PF15-0, PG15-0, PH15-0, TFS0, TSCLK0, RSCLK0, RFS0, MDIO) and input pins (BR, ARDY, DR0PRI, DR0SEC, RTXI, TCK, TDI, TMS, TRST, CLKIN, RESET, NMI, and BMODE2-0) of the ADSP-BF534/ADSP-BF536/ADSP-BF537 are 3.3 V-tolerant (always accept up to 3.6 V maximum V_{IH}). Voltage compliance (on outputs, V_{OH}) is limited by the V_{DDEXT} supply voltage.

⁴ Parameter value applies to all input and bidirectional pins except CLKIN, SDA, and SCL.

⁵ Parameter value applies to CLKIN pin only.

⁶ Applies to pins PJ2/SCL and PJ3/SDA which are 5.0 V tolerant (always accept up to 5.5 V maximum V_{IH}). Voltage compliance (on outputs, V_{OH}) is limited by the V_{DDEXT} supply voltage.

⁷ Applies to pin PJ4/DR0SEC/CANRX/TACI0 which is 5.0 V tolerant (always accepts up to 5.5 V maximum V_{IH}). Voltage compliance (on outputs, V_{OH}) is limited by the V_{DDEXT} supply voltage.

⁸ Parameter value applies to all input and bidirectional pins except SDA and SCL.

ELECTRICAL CHARACTERISTICS

			30	0 MHz/	400 MHz ¹	500 N	/Hz/533	MHz/600 MHz ²	
Parameter		Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH} ³	High Level Output Voltage	$V_{DDEXT} = 2.5 \text{ V}/3.0 \text{ V}/$ 3.3 V ± 10%, I _{OH} = -0.5 mA	V _{DDEXT} – 0.5			V _{DDEXT} – 0	.5		V
V _{OH} ⁴		$V_{\text{DDEXT}} = 3.3 \text{ V} \pm 10\%,$ $I_{\text{OH}} = -8 \text{ mA}$	V _{DDEXT} – 0.5			V _{DDEXT} – 0	.5		v
		$V_{DDEXT} = 2.5 \text{ V}/3.0 \text{ V} \pm 10\%, I_{OH} = -6 \text{ mA}$	V _{DDEXT} – 0.5			V _{DDEXT} – 0	.5		V
V _{OH} ⁵		$V_{DDEXT} = 2.5 \text{ V}/3.0 \text{ V}/$ 3.3 V ± 10%, I _{OH} = -2.0 mA	V _{DDEXT} – 0.5			V _{DDEXT} – 0	.5		V
I _{OH} ⁶	High Level Output Current	$V_{OH} = V_{DDEXT} - 0.5 V Min$			-64			-64	mA
I _{OH} ⁷		$V_{OH} = V_{DDEXT} - 0.5 V Min$			-144			-144	mA
V _{OL} ³	Low Level Output Voltage	V _{DDEXT} = 2.5 V/3.0 V/ 3.3 V ± 10%, I _{OL} = 2.0 mA			0.4			0.4	V
V _{OL} ⁴		$V_{\text{DDEXT}} = 3.3 \text{ V} \pm 10\%,$ $I_{\text{OL}} = 8 \text{ mA}$			0.5			0.5	V
		$V_{DDEXT} = 2.5 \text{ V}/3.0 \text{ V} \pm 10\%, I_{OL} = 6 \text{ mA}$			0.5			0.5	V
V _{OL} ⁵		$V_{DDEXT} = 2.5 \text{ V}/3.0 \text{ V}/$ 3.3 V ± 10%, $I_{OL} = 2.0 \text{ mA}$			0.5			0.5	V
I _{OL} ⁶	Low Level Output Current	$V_{OL} = 0.5 V Max$			64			64	mA
l _{OL} ⁷		V _{OL} = 0.5 V Max			144			144	mA
I _{IH}	High Level Input Current ⁸	$V_{DDEXT} = 3.6 V, V_{IN} = 3.6 V$			10			10	μΑ
I _{IH5V}	High Level Input Current ⁹	$V_{DDEXT} = 3.6 V, V_{IN} = 5.5 V$			10			10	μΑ
I _{IL}	Low Level Input Current ²	$V_{DDEXT} = 3.6 V, V_{IN} = 0 V$			10			10	μΑ
I _{IHP}	High Level Input Current JTAG ¹⁰	$V_{DDEXT} = 3.6 V, V_{IN} = 3.6 V$			50			50	μΑ
I _{оzн}	Three-State Leakage Current ¹¹	$V_{DDEXT} = 3.6 V, V_{IN} = 3.6 V$			10			10	μΑ
I _{ozh5v}	Three-State Leakage Current ¹²	$V_{DDEXT} = 3.6 V, V_{IN} = 5.5 V$			10			10	μΑ
I _{OZL}	Three-State Leakage Current⁵	$V_{DDEXT} = 3.6 \text{ V}, V_{IN} = 0 \text{ V}$			10			10	μA

External Port Bus Request and Grant Cycle Timing

Table 26 and Figure 13 describe external port bus request and bus grant operations.

Table 26. External Port Bus Request and Grant Cycle Timing

Paramete	r1,2	Min	Мах	Unit
Timing Req	uirements			
t _{BS}	BR Asserted to CLKOUT Low Setup	4.6		ns
t _{BH}	CLKOUT Low to BR Deasserted Hold Time	0.0		ns
Switching	Characteristics			
t _{SD}	CLKOUT Low to AMSx, Address, and ARE/AWE Disable		4.5	ns
t _{se}	CLKOUT Low to AMSx, Address, and ARE/AWE Enable		4.5	ns
t _{DBG}	CLKOUT High to BG Asserted Setup		3.6	ns
t _{EBG}	CLKOUT High to BG Deasserted Hold Time		3.6	ns
t _{DBH}	CLKOUT High to BGH Asserted Setup		3.6	ns
t _{EBH}	CLKOUT High to BGH Deasserted Hold Time		3.6	ns

¹ These timing parameters are based on worst-case operating conditions.

² The pad loads for these timing parameters are 20 pF.

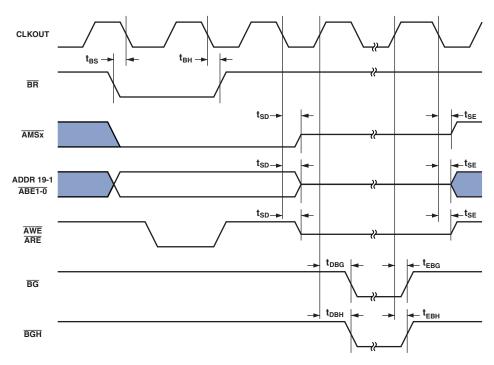


Figure 13. External Port Bus Request and Grant Cycle Timing

Parallel Peripheral Interface Timing

Table 29 and Figure 16 on Page 36, Figure 20 on Page 39, and Figure 23 on Page 41 describe parallel peripheral interface operations.

Table 29. Parallel Peripheral Interface Timing

Parameter		Min	Max	Unit
Timing Requ	irements			
t _{PCLKW}	PPI_CLK Width ¹	6.0		ns
t _{PCLK}	PPI_CLK Period ¹	15.0		ns
Timing Requ	irements—GP Input and Frame Capture Modes			
t _{SFSPE}	External Frame Sync Setup Before PPI_CLK	6.7		ns
t _{HFSPE}	External Frame Sync Hold After PPI_CLK	1.0		ns
t _{SDRPE}	Receive Data Setup Before PPI_CLK	3.5		ns
t _{HDRPE}	Receive Data Hold After PPI_CLK	1.5		ns
Switching Cl	haracteristics—GP Output and Frame Capture Modes			
t _{DFSPE}	Internal Frame Sync Delay After PPI_CLK		8.0	ns
t _{HOFSPE}	Internal Frame Sync Hold After PPI_CLK	1.7		ns
t _{DDTPE}	Transmit Data Delay After PPI_CLK		8.0	ns
t _{HDTPE}	Transmit Data Hold After PPI_CLK	1.8		ns

 1 PPI_CLK frequency cannot exceed f_{SCLK}/2.

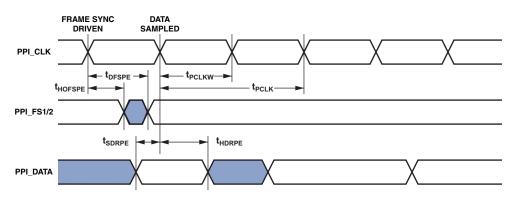


Figure 16. PPI GP Rx Mode with Internal Frame Sync Timing

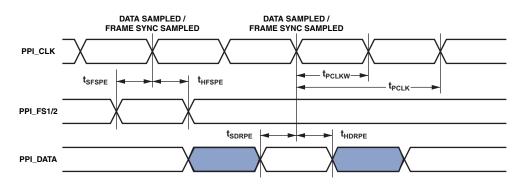


Figure 17. PPI GP Rx Mode with External Frame Sync Timing

Serial Port Timing

Table 30 through Table 33 on Page 41 and Figure 20 on Page 39 through Figure 23 on Page 41 describe serial port operations.

Table 30. Serial Ports-External Clock

Parameter		Min	Max	Unit
Timing Requ	irements			
t _{SFSE}	TFSx/RFSx Setup Before TSCLKx/RSCLKx ¹	3.0		ns
t _{HFSE}	TFSx/RFSx Hold After TSCLKx/RSCLKx ¹	3.0		ns
t _{SDRE}	Receive Data Setup Before RSCLKx ¹	3.0		ns
t _{HDRE}	Receive Data Hold After RSCLKx ¹	3.0		ns
t _{SCLKEW}	TSCLKx/RSCLKx Width	4.5		ns
t _{SCLKE}	TSCLKx/RSCLKx Period	15.0		ns
t _{SUDTE}	Start-Up Delay From SPORT Enable To First External TFSx ²	$4.0 \times t_{SCLKI}$		ns
t _{SUDRE}	Start-Up Delay From SPORT Enable To First External RFSx ²	$4.0 \times t_{SCLKI}$		ns
Switching Ch	paracteristics			
t _{DFSE}	TFSx/RFSx Delay After TSCLKx/RSCLK (Internally Generated TFSx/RFSx) ³		10.0	ns
t _{HOFSE}	TFSx/RFSx Hold After TSCLKx/RSCLK (Internally Generated TFSx/RFSx) ²	0		ns
t _{DDTE}	Transmit Data Delay After TSCLKx ²		10.0	ns
t _{HDTE}	Transmit Data Hold After TSCLKx ²	0		ns

¹Referenced to sample edge.

² Verified in design but untested. After being enabled, the serial port requires external clock pulses—before the first external frame sync edge—to initialize the serial port. ³ Referenced to drive edge.

Table 31. Serial Ports—Internal Clock

		2.25 V	≤ V _{DDEXT} < 2.70 V or	$2.70 V \le V_{DDEXT} \le 3.60 V$ and		
		0.80 V	\leq V _{DDINT} < 0.95 V ¹	0.95 V	$\leq V_{DDINT} \leq 1.43 V^{2, 3}$	
Paramet	Parameter		Мах	Min	Max	Unit
Timing Re	equirements					
t _{SFSI}	TFSx/RFSx Setup Before TSCLKx/RSCLKx ⁴	8.5		8.0		ns
t _{HFSI}	TFSx/RFSx Hold After TSCLKx/RSCLKx ⁴	-1.5		-1.5		ns
t _{SDRI}	Receive Data Setup Before RSCLKx ⁴	8.5		8.0		ns
t _{HDRI}	Receive Data Hold After RSCLKx ⁴	-1.5		-1.5		ns
Switching	Characteristics					
t _{DFSI}	TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ⁵		3.0		3.0	ns
t _{HOFSI}	TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ⁵	-1.0		-1.0		ns
t _{DDTI}	Transmit Data Delay After TSCLKx⁵		3.0		3.0	ns
t _{HDTI}	Transmit Data Hold After TSCLKx ⁵	-1.0		-1.0		ns
t _{SCLKIW}	TSCLKx/RSCLKx Width	4.5		4.5		ns

¹Applies to all nonautomotive-grade devices when operated within either of these voltage ranges.

² Applies to all nonautomotive-grade devices when operated within these voltage ranges.

³ All automotive-grade devices are within these specifications.

⁴Referenced to sample edge.

⁵ Referenced to drive edge.

Table 32. Serial Ports-Enable and Three-State

Parameter		Min	Мах	Unit
Switching Characteristics				
t _{DTENE}	Data Enable Delay from External TSCLKx ¹	0		ns
t _{DDTTE}	Data Disable Delay from External TSCLKx ^{1, 2}		10.0	ns
t _{DTENI}	Data Enable Delay from Internal TSCLKx ¹	-2.0		ns
t _{DDTTI}	Data Disable Delay from Internal TSCLKx ^{1, 2}		3.0	ns

¹ Referenced to drive edge.
 ² Applicable to multichannel mode only. TSCLKx is tied to RSCLKx.

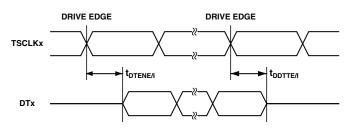


Figure 22. Enable and Three-State

Serial Peripheral Interface Port—Master Timing

Table 34 and Figure 24 describe SPI port master operations.

Table 34. Serial Peripheral Interface (SPI) Port—Master Timing

		2.25 V ≤ V _{DDEXT} < 2 or 0.80 V ≤ V _{DDINT} < 0.	and	
Parameter		Min Max	Min Max	Unit
Timing Re	equirements			
t _{sspidm}	Data Input Valid to SCK Edge (Data Input Setup)	8.7	7.5	ns
t _{hspidm}	SCK Sampling Edge to Data Input Invalid	-1.5	-1.5	ns
Switching	Characteristics			
t _{sdscim}	SPISELx Low to First SCK Edge	$2 \times t_{SCLK} - 1.5$	$2 \times t_{SCLK} - 1.5$	ns
t _{spichm}	Serial Clock High Period	$2 \times t_{SCLK} - 1.5$	$2 \times t_{SCLK} - 1.5$	ns
SPICLM	Serial Clock Low Period	$2 \times t_{SCLK} - 1.5$	$2 \times t_{SCLK} - 1.5$	ns
SPICLK	Serial Clock Period	$4 \times t_{SCLK} - 1.5$	$4 \times t_{SCLK} - 1.5$	ns
HDSM	Last SCK Edge to SPISELx High	$2 \times t_{SCLK} - 1.5$	$2 \times t_{SCLK} - 1.5$	ns
SPITDM	Sequential Transfer Delay	$2 \times t_{SCLK} - 1.5$	$2 \times t_{SCLK} - 1.5$	ns
DDSPIDM	SCK Edge to Data Out Valid (Data Out Delay)	6	6	ns
HDSPIDM	SCK Edge to Data Out Invalid (Data Out Hold)	-1.0	-1.0	ns

¹Applies to all nonautomotive-grade devices when operated within either of these voltage ranges.

² Applies to all nonautomotive-grade devices when operated within these voltage ranges.

³ All automotive-grade devices are within these specifications.

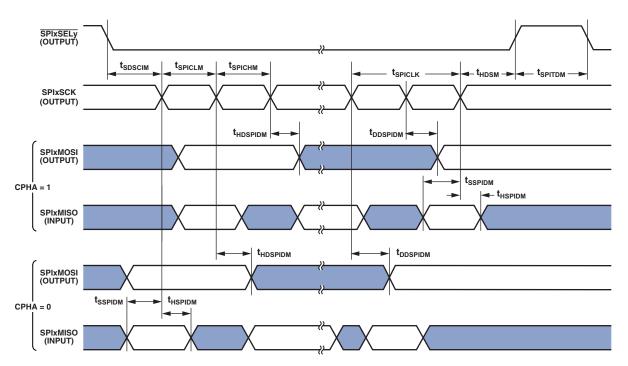


Figure 24. Serial Peripheral Interface (SPI) Port—Master Timing

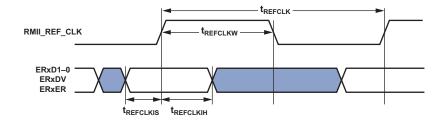


Figure 32. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal

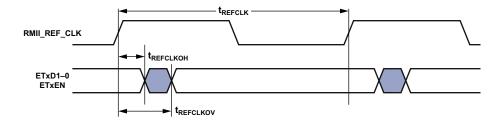


Figure 33. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal

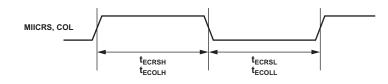


Figure 34. 10/100 Ethernet MAC Controller Timing: Asynchronous Signal

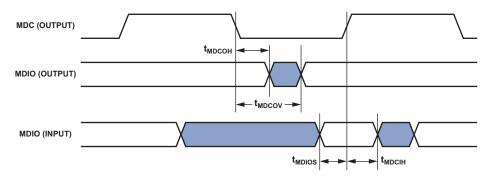


Figure 35. 10/100 Ethernet MAC Controller Timing: MII Station Management

THERMAL CHARACTERISTICS

To determine the junction temperature on the application printed circuit board use:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

 T_I = Junction temperature (°C)

 T_{CASE} = Case temperature (°C) measured by customer at top center of package.

 Ψ_{TT} = From Table 46

 P_D = Power dissipation (see the power dissipation discussion and the tables on Page 27 for the method to calculate P_D).

Values of θ_{JA} are provided for package comparison and printed circuit board design considerations. θ_{JA} can be used for a first order approximation of T_J by the equation:

$$T_I = T_A + (\theta_{IA} \times P_D)$$

where:

 T_A = Ambient temperature (°C)

Values of θ_{JC} are provided for package comparison and printed circuit board design considerations when an external heat sink is required. Values of θ_{JB} are provided for package comparison and printed circuit board design considerations.

In Table 46 through Table 48, airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6, and the junction-to-board measurement complies with JESD51-8. Test board and thermal via design comply with JEDEC standards JESD51-9 (BGA). The junction-to-case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

Industrial applications using the 208-ball BGA package require thermal vias, to an embedded ground plane, in the PCB. Refer to JEDEC standard JESD51-9 for printed circuit board thermal ball land and thermal via design information.

Table 46.	Thermal	Characteristics	(182-Ball BGA)
-----------	---------	-----------------	----------------

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	32.80	°C/W
θ_{JMA}	1 Linear m/s Airflow	29.30	°C/W
θ_{JMA}	2 Linear m/s Airflow	28.00	°C/W
θ_{JB}		20.10	°C/W
θ_{JC}		7.92	°C/W
$\Psi_{ m JT}$	0 Linear m/s Airflow	0.19	°C/W
$\Psi_{ extsf{JT}}$	1 Linear m/s Airflow	0.35	°C/W
Ψ_{JT}	2 Linear m/s Airflow	0.45	°C/W

Table 47. Thermal Characteristics (208-Ball BGA withoutThermal Vias in PCB)

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	23.30	°C/W
θ_{JMA}	1 Linear m/s Airflow	20.20	°C/W
θ_{JMA}	2 Linear m/s Airflow	19.20	°C/W
θ_{JB}		13.05	°C/W
θ_{JC}		6.92	°C/W
$\Psi_{ m T}$	0 Linear m/s Airflow	0.18	°C/W
$\Psi_{ m JT}$	1 Linear m/s Airflow	0.27	°C/W
Ψ_{JT}	2 Linear m/s Airflow	0.32	°C/W

Table 48. Thermal Characteristics (208-Ball BGA withThermal Vias in PCB)

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	22.60	°C/W
θ_{JMA}	1 Linear m/s Airflow	19.40	°C/W
θ_{JMA}	2 Linear m/s Airflow	18.40	°C/W
θ_{JB}		13.20	°C/W
θ_{JC}		6.85	°C/W
$\Psi_{ m JT}$	0 Linear m/s Airflow	0.16	°C/W
$\Psi_{ m JT}$	1 Linear m/s Airflow	0.27	°C/W
Ψ_{JT}	2 Linear m/s Airflow	0.32	°C/W

Table 50. 182-Ball CSP_BGA Ball Assignment (Numerically by Ball Number)

Ball No.	Mnemonic								
A1	V _{DDEXT}	C10	RESET	F5	GND	J14	ADDR1	M9	DATA0
A2	PH11	C11	PJ3	F6	GND	K1	PF5	M10	GND
A3	PH12	C12	V _{DDEXT}	F10	GND	K2	PF6	M11	ADDR15
A4	PH13	C13	SMS	F11	GND	К3	PF7	M12	ADDR9
A5	PH14	C14	SCAS	F12	V _{DDEXT}	K4	PF8	M13	ADDR10
A6	PH15	D1	PG10	F13	AMS2	K5	V _{DDINT}	M14	ADDR11
A7	CLKBUF	D2	PG11	F14	AMS1	K6	GND	N1	TRST
A8	RTXO	D3	PG12	G1	PG0	K7	V _{DDEXT}	N2	TMS
A9	RTXI	D4	GND	G2	PG1	K8	V _{DDINT}	N3	TDO
A10	GND	D5	PG13	G3	PG2	К9	V _{DDEXT}	N4	BMODE0
A11	XTAL	D6	PG14	G4	GND	K10	V _{DDINT}	N5	DATA13
A12	CLKIN	D7	PJ4	G5	GND	K11	GND	N6	DATA10
A13	VROUT0	D8	PJ5	G10	V _{DDINT}	K12	ADDR7	N7	DATA7
A14	GND	D9	PJ8	G11	GND	K13	ADDR5	N8	DATA4
B1	PH5	D10	PJ10	G12	AMS3	K14	ADDR2	N9	DATA1
B2	PH6	D11	PJ11	G13	AOE	L1	PF1	N10	BGH
B3	PH7	D12	SWE	G14	ARE	L2	PF2	N11	ADDR16
B4	PH8	D13	SRAS	H1	PF12	L3	PF3	N12	ADDR14
B5	PH9	D14	BR	H2	PF13	L4	PF4	N13	ADDR13
B6	PH10	E1	PG6	H3	PF14	L5	BMODE2	N14	ADDR12
B7	PJ1	E2	PG7	H4	PF15	L6	GND	P1	V _{DDEXT}
B8	PJ7	E3	PG8	H5	V _{DDEXT}	L7	V _{DDEXT}	P2	ТСК
B9	V _{DDRTC}	E4	PG9	H10	V _{DDEXT}	L8	GND	Р3	BMODE1
B10	NMI	E5	V _{DDINT}	H11	GND	L9	V _{DDEXT}	P4	DATA15
B11	PJ2	E6	V _{DDEXT}	H12	ABE1	L10	GND	P5	DATA14
B12	VROUT1	E7	GND	H13	ABE0	L11	V _{DDEXT}	P6	DATA11
B13	SCKE	E8	V _{DDINT}	H14	AWE	L12	ADDR8	P7	DATA8
B14	CLKOUT	E9	GND	J1	PF9	L13	ADDR6	P8	DATA5
C1	PG15	E10	V _{DDINT}	J2	PF10	L14	ADDR3	P9	DATA2
C2	PH0	E11	V _{DDEXT}	J3	PF11	M1	PF0	P10	BG
C3	PH1	E12	SA10	J4	GND	M2	EMU	P11	ADDR19
C4	PH2	E13	ARDY	J5	GND	M3	TDI	P12	ADDR18
C5	PH3	E14	AMS0	J9	GND	M4	GND	P13	ADDR17
C6	PH4	F1	PG3	J10	GND	M5	DATA12	P14	GND
C7	PJO	F2	PG4	J11	V _{DDEXT}	M6	DATA9		
C8	PJ6	F3	PG5	J12	V _{DDEXT}	M7	DATA6		
С9	PJ9	F4	V _{DDEXT}	J13	ADDR4	M8	DATA3		

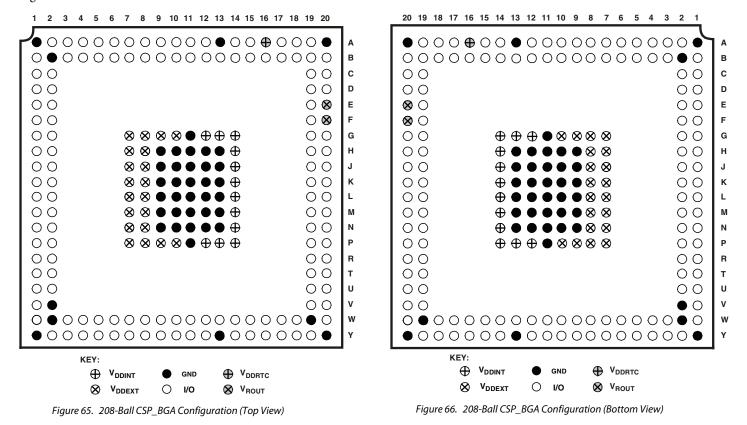

208-BALL CSP_BGA BALL ASSIGNMENT

Table 51 lists the CSP_BGA ball assignment by signal mnemonic. Table 52 on Page 61 lists the CSP_BGA ball assignment by ball number.

Table 51.	208-Ball CSP	_BGA Ball Assignmen	t (Alphabetically by	y Signal Mnemonic)
-----------	--------------	---------------------	----------------------	--------------------

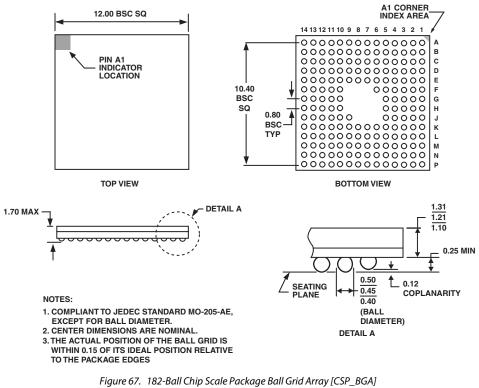

Mnemonic	Ball No.	Mnemonic	Ball No.	Mnemonic	Ball No.	Mnemonic	Ball No.	Mnemonic	Ball No.
ABEO	P19	DATA12	Y4	GND	M13	PG6	E2	TDI	V1
ABE1	P20	DATA13	W4	GND	N9	PG7	D1	TDO	Y2
ADDR1	R19	DATA14	Y3	GND	N10	PG8	D2	TMS	U2
ADDR10	W18	DATA15	W3	GND	N11	PG9	C1	TRST	U1
ADDR11	Y18	DATA2	Y9	GND	N12	PH0	B4	V _{DDEXT}	G7
ADDR12	W17	DATA3	W9	GND	N13	PH1	A5	V _{DDEXT}	G8
ADDR13	Y17	DATA4	Y8	GND	P11	PH10	B9	V _{DDEXT}	G9
ADDR14	W16	DATA5	W8	GND	V2	PH11	A10	V _{DDEXT}	G10
ADDR15	Y16	DATA6	Y7	GND	W2	PH12	B10	V _{DDEXT}	H7
ADDR16	W15	DATA7	W7	GND	W19	PH13	A11	V _{DDEXT}	H8
ADDR17	Y15	DATA8	Y6	GND	Y1	PH14	B11	V _{DDEXT}	J7
ADDR18	W14	DATA9	W6	GND	Y13	PH15	A12	V _{DDEXT}	J8
ADDR19	Y14	EMU	T1	GND	Y20	PH2	B5	V _{DDEXT}	K7
ADDR2	T20	GND	A1	NMI	C20	PH3	A6	V _{DDEXT}	K8
ADDR3	T19	GND	A13	PF0	T2	PH4	B6	V _{DDEXT}	L7
ADDR4	U20	GND	A20	PF1	R1	PH5	A7	V _{DDEXT}	L8
ADDR5	U19	GND	B2	PF10	L2	PH6	B7	V _{DDEXT}	M7
ADDR6	V20	GND	G11	PF11	K1	PH7	A8	V _{DDEXT}	M8
ADDR7	V19	GND	H9	PF12	K2	PH8	B8	V _{DDEXT}	N7
ADDR8	W20	GND	H10	PF13	J1	PH9	A9	V _{DDEXT}	N8
ADDR9	Y19	GND	H11	PF14	J2	PJO	B12	V _{DDEXT}	P7
AMS0	M20	GND	H12	PF15	H1	PJ1	B13	V _{DDEXT}	P8
AMS1	M19	GND	H13	PF2	R2	PJ10	B19	V _{DDEXT}	P9
AMS2	G20	GND	J9	PF3	P1	PJ11	C19	V _{DDEXT}	P10
AMS3	G19	GND	J10	PF4	P2	PJ2	D19	V _{DDINT}	G12
AOE	N20	GND	J11	PF5	N1	PJ3	E19	V _{DDINT}	G13
ARDY	J19	GND	J12	PF6	N2	PJ4	B18	V _{DDINT}	G14
ARE	N19	GND	J13	PF7	M1	PJ5	A19	V _{DDINT}	H14
AWE	R20	GND	К9	PF8	M2	PJ6	B15	V _{DDINT}	J14
BG	Y11	GND	K10	PF9	L1	PJ7	B16		K14
BGH	Y12	GND	K11	PG0	H2	PJ8	B17		L14
BMODE0	W13	GND	K12	PG1	G1	PJ9	B20		M14
BMODE1	W12	GND	K13	PG10	C2	RESET	D20		N14
BMODE2	W11	GND	L9	PG11	B1	RTXO	A15	V _{DDINT}	P12
BR	F19	GND	L10	PG12	A2	RTXI	A14		P13
CLKBUF	B14	GND	L11	PG13	A3	SA10	L20		P14
CLKIN	A18	GND	L12	PG14	B3	SCAS	K20		A16
CLKOUT	H19	GND	L12	PG15	A4	SCKE	H20	VROUT0	E20
DATA0	Y10	GND	M9	PG2	G2	SMS	J20	VROUT1	F20
DATA1	W10	GND	M10	PG3	62 F1	SRAS	K19	XTAL	A17
DATA10	Y5	GND	M10 M11	PG4	F2	SWE	L19		,,,,
DATA10	W5	GND	M11 M12	PG5	E1	TCK	W1		

Figure 65 shows the top view of the CSP_BGA ball configuration. Figure 66 shows the bottom view of the CSP_BGA ball configuration.

OUTLINE DIMENSIONS

Dimensions in Figure 67 and Figure 68 are shown in millimeters.

(BC-182)

Dimensions shown in millimeters

www.analog.com

©2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05317-0-2/14(J)