

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 21x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151rct6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	I ² C characteristics
Table 48.	SCL frequency (f _{PCI K1} = 32 MHz, V _{DD} = VDD_I2C = 3.3 V)
Table 49.	SPI characteristics
Table 50.	USB startup time
Table 51.	USB DC electrical characteristics
Table 52.	USB: full speed electrical characteristics
Table 53.	I2S characteristics
Table 54.	ADC clock frequency
Table 55.	ADC characteristics
Table 56.	ADC accuracy
Table 57.	Maximum source impedance R _{AIN} max
Table 58.	DAC characteristics
Table 59.	Operational amplifier characteristics
Table 60.	Temperature sensor calibration values
Table 61.	Temperature sensor characteristics
Table 62.	Comparator 1 characteristics
Table 63.	Comparator 2 characteristics
Table 64.	LCD controller characteristics
Table 65.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data 115
Table 66.	LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 117
Table 67.	LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data 120
Table 68.	UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array
	package mechanical data
Table 69.	WLCSP64, 0.4 mm pitch wafer level chip scale package mechanical data 126
Table 70.	WLCSP64, 0.4 mm pitch package recommended PCB design rules
Table 71.	Thermal characteristics
Table 72.	STM32L151xC/C-A and STM32L152xC/C-A ordering information scheme
Table 73.	Document revision history

2 Description

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 256 Kbytes and RAM up to 32 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The STM32L151xC/C-A and STM32L152xC/C-A devices offer two operational amplifiers, one 12-bit ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six general-purpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151xC/C-A and STM32L152xC/C-A devices contain standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs, and an USB. The STM32L151xC/C-A and STM32L152xC/C-A devices offer up to 23 capacitive sensing channels to simply add a touch sensing functionality to any application.

They also include a real-time clock and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151xC/C-A devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast independent of the supply voltage.

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C temperature ranges. A comprehensive set of power-saving modes allows the design of low-power applications.

3.1 Low-power modes

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71 V 3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4 MHz (generated only with the multispeed internal RC oscillator clock source)

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

• Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the minimum clock (131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In low-power run mode, the clock frequency and the number of enabled peripherals are both limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in Low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on.

Stop mode with RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup.

	Functionalities depending on the operating power supply range								
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation					
$V_{DD} = V_{DDA} = 2.0$ to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation					
V _{DD} =V _{DDA} = 2.4 to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation					

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum $\rm V_{DD}$ is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

3.16 Timers and watchdogs

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices include seven general-purpose timers, two basic timers, and two watchdog timers.

Table 6 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs			
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No			
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No			
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No			
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No			
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No			

Table 6. Timer feature comparison

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xC/C-A and STM32L152xC/C-A devices (see *Table 6* for differences).

TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

DocID026119 Rev 6

3.19 Development support

3.19.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

The JTAG port can be permanently disabled with a JTAG fuse.

3.19.2 Embedded Trace Macrocell™

The ARM[®] Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151xC/C-A and STM32L152xC/C-A device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

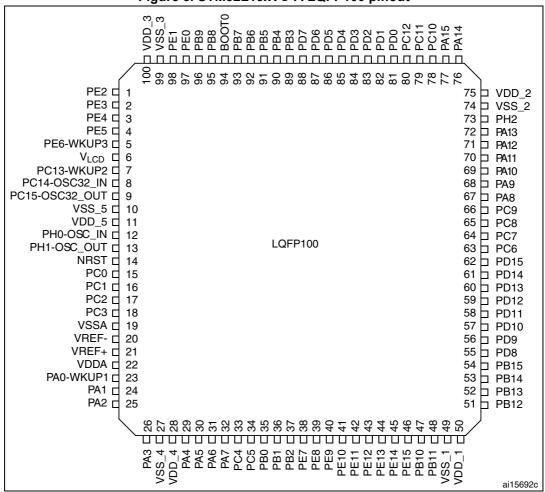


Figure 5. STM32L15xVC-A LQFP100 pinout

1. This figure shows the package top view.

Na	me	Abbreviation	Definition				
Pin r	name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name					
		S	Supply pin				
Pin	type	I	Input only pin				
		I/O	Input / output pin				
		FT	5 V tolerant I/O				
I/O etr	ucture	TC Standard 3.3 V I/O					
1/O Su	ucluie	B Dedicated BOOT0 pin					
		RST Bidirectional reset pin with embedded weak pull-up res					
No	tes	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during				
	Alternate functions	Functions select	Functions selected through GPIOx_AFR registers				
Pin functions	Additional functions	Functions directly selected/enabled through peripheral registers					

Table 7. Legend/abbreviations	s used in the pinout table
-------------------------------	----------------------------

Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions

	F	Pins							Pin functior	IS
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
1	B2	1	-	-	PE2	I/O	FT	PE2	TIM3_ETR/LCD_SEG38/ TRACECLK	-
2	A1	2	-	-	PE3	I/O	FT	PE3	TIM3_CH1/LCD_SEG39/ TRACED0	-
3	B1	3	-	-	PE4	I/O	FT	PE4	TIM3_CH2/TRACED1	-
4	C2	4	-	-	PE5	I/O	FT	PE5	TIM9_CH1/TRACED2	-
5	D2	5	-	-	PE6- WKUP3	I/O	FT	PE6	TIM9_CH2/TRACED3	WKUP3/ RTC_TAMP3
6	E2	6	1	C6	$V_{LCD}^{(3)}$	S	-	V _{LCD}	_	_

	F	Pins		-	132L 13 1XC/C				Pin functions		
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
27	J2	16	9	F8	PC1	I/O	FT	PC1	LCD_SEG19	ADC_IN11/ COMP1_INP	
28	-	17	10	D6	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP	
-	J3	-	-	-	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP	
-	K1	-	-	-		Ι	-		-	-	
29	K2	18	11	F7	PC3	I/O	тс	PC3	LCD_SEG21	ADC_IN13/ COMP1_INP/	
30	J1	19	12	E7	V _{SSA}	S	-	V _{SSA}	-	-	
31	-	20	-	-	V _{REF-}	S	-	V _{REF-}	-	-	
32	L1	21	-	-	V _{REF+}	S	-	V _{REF+}	-	-	
33	M1	22	13	G8	V _{DDA}	S	-	V _{DDA}	-	-	
34	L2	23	14	F6	PA0-WKUP1	I/O	FT	PA0	TIM2_CH1_ETR/ TIM5_CH1/ USART2_CTS	WKUP1/ RTC_TAMP2/ ADC_IN0/ COMP1_INP	
35	M2	24	15	E6	PA1	I/O	FT	PA1	TIM2_CH2/TIM5_CH2/ USART2_RTS/ LCD_SEG0	ADC_IN1/ COMP1_INP/ OPAMP1_VINP	
36	-	25	16	H8	PA2	I/O	FT	PA2	TIM2_CH3/TIM5_CH3/ TIM9_CH1/ USART2_TX/LCD_SEG1	ADC_IN2/ COMP1_INP/ OPAMP1_VINM	
-	КЗ	-	-	-	PA2	I/O	FT	PA2	TIM2_CH3/TIM5_CH3/ TIM9_CH1/ USART2_TX/LCD_SEG1	ADC_IN2/ COMP1_INP	
-	M3	-	-	-	OPAMP1_VI NM	Ι	тс	OPAMP1_ VINM	-	-	
37	L3	26	17	G7	PA3	I/O	тс	PA3	TIM2_CH4/TIM5_CH4/ TIM9_CH2/ USART2_RX/LCD_SEG2	ADC_IN3/ COMP1_INP/ OPAMP1_VOUT	
38	-	27	18	F5	V _{SS_4}	S	-	V _{SS_4}	-	-	

Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions (continued)

5 Memory mapping

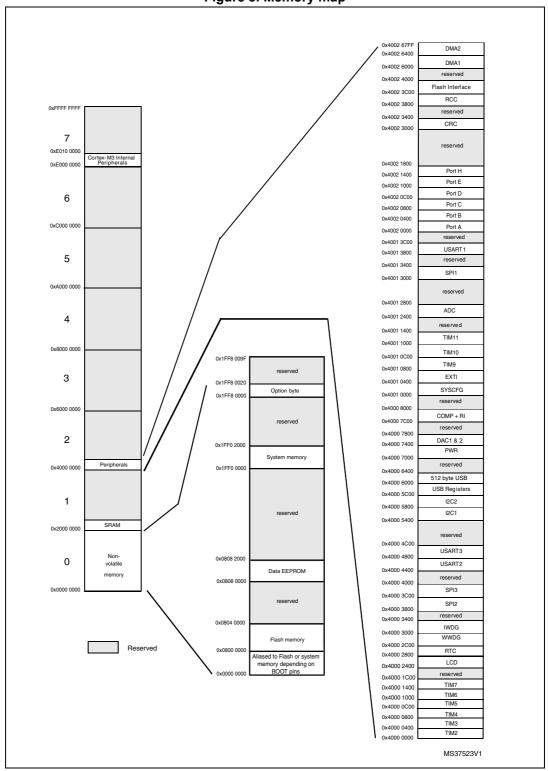


Figure 8. Memory map

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF	
I _{HSE}	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	3	mA	
I .	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	mA	
IDD(HSE)	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	- mA	
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V	
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms	

Table 28. HSE oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

 The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 43*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

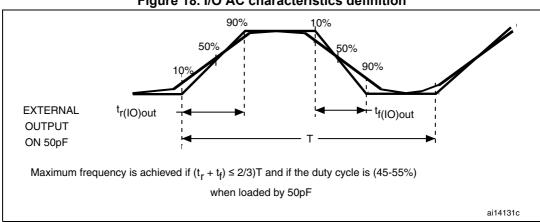
- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 11*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 11*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under the conditions summarized in *Table 13*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 8 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽³⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	v
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	1.65 V < V _{DD} < 3.6 V	V _{DD} -0.45	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA 2.7 V < V _{DD} < 3.6 V	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	

Table 43. Output voltage characteristics


1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 11* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. Guaranteed by test in production.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 11 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

Figure 18. I/O AC characteristics definition

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 45*)

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.7 V _{DD}	-	-	V
V _{OL(NRST)} ⁽¹⁾	$I_{OL} = 2 \text{ mA}$ NRST output low $2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$		-	-	0.4	v
VOL(NRST)	level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	_	350	-	-	ns

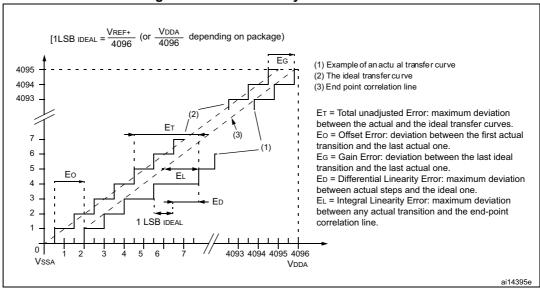
Table 45. NRST pin characteristics

1. Guaranteed by design.

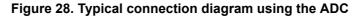
2. With a minimum of 200 mV.

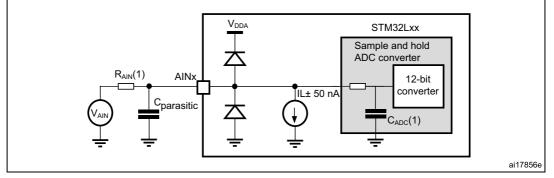
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

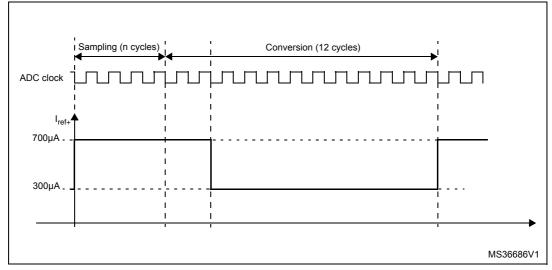
6.3.17 12-bit ADC characteristics


Unless otherwise specified, the parameters given in *Table 55* are guaranteed by design.

Symbol	Parameter	Conditions			Min	Max	Unit
f _{ADC}	ADC clock frequency	Voltage range 1 & 2	2.4 V ≤V _{DDA} ≤3.6 V	V _{REF+} = V _{DDA}	0.480	16	MHz
				V _{REF+} < V _{DDA} V _{REF+} > 2.4 V		8	
				V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V		4	
			1.8 V ≤V _{DDA} ≤2.4 V	V _{REF+} = V _{DDA}		8	
				V _{REF+} < V _{DDA}		4	
			Voltage range 3			4	


Table 55. ADC characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V_{DDA}	Power supply -		1.8	-	3.6		
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾	-	V _{DDA}	V	
V_{REF-}	Negative reference voltage	ierence voltage V _{SSA}		-			
I _{VDDA}	Current on the V _{DDA} input pin	-	-	1000	1450		
I _{VREF} ⁽²⁾	Current on the V input nin	Peak	-	400	700	μA	
	Current on the V _{REF} input pin	Average	-	400	450		
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V _{REF+}	V	
fs	10 hit compling rate	Direct channels	-	-	1	Mana	
	12-bit sampling rate	Multiplexed channels	-	-	0.76	Msps	
	10 hit compliant rate	Direct channels	-	-	1.07	— Msps	
	10-bit sampling rate	Multiplexed channels	-	-	0.8		
	0 hit compliant rate	Direct channels	-	-	1.23		
	8-bit sampling rate	Multiplexed channels	-	-	0.89	Msps	
	6 hit compling rate	Direct channels	-	-	1.45	Mana	
	6-bit sampling rate	Multiplexed channels	-	-	1	Msps	


Figure 27. ADC accuracy characteristics

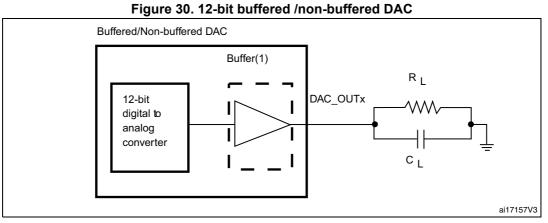
- 1. Refer to Table 57: Maximum source impedance RAIN max for the value of R_{AIN} and Table 55: ADC characteristics for the value of C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Figure 29. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 57. Maximum source impedance R_{AIN} max⁽¹⁾

Ts (µs)	Multiplexe	d channels	Direct c	Ts (cycles) f _{ADC} =16 MHz ⁽²⁾		
	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.6 V			
0.25	Not allowed	Not allowed	0.7	Not allowed	4	
0.5625	0.8	Not allowed	2.0	1.0	9	
1	2.0	0.8	4.0	3.0	16	
1.5	3.0	1.8	6.0	4.5	24	
3	6.8	4.0	15.0	10.0	48	
6	15.0	10.0	30.0	20.0	96	
12	32.0	25.0	50.0	40.0	192	
24	50.0	50.0	50.0	50.0	384	

1. Guaranteed by design.


2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (µs),

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 11*. The applicable procedure depends on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

- 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 5. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 6. Difference between the value measured at Code (0x001) and the ideal value.
- 7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.
- 8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Operational amplifier characteristics

Symbol	Para	meter	Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
CMIR	Common mode input range		-	0	-	V _{DD}		
		Maximum calibration range	-	-	-	±15	m)/	
VI _{OFFSET}	Input offset voltage	After offset calibration	-	-	-	±1.5	mV	
ΔVI _{OFFSET}	Input offset voltage	Normal mode	-	-	-	±40	µV/°C	
	drift	Low-power mode	-	-	-	±80		
I _{IB}	Input current bias	Dedicated input		-	-	1		
		General purpose input	75 °C	-	-	10	nA	
		Normal mode	-	-	-	500		
ILOAD	Drive current	Low-power mode	-	-	-	100	μA	
I _{DD}	Consumption	Normal mode	No load,	-	100	220		
		Low-power mode	quiescent mode	_	30	60	μA	
01400	Common mode	Normal mode	-	-	-85	-	dD	
CMRR	rejection ration	Low-power mode	-	-	-90	-	dB	

Table 59. Operational amplifier characteristics

6.3.22 LCD controller

The device embeds a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.

Symbol	Parameter	Min	Тур	Max	Unit
V_{LCD}	LCD external voltage	-	-	3.6	
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	1
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-]
V_{LCD2}	LCD internal reference voltage 2	-	2.86	-	
V_{LCD3}	LCD internal reference voltage 3	-	2.98	-	V
V_{LCD4}	LCD internal reference voltage 4	-	3.12	-]
V_{LCD5}	LCD internal reference voltage 5	-	3.26	-	
V_{LCD6}	LCD internal reference voltage 6	-	3.4	-]
V_{LCD7}	LCD internal reference voltage 7	-	3.55	-]
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF
ı (1)	Supply current at V _{DD} = 2.2 V	-	3.3	-	
$I_{LCD}^{(1)}$	Supply current at V _{DD} = 3.0 V	-	3.1	-	μA
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ
$R_L^{(2)}$	High drive resistive network total value	192	240	288	kΩ
V ₄₄	Segment/Common highest level voltage	-	-	V_{LCD}	V
V ₃₄	Segment/Common 3/4 level voltage	-	3/4 V _{LCD}	-	
V ₂₃	Segment/Common 2/3 level voltage	-	2/3 V _{LCD}	-	1
V ₁₂	Segment/Common 1/2 level voltage	-	1/2 V _{LCD}	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3 V _{LCD}	-	v
V ₁₄	Segment/Common 1/4 level voltage	-	1/4 V _{LCD}	-	1
V ₀	Segment/Common lowest level voltage	0	-	-	1
$\Delta Vxx^{(3)}$	Segment/Common level voltage error $T_A = -40$ to 105 ° C	-	-	±50	mV

Table 64. LCD controller characteristics

1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

2. Guaranteed by design.

3. Guaranteed by characterization results.

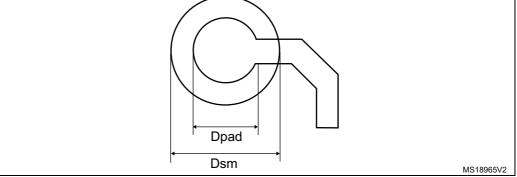
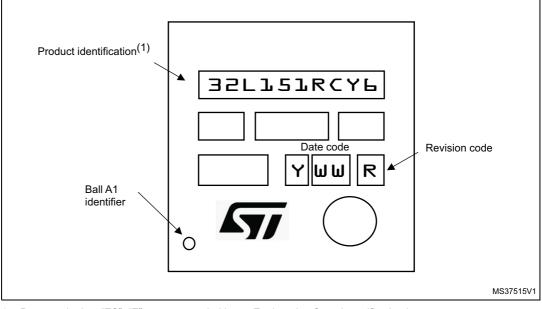
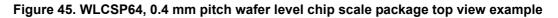

			(continue				
0h.a.l		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
b ⁽²⁾	0.240	0.270	0.300	0.0094	0.0106	0.0118	
D	4.504	4.539	4.574	0.1773	0.1787	0.1801	
E	4.876	4.911	4.946	0.1920	0.1933	0.1947	
е	-	0.400	-	-	0.0157	-	
e1	-	2.800	-	-	0.1102	-	
F	-	0.870	-	-	0.0343	-	
G	-	1.056	-	-	0.0416	-	
aaa	-	-	0.100	-	-	0.0039	
bbb	-	-	0.100	-	-	0.0039	
ссс	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee	-	-	0.050	-	-	0.0020	

Table 69. WLCSP64, 0.4 mm pitch wafer level chip scale package mechanical data(continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.


Dimension	Recommended values		
Pitch	0.4		
Dpad	260 µm max. (circular)		
Dpau	220 µm recommended		
Dsm	300 µm min. (for 260 µm diameter pad)		
PCB pad design	Non-solder mask defined via underbump allowed.		



DocID026119 Rev 6

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

