

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 21x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151rct6atr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 43.	WLCSP64, 0.4 mm pitch wafer level chip scale package outline	26
Figure 44.	WLCSP64, 0.4 mm pitch wafer level chip scale package	
	recommended footprint1	27
Figure 45.	WLCSP64, 0.4 mm pitch wafer level chip scale package top view example	28
Figure 46.	Thermal resistance suffix 6 1	30
Figure 47.	Thermal resistance suffix 7 1	30

2.1 Device overview

Table 2. Ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A device features and peripheral counts

Perij	pheral	STM32L15xRC-A	STM32L15xVC-A	C-A STM32L15xQC STM32L15xZC						
Flash (Kbytes) 256										
Data EEPROM (Kbytes) 8										
RAM (Kbytes)		32								
	32 bit		1							
Timers	General- purpose		6	3						
	Basic		2							
	SPI	8(3) ⁽¹⁾								
Communi-	l ² S		2							
cation	l ² C		2							
	USART		3	3						
	USB	1								
GPIOs		51	83	109	115					
Operation am	plifiers		2							
12-bit synchro Number of ch	onized ADC annels	1 21	1 40							
12-bit DAC Number of ch	annels		2							
LCD (STM32L	152xx devices	1		1						
COM x SEG		4x32 or 8x28		4x44 or 8x40						
Comparators			2							
Capacitive set	nsing channels		2	3						
Max. CPU free	quency	32 MHz								
Operating vol	tage	1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option								
Operating tem	nperatures	Ambient ope	erating temperature: - Junction temperatu	40 °C to 85 °C / -40 re: –40 to + 110 °C	°C to 105 °C					
Packages		LQFP64, WLCSP64	LQFP100	UFBGA132	LQFP144					

1. 5 SPIs are USART configured in synchronous mode emulating SPI master.

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From proprietary 8bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many others will clearly allow to build very cost-optimized applications by reducing BOM.

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, the old applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All the families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy.

To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and STM32L162xx family uses a common architecture:

- Same power supply range from 1.65 V to 3.6 V
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 2 to 512 Kbytes

3.16 Timers and watchdogs

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices include seven general-purpose timers, two basic timers, and two watchdog timers.

Table 6 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 6. Timer feature comparison

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xC/C-A and STM32L152xC/C-A devices (see *Table 6* for differences).

TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

DocID026119 Rev 6

	F	Pins							Pin function	, 1S
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
39	-	28	19	G6	V _{DD_4}	S	-	V _{DD_4}	-	-
40	J4	29	20	H7	PA4	I/O	тс	PA4	SPI1_NSS/SPI3_NSS/ I2S3_WS/USART2_CK	ADC_IN4/ DAC_OUT1/ COMP1_INP
41	K4	30	21	E5	PA5	I/O	тс	PA5	TIM2_CH1_ETR/ SPI1_SCK	ADC_IN5/ DAC_OUT2/ COMP1_INP
42	L4	31	22	G5	PA6	I/O	FT	PA6	TIM3_CH1/TIM10_CH1/ SPI1_MISO/ LCD_SEG3	ADC_IN6/ COMP1_INP/ OPAMP2_VINP
43	-	32	23	G4	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4	ADC_IN7/ COMP1_INP/ OPAMP2_VINM
-	J5	-	-	-	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4	ADC_IN7/ COMP1_INP
-	M4	-	-	-	OPAMP2_VI NM	I	тс	OPAMP2_V INM	-	-
44	K5	33	24	H6	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/ COMP1_INP
45	L5	34	25	H5	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/ COMP1_INP
46	M5	35	26	H4	PB0	I/O	тс	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/ COMP1_INP/ OPAMP2_VOUT/ VREF_OUT
47	M6	36	27	F4	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/ VREF_OUT
48	L6	37	28	H3	PB2	I/O	FT	PB2/ BOOT1	BOOT1	ADC_IN0b
49	K6	-	-	-	PF11	I/O	FT	PF11	-	ADC_IN1b
50	J7	-	-	-	PF12	I/O	FT	PF12	-	ADC_IN2b
51	E3	-	-	-	V _{SS_6}	S	-	V _{SS_6}	-	-
52	H3	-	-	-	V_{DD_6}	S	-	V _{DD_6}	-	-

Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions (continued)

	F	Pins							Pin functior	IS
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
113	B10	80	53	C4	PC12	I/O	FT	PC12	SPI3_MOSI/I2S3_SD/ USART3_CK/LCD_SEG30/ LCD_SEG42/ LCD_COM6	-
114	C9	81	-	-	PD0	I/O	FT	PD0	TIM9_CH1/SPI2_NSS/ I2S2_WS	-
115	B9	82	-	-	PD1	I/O	FT	PD1	SPI2_SCK/I2S2_CK	-
116	C8	83	54	A3	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31/ LCD_SEG43/LCD_COM7	-
117	B8	84	-	-	PD3	I/O	FT	PD3	SPI2_MISO/USART2_CTS	-
118	B7	85	-	-	PD4	I/O	FT	PD4	SPI2_MOSI/I2S2_SD/ USART2_RTS/	-
119	A6	86	-	-	PD5	I/O	FT	PD5	USART2_TX	-
120	F7	-	-	-	V _{SS_10}	S	-	V _{SS_10}	-	-
121	G7	-	-	-	$V_{DD_{10}}$	S	-	V _{DD_10}	-	-
122	B6	87	-	-	PD6	I/O	FT	PD6	USART2_RX	-
123	A5	88	-	-	PD7	I/O	FT	PD7	TIM9_CH2/USART2_CK	-
124	D9	-	-	-	PG9	I/O	FT	PG9	-	-
125	D8	-	-	-	PG10	I/O	FT	PG10	-	-
126	-	-	-	-	PG11	I/O	FT	PG11	-	-
127	D7	-	-	-	PG12	I/O	FT	PG12	-	-
128	C7	-	-	-	PG13	I/O	FT	PG13	-	-
129	C6	-	-	-	PG14	I/O	FT	PG14	-	-
130	-	-	-	-	V _{SS_11}	S	-	V _{SS_11}	-	-
131	-	-	-	-	V _{DD_11}	S	-	V _{DD_11}	-	-
132	-	-	-	-	PG15	I/O	FT	PG15	-	-
133	A8	89	55	A4	PB3	I/O	FT	JTDO	TIM2_CH2/SPI1_SCK/ SPI3_SCK/ I2S3_CK/ LCD_SEG7/JTDO	COMP2_INM

Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions (continued)

			Т	able 9. A	Iternate	function	input/ou	utput (conti	nued)				
					I	Digital alte	ernate fur	nction numbe	er				
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	AFIO11	AFIO12.	. AFIO14	AFIO15
Port name						Alt	ernate fu	nction					
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	-	LCD	-	CPRI	SYSTEN
PA12	-	-	-	-	-	SPI1_MOSI	-	USART1_RTS	-	-	-	TIMx_IC1	EVENT OUT
PA13	JTMS-SWDIO	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENT OUT
PA14	JTCK-SWCLK	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVEN TOUT
PA15	JTDI	TIM2_CH1_ETR	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	-	-	SEG17	-	TIMx_IC4	EVEN TOUT
PB0	-	-	тімз_снз	-	-	-		-	-	SEG5	-	-	EVEN TOUT
PB1	-	-	TIM3_CH4	-	-	-	-	-	-	SEG6	-	-	EVENT OUT
PB2	BOOT1	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PB3	JTDO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_CK	-	-	SEG7	-	-	EVENT OUT
PB4	NJTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	-	-	SEG8	-	-	EVENT OUT
PB5	-	-	ТІМ3_СН2	-	I2C1_ SMBA	SPI1_MOSI	SPI3_MOSI I2S3_SD	-	-	SEG9	-	-	EVENT OUT
PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	-	-	-	EVENT OUT
PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-		-	EVENT OUT
PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	SEG16		-	EVENT OUT
PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	-	-	-	-	СОМЗ		-	EVENT OUT
PB10	-	ТІМ2_СНЗ	-	-	I2C2_SCL	-	-	USART3_TX	-	SEG10	-	-	EVENT OUT

STM32L151xC/C-A STM32L152xC/C-A

Pin descriptions

47/134

DocID026119 Rev 6

					[Digital alte	ernate fui	nction numbe	er				
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	. AFIO11	AFIO12	AFIO14	AFIO15
Port name						Alt	ernate fu	inction					
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	-	LCD	-	CPRI	SYSTEM
PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	SEG11	-	-	EVENT OUT
PB12	-	-	-	TIM10_CH1	I2C2_SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	SEG12	-	-	EVENT OUT
PB13	-	-	-	TIM9_CH1	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	SEG13	-	-	EVENT OUT
PB14	-	-	-	TIM9_CH2	-	SPI2_MISO	-	USART3_RTS	-	SEG14	-	-	EVENT OUT
PB15	-	-	-	TIM11_CH1	-	SPI2_MOSI I2S2_SD	-	-	-	SEG15	-	-	EVENT OUT
PC0	-	-	-	-	-		-	-	-	SEG18	-	TIMx_IC1	EVENT OUT
PC1	-	-	-	-	-	-	-	-	-	SEG19	-	TIMx_IC2	EVENT OUT
PC2	-	-	-	-	-	-	-	-	-	SEG20	-	TIMx_IC3	EVENT OUT
PC3	-	-	-	-	-	-	-	-	-	SEG21	-	TIMx_IC4	EVENT OUT
PC4	-	-	-	-	-	-	-	-	-	SEG22	-	TIMx_IC1	EVENT OUT
PC5	-	-	-	-	-	-	-	-	-	SEG23	-	TIMx_IC2	EVENT OUT
PC6	-	-	TIM3_CH1	-	-	I2S2_MCK	-	-	-	SEG24		TIMx_IC3	EVENT OUT
PC7	-	-	TIM3_CH2	-	-	-	I2S3_MCK	-	-	SEG25		TIMx_IC4	EVENT OUT
PC8	-	-	ТІМ3_СНЗ	-	-	-	-	-	-	SEG26		TIMx_IC1	EVENT OUT
PC9	-	-	TIM3_CH4	-	-	-	-	-	-	SEG27		TIMx_IC2	EVENT OUT

Pin descriptions

STM32L151xC/C-A STM32L152xC/C-A

			Та	able 9. A	Iternate	function	input/o	utput (conti	nued)				
					ſ	Digital alte	ernate fui	nction numbe	er				
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	AFIO11	AFIO12	AFIO14	AFIO15
Port name						Alt	ernate fu	inction					
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	-	LCD	-	CPRI	SYSTEM
PE7	-	-	-	-	-	-	-	-	-	-		TIMx_IC4	EVENT OUT
PE8	-	-	-	-	-	-	-	-	-	-		TIMx_IC1	EVENT OUT
PE9	-	TIM2_CH1_ETR	-	-	-	-	-	-	-	-		TIMx_IC2	EVENT OUT
PE10	-	TIM2_CH2	-	-	-	-	-	-	-	-		TIMx_IC3	EVENT OUT
PE11	-	TIM2_CH3	-	-	-	-	-	-	-	-		TIMx_IC4	EVENT OUT
PE12	-	TIM2_CH4	-	-	-	SPI1_NSS	-	-	-	-		TIMx_IC1	EVENT OUT
PE13	-	-	-	-	-	SPI1_SCK	-	-	-	-		TIMx_IC2	EVENT OUT
PE14	-	-	-	-	-	SPI1_MISO	-	-	-	-		TIMx_IC3	EVENT OUT
PE15	-	-	-	-	-	SPI1_MOSI	-	-	-	-		TIMx_IC4	EVENT OUT
PF0	-	-	-	-	-	-	-	-	-	-		-	EVENT OUT
PF1	-	-	-	-	-	-	-	-	-	-		-	EVENT OUT
PF2	-	-	-	-	-	-	-	-	-	-		-	EVENT OUT
PF3	-	-	-	-	-	-	-	-	-	-		-	EVENT OUT
PF4	-	-	-	-	-	-	-	-	-	-		-	EVENT OUT
PF5	-	-	-	-	-	-	-	-	-	-		-	EVENT OUT

STM32L151xC/C-A STM32L152xC/C-A

51/134

Pin descriptions

6.1.6 Power supply scheme

Figure 11. Power supply scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 10: Voltage characteristics*, *Table 11: Current characteristics*, and *Table 12: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V(2)	Input voltage on five-volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V
VIN Y	Input voltage on any other pin	V _{SS} –0.3	4.0	
ΔV _{DDx}	Variations between different V _{DD} power pins	-	50	m\/
V _{SSX} –V _{SS}	Variations between all different ground pins ⁽³⁾	-	50	111V
V _{REF+} –V _{DDA}	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sect	ion 6.3.11	

Table TU. Vollage characteristics	Table	10.	Voltage	characteristics
-----------------------------------	-------	-----	---------	-----------------

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 11* for maximum allowed injected current values.

3. Include V_{REF-} pin.

Table 11. Current characteristics

Symbol	Ratings	Max.	Unit
$I_{VDD(\Sigma)}$	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	100	
$I_{VSS(\Sigma)}^{(2)}$	Total current out of sum of all V_{SS_x} ground lines (sink) ⁽¹⁾	100	
I _{VDD(PIN)}	Maximum current into each V_{DD_x} power pin (source) ⁽¹⁾	70	
I _{VSS(PIN)}	Maximum current out of each VSS_x ground pin (sink) ⁽¹⁾	-70	
1	Output current sunk by any I/O and control pin	25	
IO	Output current sourced by any I/O and control pin	- 25	mA
51	Total output current sunk by sum of all IOs and control pins ⁽²⁾	60	
ZIO(PIN)	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-60	
(3)	Injected current on five-volt tolerant I/O ⁽⁴⁾ , RST and B pins	-5/+0	
^I INJ(PIN)	Injected current on any other pin ⁽⁵⁾	± 5	
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	1

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.

Symbol	Parameter		Тур	Max ⁽¹⁾	Unit		
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	4.4	-	
			MSI clock 65 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	18	21	
		All peripherals OFF, V _{DD} from 1.65 V to 3.6 V	$f_{HCLK} = 32 \text{ kHz}$	T _A = 85 °C	24	27	
			Flash ON	T _A = 105 °C	35	43	
	Supply		MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18.6	21	
			f _{HCLK} = 65 kHz,	T _A = 85 °C	24.5	28	
			Flash ON	T _A = 105 °C	35	42	
				T_A = -40 °C to 25 °C	22	25	
			MSI clock, 131 kHz	T _A = 55 °C	23.5	26	μΑ
I _{DD} (LP Sleep)	current in		Flash ON	T _A = 85 °C	28.5	31	
	Low-power sleep mode			T _A = 105 °C	39	45	
		TIM9 and	MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	18	20.5	
				T _A = 85 °C	24	27	
				T _A = 105 °C	35	43	-
				T_A = -40 °C to 25 °C	18.6	21	
		USART1 enabled Flash	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T _A = 85 °C	24.5	28	
		ON, V _{DD} from	HOLK	T _A = 105 °C	35	42	
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	22	25	
			MSI clock, 131 kHz	T _A = 55 °C	23.5	26	-
			f _{HCLK} = 131 kHz	T _A = 85 °C	28.5	31	
				T _A = 105 °C	39	45	
I _{DD} max (LP Sleep)	Max allowed current in Low-power sleep mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21.	Current	consum	ption in	Low-	power	sleep	mode
	ounone	oonoum			001101	01000	moao

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-	
+	Wakeup from Low-power sleep	f _{HCLK} = 262 kHz Flash enabled	46	-	
'WUSLEEP_LP	mode, f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	-	
	Wakeup from Stop mode, regulator in Run mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 1 and 2	7.7	8.9	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 3	8.2	13.1	μs
^t WUSTOP	Wakeup from Stop mode, regulator in low-power mode	f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4	
		f _{HCLK} = f _{MSI} = 1.05 MHz	16	20	
	OLP DII = 1 and FVVO DII = 1	f _{HCLK} = f _{MSI} = 524 kHz	31	37	
		f _{HCLK} = f _{MSI} = 262 kHz	57	66	
		f _{HCLK} = f _{MSI} = 131 kHz	112	123	
		f _{HCLK} = MSI = 65 kHz	221	236	
^t wustdby	Wakeup from Standby mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	58	104	
	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms

Table 25. Low-power mode wakeup timings

1. Guaranteed by characterization, unless otherwise specified

6.3.6 External clock source characteristics

.

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in *Section 6.3.12*. However, the recommended clock input waveform is shown in *Figure 14*.

	Table 26.	High-speed	external us	ser clock	characteristics ⁽¹⁾
--	-----------	------------	-------------	-----------	--------------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	CSS is on or PLL is used	1	8	32	MHz
		CSS is off, PLL not used	0	8	32	MHz

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF

Table 26. High-speed external user clock characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

	Driver characteristics ⁽¹⁾							
Symbol	Symbol Parameter Conditions Min Max U							
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%			
V _{CRS}	Output signal crossover voltage		1.3	2.0	V			

Table 52. USB: full speed electrical characteristics (continued)

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

I2S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main Clock Output		256 x 8K	256xFs ⁽¹⁾	MHz
f	128 clock frequency	Master data: 32 bits	-	64xFs	MU-
'CK	123 Clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver, 48KHz	30	70	%
t _{r(CK)}	I2S clock rise time	Capacitive lead CL =20pE		8	
t _{f(CK)}	I2S clock fall time		-	8	
t _{v(WS)}	WS valid time	Master mode	4	24	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	15	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	8	-	
$t_{su(SD_SR)}$	Data input setup time	Slave receiver	9	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	5	-	ns
$t_{h(SD_SR)}$		Slave receiver	4	-	
$t_{v(SD_ST)}$	Data output valid time	Slave transmitter (after enable edge)	-	64	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	22	-	
$t_{v(SD_MT)}$	Data output valid time	Master transmitter (after enable edge)	-	12	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	8	-	

Table 53. I2S characteristics

1. The maximum for 256xFs is 8 MHz

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the

DocID026119 Rev 6

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-	
ts ⁽⁵⁾		Multiplexed channels 2.4 V ≤V _{DDA} ≤3.6 V	0.56	-	-	116
	Sampling time	Direct channels 1.8 V ≤V _{DDA} ⊴.4 V	0.56	-	-	μο
		Multiplexed channels 1.8 V ≤V _{DDA} ≤2.4 V	1	-		
		-	4	-	384	1/f _{ADC}
t _{CONV}	Total conversion time	f _{ADC} = 16 MHz	1	-	24.75	μs
	(including sampling time)	-	4 to 384 (sampling phase) +12 (successive approximation)			1/f _{ADC}
C _{ADC}	Internal sample and hold	Direct channels	- 16		-	ηĘ
	capacitor	Multiplexed channels	-	10	-	р
f	External trigger frequency	12-bit conversions	-	-	Tconv+1	1/f _{ADC}
'TRIG	Regular sequencer	6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}
f	External trigger frequency	12-bit conversions	-	-	Tconv+2	1/f _{ADC}
ITRIG	Injected sequencer	6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}
R _{AIN} ⁽⁶⁾	Signal source impedance		-	-	50	kΩ
t.	Injection trigger conversion	f _{ADC} = 16 MHz	219	-	281	ns
Jat	latency	-	3.5	-	4.5	1/f _{ADC}
t	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns
Чаtr	latency	-	2.5	-	3.5	1/f _{ADC}
t _{STAB}	Power-up time	-	-	-	3.5	μs

Table 55. ADC characteristics (continued)

1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through VREF is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μA), only during sampling time + 2 first conversion pulses

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} or V_{REF-} must be tied to ground.

5. Minimum sampling time is reached for an external input impedance limited to a value as defined in *Table 57: Maximum source impedance RAIN max*.

6. External impedance has another high value limitation when using short sampling time as defined in *Table 57: Maximum source impedance RAIN max*.

Electrical characteristics

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error	$2.4 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	1	2	
EG	Gain error	$2.4 \text{ V} \le \text{V}_{\text{REF+}} \le 3.6 \text{ V}$ $f_{\text{ADC}} = 8 \text{ MHz}$. Rain = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits		9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	2.4 V ≤ V _{DDA} ≤ 3.6 V V _{DDA} = V _{REF+} f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	
SNR	Signal-to-noise ratio	T _A = -40 to 105 °C	57.5	62	-	dB
THD	Total harmonic distortion	Finput=10KH2	-	-70	-65	
ENOB	Effective number of bits		9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$ \begin{array}{l} 1.8 \text{ V} \leq \text{V}_{\text{DDA}} \leq 2.4 \text{ V} \\ \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \\ \text{f}_{\text{ADC}} = 8 \text{ MHz or 4 MHz, } \text{R}_{\text{AIN}} = 50 \Omega \\ \text{T}_{\text{A}} = -40 \text{ to } 105 ^{\circ} \text{C} \\ \text{E} \qquad -101 \text{Mz} \end{array} $	57.5	62	-	
SNR	Signal-to-noise ratio		57.5	62	-	dB
THD	Total harmonic distortion	Finput-IOKI IZ	-	-70	-65	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	2	4	
EG	Gain error	1.8 V \leq V _{REF+} \leq 2.4 V fade = 4 MHz. Rain = 50 Ω	-	4	6	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \leq \text{V}_{\text{DDA}} \leq 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	1.8 V \leq V _{REF+} \leq 2.4 V fade = 4 MHz. Rain = 50 Ω	-	1.5	2	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1	1.5	

Table 56. ADC accuracy⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.12 does not affect the ADC accuracy. 2.

3. Guaranteed by characterization results.

- 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 5. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 6. Difference between the value measured at Code (0x001) and the ideal value.
- 7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.
- 8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Operational amplifier characteristics

Symbol	Parameter		Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
CMIR	Common mode inpu	Common mode input range		0	-	V_{DD}		
VI _{OFFSET}	Input offset voltage	Maximum calibration range	-	-	-	±15	m\/	
		After offset calibration	-	-	-	±1.5	1110	
A)/I	∆VI _{OFFSET} Input offset voltage drift	Normal mode	-	-	-	±40	µV/°C	
OFFSET		Low-power mode	-	-	-	±80		
I _{IB} Input c		Dedicated input	75 °C	-	-	1		
	Input current bias	General purpose input		-	-	10	nA	
1		Normal mode	-	-	-	500		
LOAD	Drive current	Low-power mode	-	-	-	100	μΑ	
1	Consumption	Normal mode	No load,	-	100	220		
DD	Consumption	Low-power mode	quiescent mode	-	30	60	μΑ	
CMPP	Common mode	Normal mode	-	-	-85	-	dD	
CMRR	rejection ration	Low-power mode	-	-	-90	-	UD	

Table 59. Operational amplifier characteristics

Symbol	Para	ameter	Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
DODD	Power supply	Normal mode	50	-	-85	-	
PSRR	rejection ratio	Low-power mode		-	-90	-	αв
	Bandwidth	Normal mode	N 0 4 M	400	1000	3000	
		Low-power mode	- V _{DD} >2.4 V	150	300	800	kHZ
GBW		Normal mode	N 2 A M	200	500	2200	
		Low-power mode	- V _{DD} <2.4 V	70	150	800	
SR Slew rate		Normal mode	V _{DD} >2.4 V (between 0.1 V and V _{DD} -0.1 V)	-	700	-	
	Slew rate	Low-power mode	V _{DD} >2.4 V	-	100	-	V/ms
		Normal mode	– V _{DD} <2.4 V	-	300	-	
		Low-power mode		-	50	-	
AO		Normal mode		55	100	-	dB
	Open loop gain	Low-power mode		65	110	-	uв
D	Desistive load	Normal mode	V 2 A V	4	-	-	ko
ĸL	Resistive load	Low-power mode	V _{DD} <2.4 V	20	-	-	1122
CL	Capacitive load		-	-	-	50	pF
VOH _{SAT}	High saturation	Normal mode		V _{DD} - 100	-	-	
	voltage	Low-power mode	I _{LOAD} = max or	V _{DD} -50	-	-	mV
VOL	Low saturation	Normal mode		-	-	100	
VOLSAT	voltage	Low-power mode		-	-	50	
φm	Phase margin		-	-	60	-	0
GM	Gain margin		-	-	-12	-	dB
t _{OFFTRIM}	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	1	-	ms
t	Wakeup time	Normal mode	$C_L \leq 50 \text{ pf}, R_L \geq 4 \text{ k}\Omega$	-	10	-	
WAKEUP		Low-power mode	$C_L \leq 50 \text{ pf},$ $R_L \geq 20 \text{ k}\Omega$	-	30	-	μs

Table 59. Operational amplifier characteristics (continued)

Operating conditions are limited to junction temperature (0 °C to 105 °C) when V_{DD} is below 2 V. Otherwise to the full ambient temperature range (-40 °C to 85 °C, -40 °C to 105 °C).

2. Guaranteed by characterization results.

Table 68. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid arraypackage mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 41. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package recommended footprint

