E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vct6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	I ² C characteristics
Table 48.	SCL frequency (f _{PCI K1} = 32 MHz, V _{DD} = VDD_I2C = 3.3 V)
Table 49.	SPI characteristics
Table 50.	USB startup time
Table 51.	USB DC electrical characteristics
Table 52.	USB: full speed electrical characteristics
Table 53.	I2S characteristics
Table 54.	ADC clock frequency
Table 55.	ADC characteristics
Table 56.	ADC accuracy
Table 57.	Maximum source impedance R _{AIN} max
Table 58.	DAC characteristics
Table 59.	Operational amplifier characteristics
Table 60.	Temperature sensor calibration values
Table 61.	Temperature sensor characteristics
Table 62.	Comparator 1 characteristics
Table 63.	Comparator 2 characteristics
Table 64.	LCD controller characteristics
Table 65.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data 115
Table 66.	LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 117
Table 67.	LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data 120
Table 68.	UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array
	package mechanical data
Table 69.	WLCSP64, 0.4 mm pitch wafer level chip scale package mechanical data 126
Table 70.	WLCSP64, 0.4 mm pitch package recommended PCB design rules
Table 71.	Thermal characteristics
Table 72.	STM32L151xC/C-A and STM32L152xC/C-A ordering information scheme
Table 73.	Document revision history

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151xC/C-A and STM32L152xC/C-A ultra-low-power ARM[®] Cortex[®]-M3 based microcontroller product line.

The STM32L151xC/C-A and STM32L152xC/C-A microcontrollers feature 256 Kbytes of Flash memory.

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices are available in 5 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, wired and wireless sensors, video intercom
- Utility metering

This STM32L151xC/C-A and STM32L152xC/C-A datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note "Getting started with STM32L1xxxx hardware development" (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the ARM[®] Cortex[®]-M3 technical reference manual, available from the www.arm.com website. *Figure 1* shows the general block diagram of the device family.

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From proprietary 8bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many others will clearly allow to build very cost-optimized applications by reducing BOM.

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, the old applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All the families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy.

To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and STM32L162xx family uses a common architecture:

- Same power supply range from 1.65 V to 3.6 V
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 2 to 512 Kbytes

3.1 Low-power modes

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71 V 3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4 MHz (generated only with the multispeed internal RC oscillator clock source)

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

• Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the minimum clock (131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In low-power run mode, the clock frequency and the number of enabled peripherals are both limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in Low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on.

Stop mode with RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup.

• **Stop** mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 μ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

• **Standby** mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation USB		Dynamic voltage scaling range	I/O operation			
V _{DD} = V _{DDA} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance			
$V_{DD} = V_{DDA} = 1.71 \text{ to } 1.8 \text{ V}^{(1)}$	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			
$V_{DD}=V_{DDA}= 1.8 \text{ to } 2.0 \text{ V}^{(1)}$	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			

Table 3. Functionalities depending on the operating power supply range

The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region.

Owing to its embedded ARM core, the STM32L151xC/C-A and STM32L152xC/C-A devices are compatible with all ARM tools and software.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151xC/C-A and STM32L152xC/C-A devices embed a nested vectored interrupt controller able to handle up to 56 maskable interrupt channels (not including the 16 interrupt lines of ARM[®] Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 **Power supply schemes**

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the

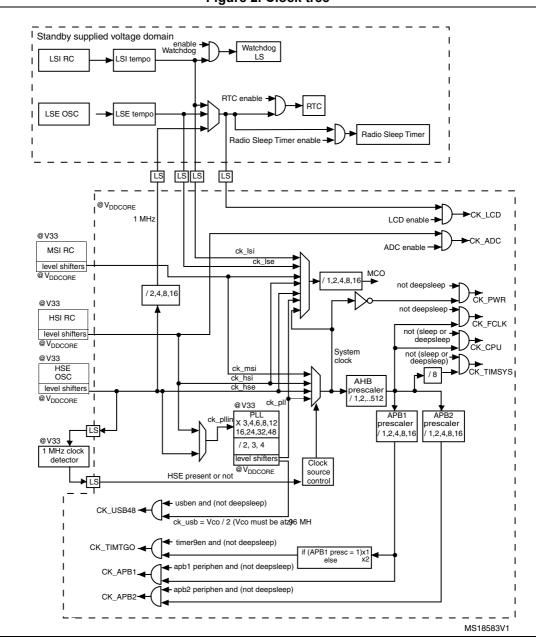


Figure 2. Clock tree

3.19 Development support

3.19.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

The JTAG port can be permanently disabled with a JTAG fuse.

3.19.2 Embedded Trace Macrocell™

The ARM[®] Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151xC/C-A and STM32L152xC/C-A device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

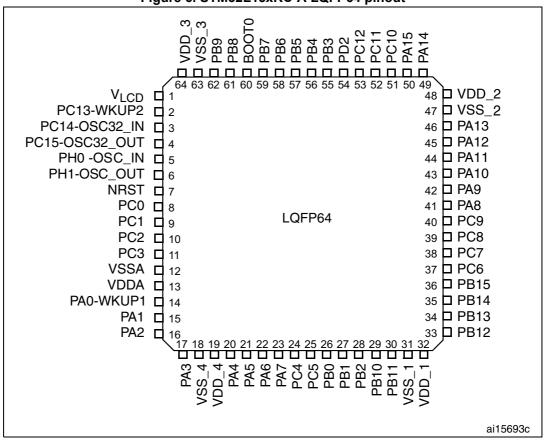


Figure 6. STM32L15xRC-A LQFP64 pinout

1. This figure shows the package top view.

57

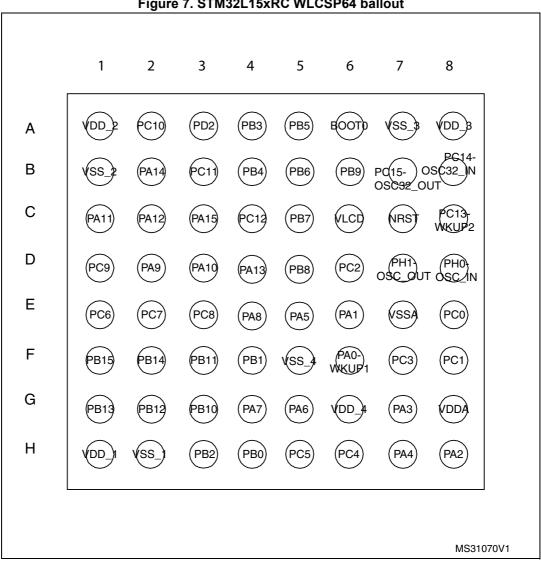


Figure 7. STM32L15xRC WLCSP64 ballout

1. This figure shows the package top view.

Pins				<u>.</u>					Pin function	;
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
7	C1	7	2	C8	PC13- WKUP2	I/O	FT	PC13	-	WKUP2/ RTC_TAMP1/ RTC_TS/ RTC_OUT
8	D1	8	3	B8	PC14- OSC32_IN ⁽⁴⁾	I/O	тс	PC14	-	OSC32_IN
9	E1	9	4	В7	PC15- OSC32_OUT	I/O	тс	PC15	-	OSC32_OUT
10	D6	-	-	-	PF0	I/O	FT	PF0	-	-
11	D5	-	-	-	PF1	I/O	FT	PF1	-	-
12	D4	-	-	-	PF2	I/O	FT	PF2	-	-
13	E4	-	-	-	PF3	I/O	FT	PF3	-	-
14	F3	-	-	-	PF4	I/O	FT	PF4	-	-
15	F4	-	-	-	PF5	I/O	FT	PF5	-	-
16	F2	10	I	-	V_{SS_5}	S	-	V_{SS_5}	-	-
17	G2	11	1	-	V_{DD_5}	S	-	V_{DD_5}	-	-
18	G3	-	-	-	PF6	I/O	FT	PF6	TIM5_CH1/TIM5_ETR	ADC_IN27
19	G4	-	-	-	PF7	I/O	FT	PF7	TIM5_CH2	ADC_IN28/ COMP1_INP
20	H4	-	-	-	PF8	I/O	FT	PF8	TIM5_CH3	ADC_IN29/ COMP1_INP
21	J6	-	-	-	PF9	I/O	FT	PF9	TIM5_CH4	ADC_IN30/ COMP1_INP
22	-	-	-	-	PF10	I/O	FT	PF10	-	ADC_IN31/ COMP1_INP
23	F1	12	5	D8	PH0- OSC_IN ⁽⁵⁾	I/O	тс	PH0	-	OSC_IN
24	G1	13	6	D7	PH1- OSC_OUT ⁽⁵⁾	I/O	тс	PH1	-	OSC_OUT
25	H2	14	7	C7	NRST	I/O	RST	NRST	-	-
26	H1	15	8	E8	PC0	I/O	FT	PC0	LCD_SEG18	ADC_IN10/ COMP1_INP

Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions (continued)

	Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions (continued)									
	P	Pins							Pin function	าร
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
39	-	28	19	G6	V_{DD_4}	S	-	V _{DD_4}	-	-
40	J4	29	20	H7	PA4	I/O	тс	PA4	SPI1_NSS/SPI3_NSS/ I2S3_WS/USART2_CK	ADC_IN4/ DAC_OUT1/ COMP1_INP
41	K4	30	21	E5	PA5	I/O	тс	PA5	TIM2_CH1_ETR/ SPI1_SCK	ADC_IN5/ DAC_OUT2/ COMP1_INP
42	L4	31	22	G5	PA6	I/O	FT	PA6	TIM3_CH1/TIM10_CH1/ SPI1_MISO/ LCD_SEG3	ADC_IN6/ COMP1_INP/ OPAMP2_VINP
43	-	32	23	G4	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4	ADC_IN7/ COMP1_INP/ OPAMP2_VINM
-	J5	-	-	-	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4	ADC_IN7/ COMP1_INP
-	M4	-	-	-	OPAMP2_VI NM	I	тс	OPAMP2_V INM	-	-
44	K5	33	24	H6	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/ COMP1_INP
45	L5	34	25	H5	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/ COMP1_INP
46	M5	35	26	H4	PB0	I/O	тс	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/ COMP1_INP/ OPAMP2_VOUT/ VREF_OUT
47	M6	36	27	F4	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/ VREF_OUT
48	L6	37	28	H3	PB2	I/O	FT	PB2/ BOOT1	BOOT1	ADC_IN0b
49	K6	-	-	-	PF11	I/O	FT	PF11	-	ADC_IN1b
50	J7	-	-	-	PF12	I/O	FT	PF12	-	ADC_IN2b
51	E3	I	-	-	V _{SS_6}	S	I	V _{SS_6}	-	-
52	H3	-	-	-	V_{DD_6}	S	-	V _{DD_6}	-	-

Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions (continued)

	F	Pins							Pin functions		
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP64	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
134	A7	90	56	B4	PB4	I/O	FT	NJTRST	TIM3_CH1/SPI1_MISO/ SPI3_MISO/ LCD_SEG8/NJTRST	COMP2_INP	
135	C5	91	57	A5	PB5	I/O	FT	PB5	TIM3_CH2/I2C1_SMBA/ SPI1_MOSI/ SPI3_MOSI/ I2S3_SD/LCD_SEG9	COMP2_INP	
136	B5	92	58	B5	PB6	I/O	FT	PB6	TIM4_CH1/I2C1_SCL/ USART1_TX/	COMP2_INP	
137	B4	93	59	C5	PB7	I/O	FT	PB7	TIM4_CH2/I2C1_SDA/ USART1_RX	COMP2_INP/ PVD_IN	
138	A4	94	60	A6	BOOT0	Ι	В	BOOT0	-	-	
139	A3	95	61	D5	PB8	I/O	FT	PB8	TIM4_CH3/TIM10_CH1/ I2C1_SCL/ LCD_SEG16	-	
140	В3	96	62	B6	PB9	I/O	FT	PB9	TIM4_CH4/ TIM11_CH1/I2C1_SDA/ LCD_COM3	-	
141	C3	97	-	-	PE0	I/O	FT	PE0 TIM4_ETR/TIM10_CH1/ LCD_SEG36		-	
142	A2	98	-	-	PE1	I/O	FT	PE1	TIM11_CH1/LCD_SEG37	-	
143	D3	99	63	A7	V _{SS_3}	S	I	V _{SS_3}	-	-	
144	C4	100	64	A8	V_{DD_3}	S	-	V _{DD_3}			

Table 8. STM32L151xC/C-A and STM32L152xC/C-A pin definitions (continued)

1. I = input, O = output, S = supply.

2. Function availability depends on the chosen device.

3. Applicable to STM32L152xD devices only. In STM32L151xD devices, this pin should be connected to V_{DD}.

4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L151xx, STM32L152xx and STM32L162xx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

5 Memory mapping

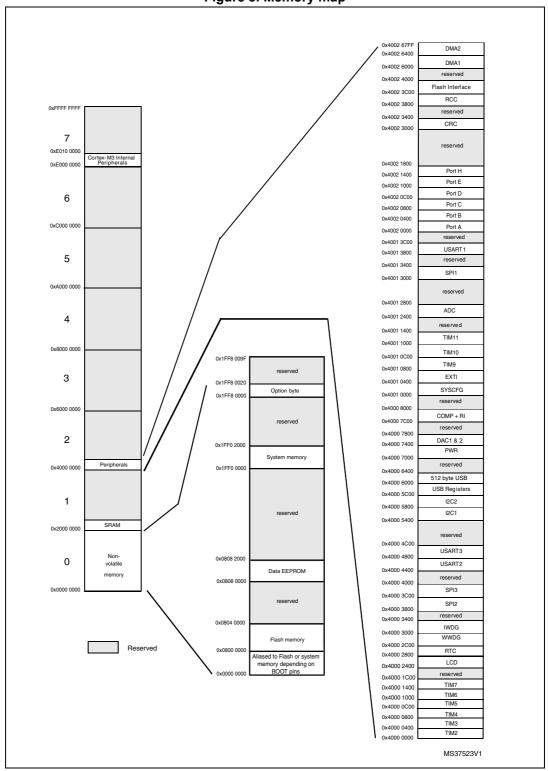


Figure 8. Memory map

- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10: Voltage characteristics* for the maximum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 12. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency -		0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
		BOR detector disabled, after power on	1.65	3.6		
V (1)	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	3.6	, i i i i i i i i i i i i i i i i i i i	
		FT pins; 2.0 V ≤V _{DD}	-0.3	5.5 ⁽³⁾		
V	I/O input voltage	FT pins; $V_{DD} < 2.0 V$		-0.3	5.25 ⁽³⁾	V
V _{IN}		BOOT0 pin	0	5.5		
		Any other pin		V _{DD} +0.3		
		LQFP144 package	-	500		
		LQFP100 package	-	465		
P_D	Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix $7^{(4)}$	LQFP64 package	-	435	mW	
		UFBGA132	-	333		
		WLCSP64 package	-	435		
т	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C	
ΤΑ	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105		

Table 13. General operating conditions

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF
I _{HSE}	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	3	mA
	HSE oscillator power consumption	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	٣٨
I _{DD(HSE)}		C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	mA
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms

Table 28. HSE oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

 The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 40.	Electrical	sensitivities
	LICOUIOUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence oscillator frequency deviation, LCD levels).

The test results are given in the Table 41.

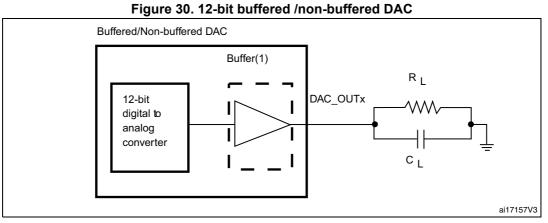

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on all 5 V tolerant (FT) pins	-5 ⁽¹⁾	NA	
I _{INJ}	Injected current on BOOT0	-0	NA	mA
	Injected current on any other pin	-5 ⁽¹⁾	+5	

 Table 41. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

- 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 5. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 6. Difference between the value measured at Code (0x001) and the ideal value.
- 7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.
- 8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Operational amplifier characteristics

Symbol	Parameter		Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
CMIR	Common mode input range		-	0	-	V _{DD}	
VI _{OFFSET}	Input offset voltage	Maximum calibration range	-	-	-	±15	mV
		After offset calibration	-	-	-	±1.5	
ΔVI _{OFFSET} Input offset vo drift	Input offset voltage	Normal mode	-	-	-	±40	µV/°C
	drift	Low-power mode	-	-	-	±80	
I _{IB}	Input current bias	Dedicated input	75 °C	-	-	1	nA
		General purpose input		-	-	10	
I _{LOAD} Drive current	Normal mode	-	-	-	500		
		Low-power mode	-	-	-	100	μA
I _{DD}	Consumption -	Normal mode	No load,	-	100	220	μA
		Low-power mode	quiescent mode	_	30	60	
CMRR	Common mode rejection ration	Normal mode	-	-	-85	-	- dB
		Low-power mode	-	-	-90	-	

Table 59. Operational amplifier characteristics

6.3.20 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C \pm 5 °C V _{DDA} = 3 V \pm 10 mV	0x1FF8 00FA - 0x1FF8 00FB
TS_CAL2	TS ADC raw data acquired at temperature of 110 $^{\circ}C \pm 5 ^{\circ}C$ V _{DDA} = 3 V ± 10 mV	0x1FF8 00FE - 0x1FF8 00FF

Table 60. Temperature sensor calibration values

Table 61	. Temperature	sensor	characteristics
----------	---------------	--------	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	<u>+2</u>	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₁₀	Voltage at 110°C ±5°C ⁽²⁾	612	626.8	641.5	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽³⁾	(3) ADC sampling time when reading the temperature		-	-	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V \pm 10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.

3. Guaranteed by design.

6.3.21 Comparator

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kΩ
R _{10K}	R _{10K} value	-	-	10	-	K22
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μs
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 ° C$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

Table 62. Comparator 1 characteristics

7.6 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP144 - 20 x 20 mm / 0.5 mm pitch	40	
	Thermal resistance junction-ambient UFBGA132 - 7 x 7 mm	60	
Θ _{JA}	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	43	°C/W
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient WLCSP64 - 0.400 mm pitch	46	

Table 71. Thermal characteristics

