

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Last Time Buy
Core Processor	SH-3 DSP
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-20°C ~ 75°C (TA)
Security Features	-
Package / Case	81-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r8a77210c133bgv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DSP Bit	W3LOAD	W3LOCK	W2LOAD	W2LOCK	Way to be Replaced
0	*	*	*	*	Determined by LRU (table 5.2)
1	*	0	*	0	Determined by LRU (table 5.2)
1	*	0	0	1	Determined by LRU (table 5.5)
1	0	1	*	0	Determined by LRU (table 5.6)
1	0	1	0	1	Determined by LRU (table 5.7)
1	0	*	1	1	Way 2
1	1	1	0	*	Way 3

Table 5.3 Way Replacement when a PREF Instruction Misses the Cache

Note: * Don't care

W3LOAD and W2LOAD should not be set to 1 at the same time.

Table 5.4Way Replacement when Instructions other than the PREF Instruction Miss the
Cache

DSP Bit	W3LOAD	W3LOCK	W2LOAD	W2LOCK	Way to be Replaced
0	*	*	*	*	Determined by LRU (table 5.2)
1	*	0	*	0	Determined by LRU (table 5.2)
1	*	0	*	1	Determined by LRU (table 5.5)
1	*	1	*	0	Determined by LRU (table 5.6)
1	*	1	*	1	Determined by LRU (table 5.7)

Note: * Don't care

W3LOAD and W2LOAD should not be set to 1 at the same time.

Table 5.5LRU and Way Replacement (when W2LOCK = 1 and W3LOCK =0)

LRU (Bits 5 to 0)	Way to be Replaced
000000, 000001, 000100, 010100, 100000, 100001, 110000, 110100	3
000011, 000110, 000111, 001011, 001111, 010110, 011110, 011111	1
101001, 101011, 111000, 111001, 111011, 111100, 111110, 111111	0

Table 7.2 Instruction Positions and Restriction Types

Instruction Position	SPC*1	Illegal Instruction* ²	Interrupt, Break* ³	CPU Address Error* ⁴
[A]				
[B]			Retained	
[C1]		Added	Retained	Instruction/data
[C2]	Illegal	Added	Retained	Instruction/data

Notes: 1. A specific address is specified in the SPC if an exception occurs while SR.RC[11:0] ≥ 2.
2. There are a greater number of instructions that can be illegal instructions while SR.RC[11:0] ≥ 1.

3. An interrupt, break or DMA address error request is retained while SR.RC[11:0] ≥1.

- 4. A specific exception code is specified while $SR.RC[11:0] \ge 1$.
- Example 1: Repeat loop consisting of four or greater instructions

	LDRS RptStart	;	[A]
	LDRE RptDtct +	4	; [A]
	SETRC #4	;	[A]
	instr0	;	[A]
RptStart:	instr1	;	[A] [Repeat start instruction]
			[A]
		;	[A]
RptDtct:	RptDtct	;	[B] A repeat detection instruction is an instruction three instructions before a repeat end instruction
	RptDtct1	;	[C1]
	RptDtct2	;	[C2]
RptEnd:	RptDtct3	;	[C2] [Repeat end instruction]
	instrNext	;	[A]

8.3.10 Interrupt Request Register 6 (IRR6)

IRR6 is an 8-bit register that indicates whether interrupt requests from the PINT, SIOF0, and SIOF1 are generated. This register is initialized to H'00 by a power-on reset or manual reset, but is not initialized in standby mode.

Bit	Bit Name	Initial Value	R/W	Description
7, 6		All 0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
5	SIOF1IR	0	R/W	SIOFI1 Interrupt Request
				Indicates whether the SIOFI1 (SIOF1) interrupt request is generated.
				0: SIOFI1 interrupt request is not generated
				1: SIOFI1 interrupt request is generated
4	SIOF0IR	0	R/W	SIOFI0 Interrupt Request
				Indicates whether the SIOFI0 (SIOF0) interrupt request is generated.
				0: SIOFI0 interrupt request is not generated
				1: SIOFI0 interrupt request is generated
3, 2	—	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
1	PINTBR	0	R/W	PINTB Interrupt Request
				Indicates whether the PINTB (PINT) interrupt request is generated.
				0: PINTB interrupt request is not generated
				1: PINTB interrupt request is generated
0	PINTAR	0	R/W	PINTA Interrupt Request
				Indicates whether the PINTA (PINT) interrupt request is generated.
				0: PINTA interrupt request is not generated
				1: PINTA interrupt request is generated

Table 9.13Relationship between A2/3BSZ[1:0], A2/3ROW[1:0], A2/3COL[1:0], and
Address Multiplex Output (2)-1

	Setting			
A2/3 BSZ [1:0]	A2/3 ROW [1:0]	A2/3 COL [1:0]	_	
11 (32 bits)	01 (12 bits)	01 (9 bits)	_	
Output Pin of This LSI	Row Address Output	Column Address Output	Synchronous DRAM Pin	Function
A17	A26	A17		Unused
A16	A25	A16	_	
A15	A24* ²	A24* ²	A13 (BA1)	Specifies bank
A14	A23* ²	A23* ²	A12 (BA0)	
A13	A22	A13	A11	Address
A12	A21	L/H* ¹	A10/AP	Specifies address/precharge
A11	A20	A11	A9	Address
A10	A19	A10	A8	
A9	A18	A9	A7	
A8	A17	A8	A6	
A7	A16	A7	A5	
A6	A15	A6	A4	
A5	A14	A5	A3	
A4	A13	A4	A2	
A3	A12	A3	A1	
A2	A11	A2	A0	
A1	A10	A1		Unused
A0	A9	A0	_	
		Example of connecte	ed memory	
25	66-Mbit product (2 28-Mbit product (2	Mwords x 32 bits x 4 Mwords x 16 bits x 4	banks, column 9 bits banks, column 9 bits	s product): 1 s product): 2

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high according to the access mode.

2. Bank address specification

Table 9.15Relationship between A2/3BSZ[1:0], A2/3ROW[1:0], A2/3COL[1:0], and
Address Multiplex Output (4)-2

	Setting			
A2/3 BSZ [1:0]	A2/3 ROW [1:0]	A2/3 COL [1:0]	_	
10 (16 bits)	01 (12 bits)	00 (8 bits)	_	
Output Pin of This LSI	Row Address Output	Column Address Output	– Synchronous DRAM Pin	Function
A17	A25	A17		Unused
A16	A24	A16	_	
A15	A23	A15	_	
A14	A22* ²	A22* ²	A13 (BA1)	Specifies bank
A13	A21* ²	A21* ²	A12 (BA0)	
A12	A20	A12	A11	Address
A11	A19	L/H* ¹	A10/AP	Specifies address/precharge
A10	A18	A10	A9	Address
A9	A17	A9	A8	
A8	A16	A8	A7	
A7	A15	A7	A6	
A6	A14	A6	A5	
A5	A13	A5	A4	
A4	A12	A4	A3	
A3	A11	A3	A2	
A2	A10	A2	A1	
A1	A9	A1	A0	
A0	A8	A0		Unused
		Example of connecte	ed memory	
6	4-Mbit product (1	Mword x 16 bits x 4 b	anks, column 8 bits	product): 1
Natao 1 //	is a hit used in the	a command an a sificat	ion, it is fived at low	

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high according to the access mode.

2. Bank address specification

Figure 9.17 Basic Timing for Burst Write (Auto-Precharge)

CKIO Bus cycle DREQ (Overrun 0 high-level) DACK (High-activ	e)
CKIO Bus cycle DREQ (Overrun 1 high-level) DACKn (High-activ	e)

Figure 10.14 Example of DREQ Input Detection in Cycle Steal Mode Level Detection

Figure 10.15 Example of DREQ Input Detection in Burst Mode Edge Detection

18.3.1 Receive Shift Register (SCRSR)

SCRSR receives serial data. Data input at the RxD pin is loaded into the SCRSR in the order received, LSB (bit 0) first, converting the data to parallel form. When one byte has been received, it is automatically transferred to the SCFRDR, which is a receive FIFO data register. The CPU cannot read from or write to the SCRSR directly.

18.3.2 Receive FIFO Data Register (SCFRDR)

The 64-byte receive FIFO data register (SCFRDR) stores serial receive data. The SCIF completes the reception of one byte of serial data by moving the received data from the receive shift register (SCRSR) into the SCFRDR for storage. Continuous receive is enabled until 64 bytes are stored.

The CPU can read but not write the SCFRDR. When data is read without received data in the SCFRDR, the value is undefined. When the received data in this register becomes full, the subsequent serial data is lost.

Bit	Bit Name	Initial value	R/W	Description
7 to 0	SCFRD7 to SCFRD0	Undefined	R	FIFO Data Registers for Serial Receive Data

18.3.3 Transmit Shift Register (SCTSR)

SCTSR transmits serial data. The SCIF loads transmit data from the transmit FIFO data register (SCFTDR) into the SCTSR, then transmits the data serially from the TxD pin, LSB (bit 0) first. After transmitting one data byte, the SCI automatically loads the next transmit data from the SCFTDR into the SCTSR and starts transmitting again. The CPU cannot read or write the SCTSR directly.

18.3.4 Transmit FIFO Data Register (SCFTDR)

SCFTDR is a 64-byte 8-bit-length FIFO register that stores data for serial transmission. When the SCIF detects that the transmit shift register (SCTSR) is empty, it moves transmit data written in the SCFTDR into the SCTSR and starts serial transmission. Continuous serial transmission is performed until the transmit data in the SCFTDR becomes empty. The CPU can always write to the SCFTDR.

When the transmit data in the SCFTDR is full (64 bytes), next data cannot be written. If attempted to write, the data is ignored.

In serial transmission, the SCIF operates as described below.

- 1. When data is written into the transmit FIFO data register (SCFTDR), the SCIF transfers the data from SCFTDR to the transmit shift register (SCTSR) and starts transmitting. Confirm that the TDFE flag in the serial status register (SCSSR) is set to 1 before writing transmit data to SCFTDR. The number of data bytes that can be written is (64 transmit trigger setting).
- 2. When data is transferred from SCFTDR to SCTSR and transmission is started, consecutive transmit operations are performed until there is no transmit data left in SCFTDR. When the number of transmit data bytes in SCFTDR falls below the transmit trigger number set in the FIFO control register (SCFCR), the TDFE flag is set. If the TIE bit in the serial control register (SCSR) is set to 1 at this time, a transmit-FIFO-data-empty interrupt request is generated. When the number of transmit data stop function is used, the transmit data stop register (SCTDSR) while the transmit data stop function is used, the TSIE bit in the serial control register (SCSCR) is set to 1, transmit data stop interrupt request is generated. A common interrupt vector is assigned to the transmit-FIFO-data-empty interrupt and the transmit-data-stop interrupt.

The serial transmit data is sent from the TxD pin in the following order.

- A. Start bit: One-bit 0 is output.
- B. Transmit data: 8-bit or 7-bit data is output in LSB-first order.
- C. Parity bit: One parity bit (even or odd parity) is output. (A format in which a parity bit is not output can also be selected.)
- D. Stop bit(s): One- or two-bit 1s (stop bits) are output.
- E. Mark state: 1 is output continuously until the start bit that starts the next transmission is sent.
- 3. The SCIF checks the SCFTDR transmit data at the timing for sending the stop bit. If data is present, the data is transferred from SCFTDR to SCTSR, the stop bit is sent, and then serial transmission of the next frame is started.

If there is no transmit data, the TEND flag in the serial status register (SCSSR) is set to 1, the stop bit is sent, and then the line goes to the mark state in which 1 is output continuously.

21.3.7 Status Register (SISTR)

SISTR is a 16-bit read-only register that shows the SIOF state. Each bit in this register becomes an SIOF interrupt source when the corresponding bit in SIIER is set to 1.

SISTR is initialized in module stop mode.

		Initial		
Bit	Bit Name	Value	R/W	Description
15		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
14	TCRDY	0	R	Transmit Control Data Ready
				0: Indicates that a write to SITCR is disabled
				1: Indicates that a write to SITCR is enabled
				• If SITCR is written when this bit is cleared to 0, SITCR is over-written and the previous contents of SITCR are not output from the SIOFTxD pin.
				• This bit is valid when the TXE bit in SITCR is set to 1.
				 This bit indicates a state of the SIOF. If SITCR is written, the SIOF clears this bit.
				 If the issue of interrupts by this bit is enabled, an SIOF interrupt is issued.
13	TFEMP	0	R	Transmit FIFO Empty
				0: Indicates that transmit FIFO is not empty
				1: Indicates that transmit FIFO is empty
				• This bit is valid when the TXE bit in SICTR is 1.
				• This bit indicates a state; if SITDR is written, the SIOF clears this bit.
				 If the issue of interrupts by this bit is enabled, an SIOF interrupt is issued.

(2) Regarding Transmit and Receive Classification

The transmit sources and receive sources are signals indicating the state; after being set, if the state changes, they are automatically cleared by the SIOF.

When the DMA transfer is used, a DMA transfer request is pulled low (0 level) for one cycle at the end of DMA transfer.

(3) Processing when Errors Occur

On occurrence of each of the errors indicated as a status in SISTR, the SIOF performs the following operations.

• Transmit FIFO underflow (TFUDF)

The immediately preceding transmit data is again transmitted.

• Transmit FIFO overflow (TFOVF)

The contents of the transmit FIFO are protected, and the write operation causing the overflow is ignored.

• Receive FIFO overflow (RFOVF)

Data causing the overflow is discarded and lost.

- Receive FIFO underflow (RFUDF) An undefined value is output on the bus.
- FS error (FSERR)

The internal counter is reset according to the FSYN signal in which an error occurs.

- Assign error (SAERR)
 - If the same slot is assigned to both serial data and control data, the slot is assigned to serial data.
 - If the same slot is assigned to two control data items, data cannot be transferred correctly.

Bit	Bit Name	Initial Value	R/W	Description			
1	EP3 TS	0	R/W	EP3 (Interrupt) Transmit Complete			
				[Setting condition]			
				When data to be transmitted to the host is written to EP3, then data is normally transferred from the host to the function, and an ACK handshake is returned.			
				[Clearing conditions]			
				When reset			
				• When 0 is written to by CPU			
0 VBUSF 0		0	R/W	USB Disconnection Detection			
				The USBF_VBUS pin of this module is used for detecting connection/disconnection.			
				[Setting condition]			
				When the function is connected to the USB bus or disconnected from it.			
				[Clearing conditions]			
				When reset			
				• When 0 is written to by CPU.			

25.3.3 Interrupt Flag Register 2 (IFR2)

IFR2 is an interrupt flag register for SURSS, SURSF, CFDN, SOF, SETC, and SETI. When each flag is set to 1 and an interrupt is enabled in the corresponding bit of IER2, an interrupt occurs as specified by the corresponding bit in ISR2. Clearing is performed by writing 0 to the bit to be cleared. Writing 1 is not valid and nothing is changed.

Bit	Bit Name	Initial Value	R/W	Description		
7, 6	_	All 0	R	Reserved		
				These bits are always read as 0. The write value should always be 0.		
5	SURSS	RSS 0 R Suspend/Resume Status		Suspend/Resume Status		
				Status bit indicating the state of the bus		
				0: Normal state		
				1: Suspend state		

Image for Display in Memory (X-Resolution × Y- Resolution)	LCD Module (X-Resolution × Y-Resolution)	Number of Colors for Display		Number of Column Address Bits of SDRAM	Burst Length of LCDC (LDSMR*)	
80 × 160	160 × 80	Monochrome	2 bpp	8 bits	Not more than 16 bursts	
				9 bits	_	
				10 bits	_	
			4 bpp (packed)	8 bits	Not more than 8 bursts	
				9 bits	Not more than 16 bursts	
				10 bits	_	
			4 bpp	8 bits	4 bursts	
			(unpacked)	9 bits	Not more than 8 bursts	
				10 bits	Not more than 16 bursts	
			6 bpp	8 bits	4 bursts	
				9 bits	Not more than 8 bursts	
				10 bits	Not more than 16 bursts	
		Color	4 bpp	8 bits	Not more than 8 bursts	
			(packed)	9 bits	Not more than 16 bursts	
				10 bits	_	
			4 bpp	8 bits	4 bursts	
			(unpacked)	9 bits	Not more than 8 bursts	
				10 bits	Not more than 16 bursts	
			8 bpp	8 bits	4 bursts	
				9 bits	Not more than 8 bursts	
				10 bits	Not more than 16 bursts	
			16 bpp	8 bits	Unusable	
				9 bits	4 bursts	
				10 bits	Not more than 8 bursts	

30.4.2 Data Format

Figure 30.2 shows the data format used by the smart card interface. The smart card interface performs a parity check for each frame during reception.

During reception in T = 0 mode, if a parity error is detected, an error signal is returned to the transmit side, requesting data retransmission. When the transmit side samples the error signal, it retransmits the same data.

During reception in T = 1 mode, if a parity error is detected, an error signal is not returned. During transmission, error signals are not sampled and data is not retransmitted.

Figure 30.2 Data Format Used by Smart Card Interface

The operation sequence is as follows.

- 1. When not in use, the data line is in a high-impedance state and fixed at high level by a pull-up resistance.
- 2. The transmit side initiates transmission of one frame of data. The data frame begins with the start bit (Ds: low level). This is followed by eight data bits (D0 to D7) and the parity bit (Dp).

Input/output pins		
02.1	CMD25 (WRITE MULTIPLE BLOCK)	CMD12 (STOP_TRANSMISSION)
CMD	Command Command	Command Command
DAT	Write data W Write	adata) Write data
CMDSTRT	transmission	
(START)	Block data Next	block data
OPCR (DATAEN)	transmission trans started	mission end A
(CMDOFF)		
INTSTRO		
(CMDI)		
(CRPI)	×	
(DTI)	×	¥
(DRPI)	×	
(DBSYI)		
(FEI)		
CSTR		
(CWRE)		
(BUSY)		Stop command execution sequence
(FIFO_EMPTY)		
(DTBUSY)		
(DTBUSY_TU)		
(REQ)		

Figure 31.17 Example of Command Sequence for Commands with Write Data (Multiblock Transfer)

Bit	Pin Name	I/O	Bit	Pin Name	I/O
187	SIOF1_MCLK/SD_DAT1/TPU_TI3B/ PTU3	IN	168	PCC_RESET/PINT7/PTK3	OUT
186	SIOF1_SYNC/SD_DAT2/PTU4	IN	167	ASEBRKAK/PTJ5	OUT
185	SIM_CLK/SCIF1_SCK/SD_DAT3/ PTV0	IN	166	AUDSYNC/PTJ0	OUT
184	SIM_RST/SCIF1_RxD/SD_WP/PTV1	IN	165	AUDCK/PTJ6	OUT
183	SIM_D/SCIF1_TxD/SD_CD/PTV2	IN	164	AUDATA0/PTJ1	OUT
182	MMC_ODMOD/SCIF1_RTS/ LCD_VCPWC/TPU_TO2/PTV3	IN	163	AUDATA1/PTJ2	OUT
181	MMC_VDDON/SCIF1_CTS/ LCD_VEPWC/TPU_TO3/PTV4	IN	162	AUDATA2/PTJ3	OUT
180	USB1d_TXENL/PINT8/ PCC_CD1/PTG0	IN	161	AUDATA3/PTJ4	OUT
179	USB1d_SPEED/PINT9/ PCC_CD2/PTG1	IN	160	IRQ0/IRL0/PTP0	OUT
178	USB1d_DPLS/PINT10/AFE_HC1/ PCC_BVD1/PTG2	IN	159	IRQ1/IRL1/PTP1	OUT
177	USB1d_DMNS/PINT11/AFE_RLYCNT/ PCC_BVD2/PTG3	IN	158	IRQ2/IRL2/PTP2	OUT
176	USB1d_TXDPLS/AFE_SCLK/IOIS16/ PCC_IOIS16/PTG4	IN	157	IRQ3/IRL3/PTP3	OUT
175	USB1d_TXSE0/IRQ4/AFE_TXOUT/ PCC_DRV/PTG5	IN	156	SCIF0_SCK/PTT0	OUT
174	USB1d_RCV/IRQ5/AFE_FS/ PCC_REG/PTG6	IN	155	SCIF0_RxD/IrRX/PTT1	OUT
173	USB1d_SUSPEND/REFOUT/ IRQOUT/PTP4	IN	154	SCIF0_TxD/IrTX/PTT2	OUT
172	USB1_ovr_current/USBF_VBUS	IN	153	SCIF0_RTS/TPU_TO0/PTT3	OUT
171	PCC_VS1/PINT4/PTK0	OUT	152	SCIF0_CTS/TPU_TO1/PTT4	OUT
170	PCC_VS2/PINT5/PTK1	OUT	151	MMC_CLK/SIOF1_SCK/SD_CLK/ TPU_TI2A/PTU0	OUT
169	PCC_RDY/PINT6/PTK2	OUT	150	MMC_CMD/SIOF1_RxD/SD_CMD/ TPU_TI2B_PTU1	OUT

37.1 Register Addresses

Entries under Access Size indicate number of bits.

Note: Access to undefined or reserved address is prohibited. Since operation or continued operation is not guaranteed when these registers are accessed, do not attempt such access.

		Number			Access
Register Name	Abbreviation	of Bits	Address	Module	Size
MMU control register	MMUCR	32	H'FFFF FFE0	MMU	32
Page table entry register high	PTEH	32	H'FFFF FFF0	-	32
Page table entry register low	PTEL	32	H'FFFF FFF4		32
Translation table base register	ТТВ	32	H'FFFF FFF8		32
Cache control register 2	CCR2	32	H'A400 00B0	Cache	32
Cache control register 3	CCR3	32	H'A400 00B4		32
Cache control register 1	CCR1	32	H'FFFF FFEC		32
Interrupt event register 2	INTEVT2	32	H'A400 0000	Exception	32
TRAPA exception register	TRA	32	H'FFFF FFD0	handling	32
Exception event register	EXPEVT	32	H'FFFF FFD4		32
Interrupt event register	INTEVT	32	H'FFFF FFD8		32
Exception address register	TEA	32	H'FFFF FFFC	-	32
Interrupt priority register F	IPRF	16	H'A408 0000	INTC	16
Interrupt priority register G	IPRG	16	H'A408 0002	-	16
Interrupt priority register H	IPRH	16	H'A408 0004		16
Interrupt priority register I	IPRI	16	H'A408 0006		16
Interrupt priority register J	IPRJ	16	H'A408 0008		16
Interrupt request register 5	IRR5	8	H'A408 0020		8
Interrupt request register 6	IRR6	8	H'A408 0022		8
Interrupt request register 7	IRR7	8	H'A408 0024	-	8
Interrupt request register 8	IRR8	8	H'A408 0026	-	8
Interrupt request register 9	IRR9	8	H'A408 0028	-	8
Interrupt request register 0	IRR0	8	H'A414 0004	-	8

Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	Module
TIER_2	_	_	_	_	_	_	_	_	TPU
	_	_	TC1EU	TC1EV	TG1ED	TG1EC	TG1EB	TG1EA	-
TSR_2	_	_	_	_	_	_	_	_	-
	TCFD	_	TCFU	TCFV	TGFD	TGFC	TGFB	TGFA	
TCNT_2									
									_
TGRA_2									_
									_
TGRB_2									_
									_
TGRC_2									_
									-
TGRD_2									_
									_
TCR_3		_		_	_	_	_	_	_
	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	_
TMDR_3		_	_	_	_	_		_	-
	—	BFWT	BFB	BFA	_	MD2	MD1	MD0	-
TIOR_3		_		_	_	_	_	_	-
	—	_		_	_	IOA2	IOA1	IOA0	-
TIER_3		_	_	_	_	_			-
		_	TC1EU	TC1EV	TG1ED	TG1EC	TG1EB	TG1EA	-
TSR_3	_	—	_	—	—	—	—	—	_
	TCFD	_	TCFU	TCFV	TGFD	TGFC	TGFB	TGFA	_
TCNT_3									_
									_
TGRA_3									_
									_
TGRB_3									

C. Package Dimensions

Figure C.1 Package Dimensions (PLBG0256GA-A (BP-256H/HV))