

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4/M0
Core Size	32-Bit Dual-Core
Speed	204MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, SD, SPI, SSI, SSP, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	264K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc4330fet100y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M4/M0 microcontroller

Symbol	LBGA256	TFBGA180	TFBGA100	LQFP144		Reset state	Type	Description
P4_2	D3	A2	-	8	[2]	N;	I/O	GPIO2[2] — General purpose digital input/output pin.
						PU	0	CTOUT_0 — SCTimer/PWM output 0. Match output 0 of timer 0.
1							0	LCD_VD3 — LCD data.
							-	R — Function reserved.
							-	R — Function reserved.
							0	LCD_VD12 — LCD data.
							I	U3_RXD — Receiver input for USART3.
				I/O	SGPIO8 — General purpose digital input/output pin.			
P4_3	C2	B2	-	7	[5]	N;	I/O	GPIO2[3] — General purpose digital input/output pin.
						PU	0	CTOUT_3 — SCTimer/PWM output 3. Match output 3 of timer 0.
							0	LCD_VD2 — LCD data.
							-	R — Function reserved.
							-	R — Function reserved.
							0	LCD_VD21 — LCD data.
							I/O	U3_BAUD — Baud pin for USART3.
							I/O	SGPIO9 — General purpose digital input/output pin.
							AI	ADC0_0 — DAC output; ADC0 and ADC1, input channel 0. Configure the pin as GPIO input and use the ADC function select register in the SCU to select the ADC.
P4_4	B1	A1	-	9	[5]	N;	I/O	GPIO2[4] — General purpose digital input/output pin.
						PU	0	CTOUT_2 — SCTimer/PWM output 2. Match output 2 of timer 0.
							0	LCD_VD1 — LCD data.
							-	R — Function reserved.
							-	R — Function reserved.
							0	LCD_VD20 — LCD data.
							I/O	U3_DIR — RS-485/EIA-485 output enable/direction control for USART3.
							I/O	SGPIO10 — General purpose digital input/output pin.
							0	DAC — DAC output. Shared between 10-bit ADC0/1 and DAC Configure the pin as GPIO input and use the analog function select register in the SCU to select the DAC.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.

32-bit ARM Cortex-M4/M0 microcontroller

Symbol	LBGA256	TFBGA180	TFBGA100	LQFP144		Reset state	Type	e on all parts. See <u>Table 2</u> . Description
D 4 0			Ë		[2]		È	D. Exection recorded
P4_9	L2	J2	-	33	[2]	N; PU	-	R — Function reserved.
							1	CTIN_6 — SCTimer/PWM input 6. Capture input 1 of timer 3.
							0	LCD_VD11 — LCD data.
							-	R — Function reserved.
							1/0	GPIO5[13] — General purpose digital input/output pin.
							0	LCD_VD15 — LCD data.
							l	CAN1_RD — CAN1 receiver input.
_					101		I/O	SGPI014 — General purpose digital input/output pin.
P4_10	М3	L3	-	35	[2]	N; PU	-	R — Function reserved.
						ľ	I	CTIN_2 — SCTimer/PWM input 2. Capture input 2 of timer 0.
							0	LCD_VD10 — LCD data.
							-	R — Function reserved.
							I/O	GPIO5[14] — General purpose digital input/output pin.
							0	LCD_VD14 — LCD data.
							-	R — Function reserved.
							I/O	SGPIO15 — General purpose digital input/output pin.
P5_0	N3	L2	-	37	[2]	N;	I/O	GPIO2[9] — General purpose digital input/output pin.
						PU	0	MCOB2 — Motor control PWM channel 2, output B.
							I/O	EMC_D12 — External memory data line 12.
							-	R — Function reserved.
							Ι	U1_DSR — Data Set Ready input for UART 1.
							I	T1_CAP0 — Capture input 0 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.
P5_1	P3	M1	-	39	[2]	N;	I/O	GPIO2[10] — General purpose digital input/output pin.
						PU	I	MCI2 — Motor control PWM channel 2, input.
							I/O	EMC_D13 — External memory data line 13.
							-	R — Function reserved.
							0	U1_DTR — Data Terminal Ready output for UART 1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART 1.
							I	T1_CAP1 — Capture input 1 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.

32-bit ARM Cortex-M4/M0 microcontroller

Symbol	LBGA256	TFBGA180	TFBGA100	LQFP144		Reset state [1]	Type	Description
P6_5	P16	L14	F9	82	[2]	N;	I/O	GPIO3[4] — General purpose digital input/output pin.
						PU	0	CTOUT_6 — SCTimer/PWM output 6. Match output 2 of timer 1.
							I	U0_RXD — Receiver input for USART0.
							0	EMC_RAS — LOW active SDRAM Row Address Strobe.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P6_6	L14	K12	-	83	[2]	N;	I/O	GPIO0[5] — General purpose digital input/output pin.
						PU	0	EMC_BLS1 — LOW active Byte Lane select signal 1.
							I/O	SGPIO5 — General purpose digital input/output pin.
							I	USB0_PWR_FAULT — Port power fault signal indicating overcurrent condition; this signal monitors over-current on the USB bus (external circuitry required to detect over-current condition).
							-	R — Function reserved.
							I	T2_CAP3 — Capture input 3 of timer 2.
							-	R — Function reserved.
							-	R — Function reserved.
P6_7	J13	H11	-	85	[2]	N;	-	R — Function reserved.
						PU	I/O	EMC_A15 — External memory address line 15.
							I/O	SGPIO6 — General purpose digital input/output pin.
							0	USB0_IND1 — USB0 port indicator LED control output 1.
							I/O	GPIO5[15] — General purpose digital input/output pin.
							0	T2_MAT0 — Match output 0 of timer 2.
							-	R — Function reserved.
							-	R — Function reserved.
P6_8	H13	F12	-	86	[2]	N;	-	R — Function reserved.
						PU	I/O	EMC_A14 — External memory address line 14.
							I/O	SGPIO7 — General purpose digital input/output pin.
							0	USB0_IND0 — USB0 port indicator LED control output 0.
							I/O	GPIO5[16] — General purpose digital input/output pin.
							0	T2_MAT1 — Match output 1 of timer 2.
							-	R — Function reserved.
							-	R — Function reserved.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See <u>Table 2</u>.

32-bit ARM Cortex-M4/M0 microcontroller

Symbol	LBGA256	TFBGA180	TFBGA100	LQFP144		Reset state [1]	Type	Description
PA_3	H11	E10	-	-	[3]	N;	I/O	GPIO4[10] — General purpose digital input/output pin.
						PU	I	QEI_PHA — Quadrature Encoder Interface PHA input.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PA_4	G13	E12	-	-	[2]	N; PU	-	R — Function reserved.
							0	CTOUT_9 — SCTimer/PWM output 9. Match output 3 of timer 3.
							-	R — Function reserved.
							I/O	EMC_A23 — External memory address line 23.
							I/O	GPIO5[19] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PB_0	B15	D14	-	-	[2]	N; PU	-	R — Function reserved.
						PU	0	CTOUT_10 — SCTimer/PWM output 10. Match output 3 of timer 3.
							0	LCD_VD23 — LCD data.
							-	R — Function reserved.
							I/O	GPIO5[20] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PB_1	A14	A13	-	-	[2]	N;	-	R — Function reserved.
						PU	I	USB1_ULPI_DIR — ULPI link DIR signal. Controls the ULP data line direction.
							0	LCD_VD22 — LCD data.
							-	R — Function reserved.
							I/O	GPIO5[21] — General purpose digital input/output pin.
							0	CTOUT_6 — SCTimer/PWM output 6. Match output 2 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See <u>Table 2</u>.

32-bit ARM Cortex-M4/M0 microcontroller

Symbol	LBGA256	TFBGA180	TFBGA100	LQFP144		Reset state [1]	Type	Description				
PC_7	G5	-	-	-	[2]	N;	-	R — Function reserved.				
						PU	I/O	USB1_ULPI_D1 — ULPI link bidirectional data line 1.				
							-	R — Function reserved.				
							I	ENET_RXD3 — Ethernet receive data 3 (MII interface).				
							I/O	GPIO6[6] — General purpose digital input/output pin.				
							-	R — Function reserved.				
							0	T3_MAT0 — Match output 0 of timer 3.				
							I/O	SD_DAT3 — SD/MMC data bus line 3.				
PC_8	N4	-	-	-	[2]	N;	-	R — Function reserved.				
						PU	I/O	USB1_ULPI_D0 — ULPI link bidirectional data line 0.				
							-	R — Function reserved.				
							I	ENET_RX_DV — Ethernet Receive Data Valid (RMII/MII interface).				
							I/O	GPIO6[7] — General purpose digital input/output pin.				
							-	R — Function reserved.				
							0	T3_MAT1 — Match output 1 of timer 3.				
							I	SD_CD — SD/MMC card detect input.				
PC_9	K2	-	-	-	[2]	N;	-	R — Function reserved.				
						PU	I	USB1_ULPI_NXT — ULPI link NXT signal. Data flow control signal from the PHY.				
							-	R — Function reserved.				
							I	ENET_RX_ER — Ethernet receive error (MII interface).				
							I/O	GPIO6[8] — General purpose digital input/output pin.				
							-	R — Function reserved.				
							0	T3_MAT2 — Match output 2 of timer 3.				
							0	SD_POW — SD/MMC power monitor output.				
PC_10	M5	-	-	-	[2]	N;	-	R — Function reserved.				
						PU	0	USB1_ULPI_STP — ULPI link STP signal. Asserted to end or interrupt transfers to the PHY.				
							I	U1_DSR — Data Set Ready input for UART 1.				
							-	R — Function reserved.				
							I/O	GPIO6[9] — General purpose digital input/output pin.				
							-	R — Function reserved.				
							0	T3_MAT3 — Match output 3 of timer 3.				
							I/O	SD_CMD — SD/MMC command signal.				

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.

32-bit ARM Cortex-M4/M0 microcontroller

	USB0, a	_		ictions	are		allable	e on all parts. See <u>Table 2</u> . Description
Symbol	LBGA256	TFBGA180	TFBGA100	LQFP144		Reset state	Type	Description
PE_11	D16	-	-	-	[2]	N;	-	R — Function reserved.
						PU	0	CTOUT_12 — SCTimer/PWM output 12. Match output 3 of timer 3.
							0	U1_TXD — Transmitter output for UART 1.
							I/O	EMC_D30 — External memory data line 30.
							I/O	GPI07[11] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PE_12	D15	-	-	-	[2]	N;	-	R — Function reserved.
						PU	0	CTOUT_11 — SCTimer/PWM output 11. Match output 3 of timer 2.
							I	U1_RXD — Receiver input for UART 1.
							I/O	EMC_D31 — External memory data line 31.
							I/O	GPI07[12] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PE_13	G14	-	-	-	[2]	N;	-	R — Function reserved.
						PU	0	CTOUT_14 — SCTimer/PWM output 14. Match output 2 of timer 3.
							I/O	I2C1_SDA — I ² C1 data input/output (this pin does not use a specialized I2C pad).
							0	EMC_DQMOUT3 — Data mask 3 used with SDRAM and static devices.
							I/O	GPI07[13] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PE_14	C15	-	-	-	[2]	N;	-	R — Function reserved.
						PU	-	R — Function reserved.
							-	R — Function reserved.
							0	EMC_DYCS3 — SDRAM chip select 3.
							I/O	GPI07[14] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.

Table 3. Pin description ...continued

LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See <u>Table 2</u>.

32-bit ARM Cortex-M4/M0 microcontroller

7.14 One-Time Programmable (OTP) memory

The OTP provides 64 bit + 256 bit One-Time Programmable (OTP) memory for general-purpose use.

7.15 General-Purpose I/O (GPIO)

The LPC4350/30/20/10 provide eight GPIO ports with up to 31 GPIO pins each.

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow setting or clearing any number of outputs simultaneously. The value of the output register may be read back as well as the current state of the port pins.

All GPIO pins default to inputs with pull-up resistors enabled and input buffer disabled on reset. The input buffer must be turned on in the system control block SFS register before the GPIO input can be read.

7.15.1 Features

- Accelerated GPIO functions:
 - GPIO registers are located on the AHB so that the fastest possible I/O timing can be achieved.
 - Mask registers allow treating sets of port bits as a group, leaving other bits unchanged.
 - All GPIO registers are byte and half-word addressable.
 - Entire port value can be written in one instruction.
- Bit-level set and clear registers allow a single instruction set or clear of any number of bits in one port.
- Direction control of individual bits.
- Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or level-sensitive GPIO interrupt request (GPIO interrupts).
- Two GPIO group interrupts can be triggered by any pin or pins in each port (GPIO group0 and group1 interrupts).

7.16 Configurable digital peripherals

7.16.1 State Configurable Timer (SCTimer/PWM) subsystem

The SCTimer/PWM allows a wide variety of timing, counting, output modulation, and input capture operations. The inputs and outputs of the SCTimer/PWM are shared with the capture and match inputs/outputs of the 32-bit general-purpose counter/timers.

The SCTimer/PWM can be configured as two 16-bit counters or a unified 32-bit counter. In the two-counter case, in addition to the counter value the following operational elements are independent for each half:

- State variable
- Limit, halt, stop, and start conditions
- · Values of Match/Capture registers, plus reload or capture control values

LPC4350 30 20 10

32-bit ARM Cortex-M4/M0 microcontroller

After a few commands configure the interface at startup, the entire flash content is accessible as normal memory using byte, halfword, and word accesses by the processor and/or DMA channels. Simple sequences of commands handle erasing and programming.

Many serial flash devices use a half-duplex command-driven SPI protocol for device setup and initialization and then move to a half-duplex, command-driven 4-bit protocol for normal operation. Different serial flash vendors and devices accept or require different commands and command formats. SPIFI provides sufficient flexibility to be compatible with common flash devices and includes extensions to help insure compatibility with future devices.

7.17.2.1 Features

- Interfaces to serial flash memory in the main memory map.
- Supports classic and 4-bit bidirectional serial protocols.
- · Half-duplex protocol compatible with various vendors and devices.
- Quad SPI Flash Interface (SPIFI) with 1-, 2-, or 4-bit data at rates of up to 52 MB per second.
- Supports DMA access.

7.17.3 SD/MMC card interface

The SD/MMC card interface supports the following modes to control:

- Secure Digital memory (SD version 3.0).
- Secure Digital I/O (SDIO version 2.0).
- Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1).
- MultiMedia Cards (MMC version 4.4).

7.17.4 External Memory Controller (EMC)

The LPC4350/30/20/10 EMC is a Memory Controller peripheral offering support for asynchronous static memory devices such as RAM, ROM, and NOR flash. In addition, it can be used as an interface with off-chip memory-mapped devices and peripherals.

7.17.4.1 Features

- Dynamic memory interface support including single data rate SDRAM.
- Asynchronous static memory device support including RAM, ROM, and NOR flash, with or without asynchronous page mode.
- Low transaction latency.
- Read and write buffers to reduce latency and to improve performance.
- 8/16/32 data and 24 address lines-wide static memory support.
- 16 bit and 32 bit wide chip select SDRAM memory support.
- Static memory features include:
 - Asynchronous page mode read
 - Programmable Wait States
 - Bus turnaround delay

LPC4350 30 20 10

32-bit ARM Cortex-M4/M0 microcontroller

- Supports auto USB 2.0 mode discovery.
- Supports all high-speed USB-compliant peripherals if connected to external ULPI PHY.
- Supports all full-speed USB-compliant peripherals.
- Supports interrupts.
- This module has its own, integrated DMA engine.
- USB interface electrical test software included in ROM USB stack.

7.17.7 LCD controller

Remark: The LCD controller is available on LPC4350 only. See <u>Table 2</u>.

The LCD controller provides all of the necessary control signals to interface directly to various color and monochrome LCD panels. Both STN (single and dual panel) and TFT panels can be operated. The display resolution is selectable and can be up to 1024×768 pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mode. An on-chip 512 byte color palette allows reducing bus utilization (that is, memory size of the displayed data) while still supporting many colors.

The LCD interface includes its own DMA controller to allow it to operate independently of the CPU and other system functions. A built-in FIFO acts as a buffer for display data, providing flexibility for system timing. Hardware cursor support can further reduce the amount of CPU time required to operate the display.

7.17.7.1 Features

- AHB master interface to access frame buffer.
- Setup and control via a separate AHB slave interface.
- Dual 16-deep programmable 64-bit wide FIFOs for buffering incoming display data.
- Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays with 4-bit or 8-bit interfaces.
- Supports single and dual-panel color STN displays.
- Supports Thin Film Transistor (TFT) color displays.
- Programmable display resolution including, but not limited to: 320×200 , 320×240 , 640×200 , 640×240 , 640×480 , 800×600 , and 1024×768 .
- Hardware cursor support for single-panel displays.
- 15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support.
- 1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN.
- 1, 2, 4, or 8 bpp palettized color displays for color STN and TFT.
- 16 bpp true-color non-palettized for color STN and TFT.
- 24 bpp true-color non-palettized for color TFT.
- Programmable timing for different display panels.
- 256 entry, 16-bit palette RAM, arranged as a 128 × 32-bit RAM.
- Frame, line, and pixel clock signals.
- AC bias signal for STN, data enable signal for TFT panels.
- Supports little and big-endian, and Windows CE data formats.

32-bit ARM Cortex-M4/M0 microcontroller

transfers, with frames of 4 bit to 16 bit of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data.

7.18.4.1 Features

- Maximum SSP speed in full-duplex mode of 25 Mbit/s; for transmit only 50 Mbit/s (master) and 17 Mbit/s (slave).
- Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses.
- Synchronous serial communication.
- Master or slave operation.
- 8-frame FIFOs for both transmit and receive.
- 4-bit to 16-bit frame.
- DMA transfers supported by GPDMA.

7.18.5 I²C-bus interface

Remark: The LPC4350/30/20/10 contain two I²C-bus interfaces.

The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line (SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (for example an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C is a multi-master bus and can be controlled by more than one bus master connected to it.

7.18.5.1 Features

- I²C0 is a standard I²C-compliant bus interface with open-drain pins. I²C0 also supports Fast mode plus with bit rates up to 1 Mbit/s.
- I²C1 uses standard I/O pins with bit rates of up to 400 kbit/s (Fast I²C-bus).
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- All I²C-bus controllers support multiple address recognition and a bus monitor mode.

7.18.6 I²S interface

Remark: The LPC4350/30/20/10 contain two I²S-bus interfaces.

LPC4350 30 20 10

32-bit ARM Cortex-M4/M0 microcontroller

- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{24} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The Watchdog Clock (WDCLK) uses the IRC as the clock source.

7.20 Analog peripherals

7.20.1 Analog-to-Digital Converter (ADC0/1)

7.20.1.1 Features

- 10-bit successive approximation analog to digital converter.
- Input multiplexing among 8 pins.
- Power-down mode.
- Measurement range 0 to VDDA.
- Sampling frequency up to 400 kSamples/s.
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition on ADCTRIG0 or ADCTRIG1 pins, combined timer outputs 8 or 15, or the PWM output MCOA2.
- Individual result registers for each A/D channel to reduce interrupt overhead.
- DMA support.

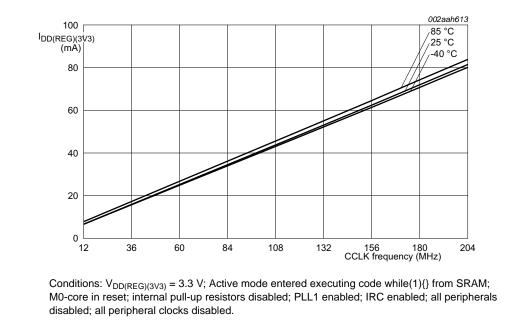
7.20.2 Digital-to-Analog Converter (DAC)

7.20.2.1 Features

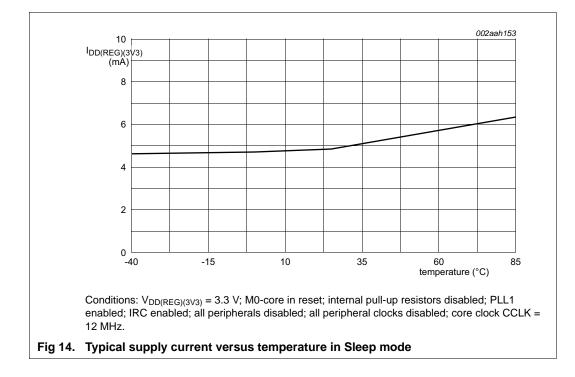
- 10-bit resolution.
- Monotonic by design (resistor string architecture).
- Controllable conversion speed.
- Low-power consumption.

7.21 Peripherals in the RTC power domain

7.21.1 RTC


The Real-Time Clock (RTC) is a set of counters for measuring time when system power is on, and optionally when it is off. It uses little power when the CPU does not access its registers, especially in the reduced power modes. A separate 32 kHz oscillator clocks the RTC. The oscillator produces a 1 Hz internal time reference and is powered by its own power supply pin, VBAT.

7.21.1.1 Features


- Measures the passage of time to maintain a calendar and clock. Provides seconds, minutes, hours, day of month, month, year, day of week, and day of year.
- Ultra-low power design to support battery powered systems. Uses power from the CPU power supply when it is present.
- Dedicated battery power supply pin.
- RTC power supply is isolated from the rest of the chip.

LPC4350 30 20 10

32-bit ARM Cortex-M4/M0 microcontroller

32-bit ARM Cortex-M4/M0 microcontroller

Peripheral	Branch clock	I _{DD(REG)(3V3)} in mA	
		Branch clock frequency = 48 MHz	Branch clock frequency = 96 MHz
LCD	CLK_M4_LCD	0.85	1.72
ETHERNET	CLK_M4_ETHERNET	1.05	2.09
UART0	CLK_M4_UART0, CLK_APB0_UART0	0.3	0.38
UART1	CLK_M4_UART1, CLK_APB0_UART1	0.27	0.48
UART2	CLK_M4_UART2, CLK_APB2_UART2	0.27	0.47
UART3	CLK_M4_USART3, CLK_APB2_UART3	0.29	0.49
TIMER0	CLK_M4_TIMER0	0.07	0.14
TIMER1	CLK_M4_TIMER1	0.07	0.14
TIMER2	CLK_M4_TIMER2	0.07	0.15
TIMER3	CLK_M4_TIMER3	0.06	0.11
SDIO	CLK_M4_SDIO, CLK_SDIO	0.79	1.37
SCTimer/PWM	CLK_M4_SCT	0.52	1.05
SSP0	CLK_M4_SSP0, CLK_APB0_SSP0	0.12	0.21
SSP1	CLK_M4_SSP1, CLK_APB2_SSP1	0.15	0.28
DMA	CLK_M4_DMA	1.88	3.71
WWDT	CLK_M4_WWDT	0.05	0.08
QEI	CLK_M4_QEI	0.33	0.68
USB0	CLK_M4_USB0, CLK_USB0	1.46	3.32
USB1	CLK_M4_USB1, CLK_USB1	2.83	5.03
RITIMER	CLK_M4_RITIMER	0.04	0.08
EMC	CLK_M4_EMC, CLK_M4_EMC_DIV	3.6	6.97
SCU	CLK_M4_SCU	0.09	0.23
CREG	CLK_M4_CREG	0.37	0.72
SGPIO	CLK_PERIPH_SGPIO	0.1	0.17
SPI	CLK_SPI	0.07	0.11

Table 11. Peripheral power consumption

32-bit ARM Cortex-M4/M0 microcontroller

11.6 GPCLKIN

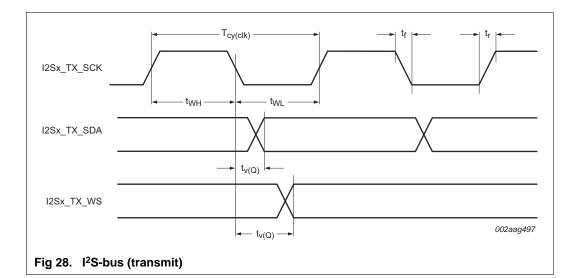
Table 19. Dynamic characteristic: GPCLKIN

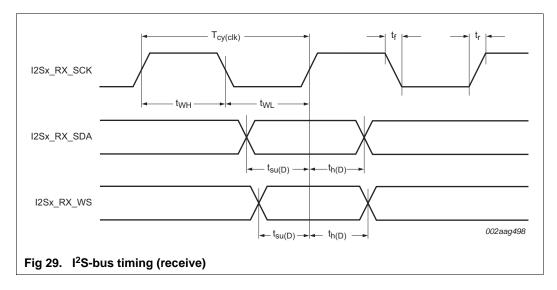
 $T_{amb} = 25 \ ^{\circ}C; 2.4 \ V \le V_{DD(REG)(3V3)} \le 3.6 \ V$

Symbol	Parameter	Min	Тур	Max	Unit
GP_CLKIN	input frequency	-	-	25	MHz

11.7 I/O pins

Table 20. Dynamic characteristic: I/O pins[1]


 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.7 \text{ V} \le V_{DD(IO)} \le 3.6 \text{ V}.$


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Standard	I I/O pins - no	ormal drive strength					
t _r	rise time	pin configured as output; EHS = 1	[2][3]	1.0	-	2.5	ns
t _f	fall time	pin configured as output; EHS = 1	[2][3]	0.9	-	2.5	ns
t _r	rise time	pin configured as output; EHS = 0	[2][3]	1.9	-	4.3	ns
t _f	fall time	pin configured as output; EHS = 0	[2][3]	1.9	-	4.0	ns
t _r	rise time	pin configured as input	<u>[4]</u>	0.3	-	1.3	ns
t _f	fall time	pin configured as input	<u>[4]</u>	0.2	-	1.2	ns
I/O pins ·	high drive s	trength			1	1	1
t _r	rise time	pin configured as output; standard drive mode (EHD = 0x0)	[2][5]	4.3	-	7.9	ns
t _f	fall time	pin configured as output; standard drive mode (EHD = 0x0)	[2][5]	4.7	-	8.7	ns
t _r	rise time	pin configured as output; medium drive mode (EHD = 0x1)	[2][5]	3.2	-	5.7	ns
t _f	fall time	pin configured as output; medium drive mode (EHD = 0x1)	[2][5]	3.2	-	5.5	ns
t _r	rise time	pin configured as output; high drive mode (EHD = 0x2)	[2][5]	2.9	-	4.9	ns
t _f	fall time	pin configured as output; high drive mode (EHD = 0x2)	[2][5]	2.5	-	3.9	ns
t _r	rise time	pin configured as output; ultra-high drive mode (EHD = 0x3)	<u>[2][5]</u>	2.8	-	4.7	ns
t _f	fall time	pin configured as output; ultra-high drive mode (EHD = 0x3)	[2][5]	2.4	-	3.4	ns
t _r	rise time	pin configured as input	[4]	0.3	-	1.3	ns
t _f	fall time	pin configured as input	[4]	0.2	-	1.2	ns
I/O pins ·	high-speed						
t _r	rise time	pin configured as output; EHS = 1	[2][3]	350	-	670	ps
t _f	fall time	pin configured as output; EHS = 1	[2][3]	450	-	730	ps
t _r	rise time	pin configured as output; EHS = 0	[2][3]	1.0	-	1.9	ns
t _f	fall time	pin configured as output; EHS = 0	[2][3]	1.0	-	2.0	ns
t _r	rise time	pin configured as input	<u>[4]</u>	0.3	-	1.3	ns
t _f	fall time	pin configured as input	[4]	0.2	-	1.2	ns

[1] Simulated data.

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M4/M0 microcontroller

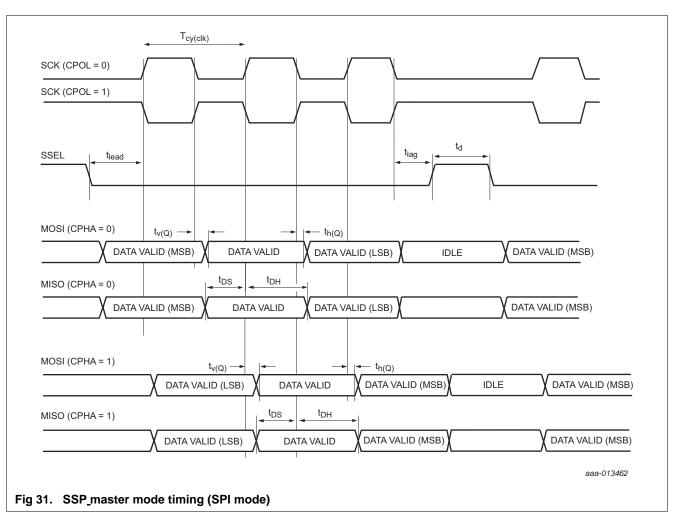
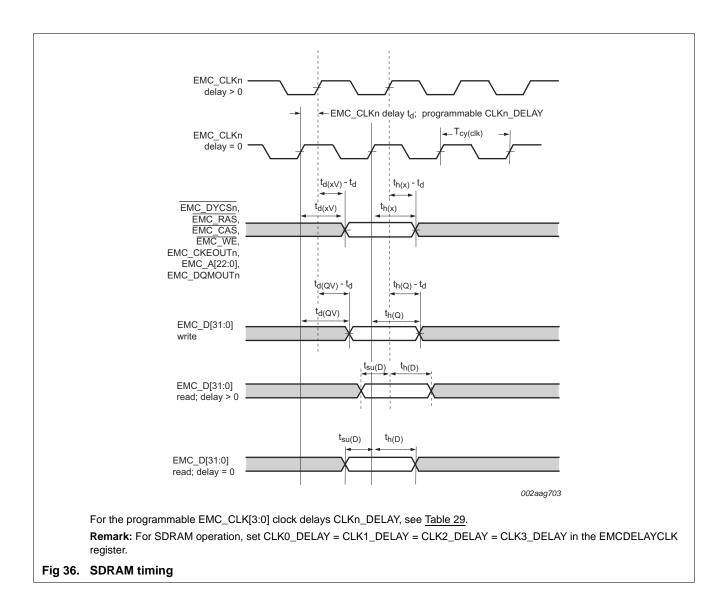

11.10 USART interface

Table 23. USART dynamic characteristics

 $T_{amb} = -40 \text{ °C to } 85 \text{ °C}; 2.2 \text{ V} \le V_{DD(REG)(3V3)} \le 3.6 \text{ V}; 2.7 \text{ V} \le V_{DD(IO)} \le 3.6 \text{ V}; C_L = 20 \text{ pF. EHS} = 1 \text{ for all pins. Simulated values.}$

Symbol	Parameter	Min	Max	Unit							
USART master (i	USART master (in synchronous mode)										
t _{su(D)}	su(D) data input set-up time 26.6 -										
t _{h(D)}	data input hold time	0	-	ns							
t _{v(Q)}	data output valid time	0	8.8	ns							
USART slave (in	synchronous mode)	I									
t _{su(D)}	data input set-up time	1.2	-	ns							
t _{h(D)}	data input hold time	0.4	-	ns							
t _{v(Q)}	data output valid time	5.5	24	ns							

32-bit ARM Cortex-M4/M0 microcontroller



11.13 SSP/SPI timing diagrams

NXP Semiconductors

LPC4350/30/20/10

32-bit ARM Cortex-M4/M0 microcontroller

32-bit ARM Cortex-M4/M0 microcontroller

12. ADC/DAC electrical characteristics

Table 36. ADC characteristics

 $V_{DDA(3V3)}$ over specified ranges; $T_{amb} = -40$ °C to +85 °C; unless otherwise specified.

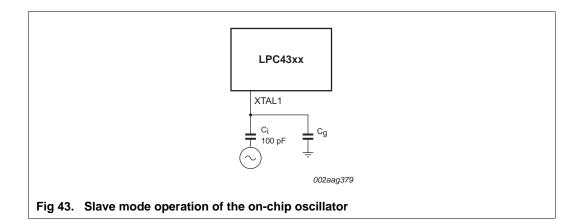
Parameter	Conditions		Min	Тур	Max	Unit
analog input voltage			0	-	V _{DDA(3V3)}	V
analog input capacitance			-	-	2	pF
differential linearity error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[1][2]	-	±0.8	-	LSB
	$2.2 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±1.0	-	LSB
integral non-linearity	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[3]	-	±0.8	-	LSB
	$2.2 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±1.5	-	LSB
offset error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[4]	-	±0.15	-	LSB
	$2.2 \text{ V} \le \text{V}_{\text{DDA}(3V3)} < 2.7 \text{ V}$		-	±0.15	-	LSB
gain error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[5]	-	±0.3	-	%
	$2.2 \text{ V} \le \text{V}_{\text{DDA}(3\text{V}3)} < 2.7 \text{ V}$		-	±0.35	-	%
absolute error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[6]	-	±3	-	LSB
	$2.2 \text{ V} \le \text{V}_{\text{DDA}(3V3)} < 2.7 \text{ V}$		-	±4	-	LSB
voltage source interface resistance	see Figure 42		-	-	$\begin{array}{c} 1/(7\times f_{clk(ADC)} \\ \times C_{ia}) \end{array}$	kΩ
input resistance		[7][8]	-	-	1.2	MΩ
ADC clock frequency			-	-	4.5	MHz
sampling frequency	10-bit resolution; 11 clock cycles		-	-	400	kSamples/s
	2-bit resolution; 3 clock cycles				1.5	MSamples/s
	analog input voltage analog input capacitance differential linearity error integral non-linearity offset error gain error absolute error voltage source interface resistance input resistance ADC clock frequency	analog input voltageanalog input capacitancedifferential linearity error $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ integral non-linearity $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ offset error $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ gain error $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ absolute error $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ voltage source interface resistancesee Figure 42input resistancesee Figure 42input resistance10-bit resolution; 11 clock cycles2-bit resolution; 3 clock	analog input voltageImage input capacitanceImage input capacitancedifferential linearity error $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $[1][2]$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ $[3]$ integral non-linearity $2.7 \ V \le V_{DDA(3V3)} < 3.6 \ V$ $[3]$ $2.2 \ V \le V_{DDA(3V3)} < 3.6 \ V$ $[4]$ $2.2 \ V \le V_{DDA(3V3)} < 3.6 \ V$ $[4]$ offset error $2.7 \ V \le V_{DDA(3V3)} < 3.6 \ V$ $[4]$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ $2.7 \ V \le V_{DDA(3V3)} < 2.7 \ V$ $[5]$ gain error $2.7 \ V \le V_{DDA(3V3)} < 2.7 \ V$ $[5]$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ $[5]$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ absolute error $2.7 \ V \le V_{DDA(3V3)} < 3.6 \ V$ $[6]$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ $[6]$ $2.2 \ V \le V_{DDA(3V3)} < 2.7 \ V$ voltage source interface resistancesee Figure 42 $[7][8]$ ADC clock frequency $[7][8]$ ADC clock frequency $[7][8]$ ADC clock frequency $[0-bit resolution; 11 \ clock \ cycles$ $[2-bit resolution; 3 \ clock$	analog input voltage0analog input capacitance $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ 112 differential linearity error integral non-linearity $2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $3.6 \ V$ $3.6 \ V$ $2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $3.6 \ V$ $3.6 \ V$ $2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 3.6 \ V$ $41 \ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.7 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$ $ 2.2 \ V \le V_{DDA(3V3)} \le 2.7 \ V$	analog input voltage0analog input capacitance0differential linearity error $2.7 \vee \leq V_{DDA(3V3)} \leq 3.6 \vee$ 11121 integral non-linearity $2.7 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.8 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 1.0 integral non-linearity $2.7 \vee \leq V_{DDA(3V3)} < 3.6 \vee$ $[3]$ -offset error $2.7 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 1.5 offset error $2.7 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.15 gain error $2.7 \vee \leq V_{DDA(3V3)} < 3.6 \vee$ $[4]$ - ± 0.15 gain error $2.7 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 3.6 \vee$ $[5]$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 2.7 \vee$ - ± 0.3 $2.2 \vee \leq V_{DDA(3V3)} < 0.6 \vee$ $[6]$ - $4DC$ clock frequencysee Figure 42- 10 -bit resolution; 11 clock 2 -bit resolution; 3 clock	analog input voltage 0 - $V_{DDA(3V3)}$ analog input capacitance 0 - $V_{DDA(3V3)}$ differential linearity error 2.7 V $\leq V_{DDA(3V3)} \leq 3.6$ V [1][2] - ± 0.8 - differential linearity error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 1.0 - integral non-linearity 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 1.0 - 0ffset error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 1.5 - offset error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 0.15 - gain error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 0.15 - gain error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 0.15 - gain error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 0.15 - gain error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 0.35 - absolute error 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 0.35 - input resistance 2.7 V $\leq V_{DDA(3V3)} < 2.7$ V - ± 0.3 - input resistance see Figure 42

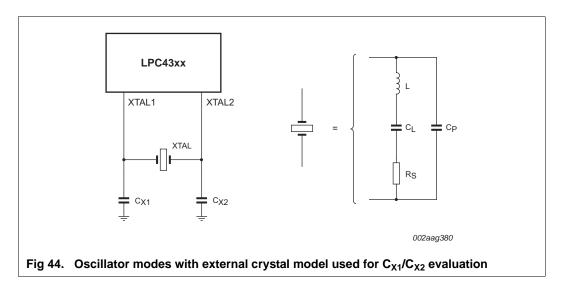
[1] The ADC is monotonic, there are no missing codes.

- [2] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 41.
- [3] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 41</u>.
- [4] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See <u>Figure 41</u>.
- [5] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 41</u>.
- [6] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 41.

[7] $T_{amb} = 25 \ ^{\circ}C.$

[8] Input resistance R_i depends on the sampling frequency fs: R_i = 2 k Ω + 1 / (f_s × C_{ia}).


32-bit ARM Cortex-M4/M0 microcontroller


 Table 41.
 Recommended values for C_{X1/X2} in oscillation mode (crystal and external components parameters) low frequency mode ...continued

Fundamental oscillation frequency	Maximum crystal series resistance R _S	External load capacitors C_{X1} , C_{X2}
12 MHz	< 160 Ω	18 pF, 18 pF
	< 160 Ω	39 pF, 39 pF
16 MHz	< 120 Ω	18 pF, 18 pF
	< 80 Ω	33 pF, 33 pF
20 MHz	<100 Ω	18 pF, 18 pF
	< 80 Ω	33 pF, 33 pF

Table 42.Recommended values for $C_{X1/X2}$ in oscillation mode (crystal and external
components parameters) high frequency mode

	Maximum crystal series resistance R _S	External load capacitors C_{χ_1} , C_{χ_2}
15 MHz	< 80 Ω	18 pF, 18 pF
20 MHz	< 80 Ω	39 pF, 39 pF
	< 100 Ω	47 pF, 47 pF

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M4/M0 microcontroller

16. Abbreviations

AcronymDescriptionADCAnalog-to-Digital ConverterAHBAdvanced High-performance BusAPBAdvanced Peripheral BusAPIApplication Programming InterfaceBODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	Table 43. Abbreviations		
AHB Advanced High-performance Bus APB Advanced Peripheral Bus API Application Programming Interface BOD BrownOut Detection CAN Controller Area Network CMAC Cipher-based Message Authentication Code CSMA/CD Carrier Sense Multiple Access with Collision Detection DAC Digital-to-Analog Converter DC-DC Direct Current-to-Direct Current DMA Direct Memory Access GPIO General-Purpose Input/Output IRC Internal RC IrDA Infrared Data Association JTAG Joint Test Action Group LCD Liquid Crystal Display LSB Least Significant Bit MAC Media Access Control MCU MicroController Unit MIIM Media Independent Interface Management n.c. not connected OHCI Open Host Controller Interface OTG On-The-Go PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control	Acronym	Description	
APBAdvanced Peripheral BusAPIApplication Programming InterfaceBODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	ADC	Analog-to-Digital Converter	
APIApplication Programming InterfaceBODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	AHB	Advanced High-performance Bus	
BODBrownOut DetectionCANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	APB	Advanced Peripheral Bus	
CANController Area NetworkCMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	API	Application Programming Interface	
CMACCipher-based Message Authentication CodeCSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	BOD	BrownOut Detection	
CSMA/CDCarrier Sense Multiple Access with Collision DetectionDACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	CAN	Controller Area Network	
DACDigital-to-Analog ConverterDC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOTGOn-The-GoPHYPhysical LayerPMCPower Mode Control	CMAC	Cipher-based Message Authentication Code	
DC-DCDirect Current-to-Direct CurrentDMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPMCPower Mode Control	CSMA/CD	Carrier Sense Multiple Access with Collision Detection	
DMADirect Memory AccessGPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	DAC	Digital-to-Analog Converter	
GPIOGeneral-Purpose Input/OutputIRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	DC-DC	Direct Current-to-Direct Current	
IRCInternal RCIrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	DMA	Direct Memory Access	
IrDAInfrared Data AssociationJTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	GPIO	General-Purpose Input/Output	
JTAGJoint Test Action GroupLCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	IRC	Internal RC	
LCDLiquid Crystal DisplayLSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	IrDA	Infrared Data Association	
LSBLeast Significant BitMACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	JTAG	Joint Test Action Group	
MACMedia Access ControlMCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	LCD	Liquid Crystal Display	
MCUMicroController UnitMIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	LSB	Least Significant Bit	
MIIMMedia Independent Interface Managementn.c.not connectedOHCIOpen Host Controller InterfaceOTGOn-The-GoPHYPhysical LayerPLLPhase-Locked LoopPMCPower Mode Control	MAC	Media Access Control	
n.c. not connected OHCI Open Host Controller Interface OTG On-The-Go PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control	MCU	MicroController Unit	
OHCI Open Host Controller Interface OTG On-The-Go PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control	MIIM	Media Independent Interface Management	
OTG On-The-Go PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control	n.c.	not connected	
PHY Physical Layer PLL Phase-Locked Loop PMC Power Mode Control	OHCI	Open Host Controller Interface	
PLL Phase-Locked Loop PMC Power Mode Control	OTG	On-The-Go	
PMC Power Mode Control	PHY	Physical Layer	
	PLL	Phase-Locked Loop	
	PMC	Power Mode Control	
PWM Pulse Width Modulator	PWM	Pulse Width Modulator	
RIT Repetitive Interrupt Timer	RIT	Repetitive Interrupt Timer	
RMII Reduced Media Independent Interface	RMII	Reduced Media Independent Interface	
SDRAM Synchronous Dynamic Random Access Memory	SDRAM	Synchronous Dynamic Random Access Memory	
SIMD Single Instruction Multiple Data	SIMD	Single Instruction Multiple Data	
SPI Serial Peripheral Interface	SPI	Serial Peripheral Interface	
SSI Serial Synchronous Interface	SSI	Serial Synchronous Interface	
SSP Synchronous Serial Port	SSP	Synchronous Serial Port	
UART Universal Asynchronous Receiver/Transmitter	UART	Universal Asynchronous Receiver/Transmitter	
ULPI UTMI+ Low Pin Interface	ULPI	UTMI+ Low Pin Interface	
USART Universal Synchronous Asynchronous Receiver/Transmitter	USART	Universal Synchronous Asynchronous Receiver/Transmitter	
USB Universal Serial Bus	USB	Universal Serial Bus	
UTMI USB2.0 Transceiver Macrocell Interface	UTMI	USB2.0 Transceiver Macrocell Interface	

LPC4350_30_20_10

© NXP Semiconductors N.V. 2016. All rights reserved.