

Welcome to **E-XFL.COM**

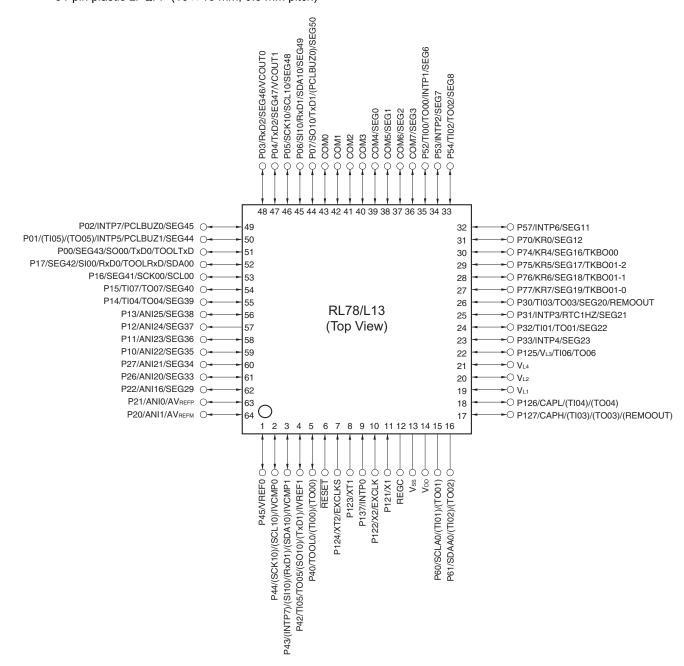
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlcafa-30

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/L13 1. OUTLINE

1.3 Pin Configuration (Top View)

<R> 1.3.1 64-pin products

- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

RENESAS

Absolute Maximum Ratings (2/3)

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V _{L1} voltage ^{Note 1}		-0.3 to +2.8 and -0.3 to V _{L4} +0.3	V
	V _{L2}	V _{L2} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
V _{L3}		V _{L3} voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	-0.3 to V _{L4} +0.3 ^{Note 2}	V
	Vоит	COM0 to COM7	External resistance division method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		SEG0 to SEG50	Capacitor split method	-0.3 to V _{DD} +0.3 ^{Note 2}	V
		output voltage	Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F \pm 30%) and connect a capacitor (0.47 μ F \pm 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to **AC Characteristics** for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, see **5.4 System Clock Oscillator** in the RL78/L13 User's Manual.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5.0		+5.0	%
		–40 to –20°C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		+1.5	%
			1.6 V ≤ V _{DD} < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Notes 1.** The high-speed on-chip oscillator frequency is selected by bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to **AC Characteristics** for the instruction execution time.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	litions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	V _I = V _{DD}				1	μΑ
	ILIH2	P20 and P21, RESET	VI = VDD				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	V _I = V _{DD} In input port mode and when external clock is input				1	μА
				Resonator connected			10	μΑ
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	VI = VSS				-1	μΑ
	I _{LIL2}	P20 and P21, RESET	Vı = Vss				-1	μА
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μΑ
				Resonator connected			-10	μΑ
On-chip pull-up	Ru ₁	P00 to P07, P10 to P17,	Vı = Vss	$2.4~V \leq V_{DD} < 5.5~V$	10	20	100	kΩ
resistance		P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130		1.6 V ≤ V _{DD} < 2.4 V	10	30	100	kΩ
	R _{U2}	P40 to P44	VI = VSS		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions			h-speed Mode	•	v-speed Mode		-voltage Mode	Unit		
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.			
Transfer rate		Reception	$\begin{array}{ll} 1 & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{b} \leq 4.0 \ V \end{array}$			fмск/6 ^{Note} 1		fmck/6 ^{Note}		fmck/6 ^{Note}	bps		
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps		
				$V \le V_{DD} < 4.0 \text{ V},$ $V \le V_{b} \le 2.7 \text{ V}$		fмск/6 ^{Note} 1		fmck/6 ^{Note}		fmck/6 ^{Note}	bps		
						Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 3}$		4.0		1.3		0.6	Mbps
			V,	$3 \text{ V } (2.4 \text{ V}^{\text{Note 4}}) \le \text{V}_{\text{DD}} < 3.3$ $3 \text{ V } \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		fMCK/6 Note s1, 2		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps		
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps		

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

2. Use it with $V_{DD} \ge V_b$.

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

4. Condition in the HS (high-speed main) mode

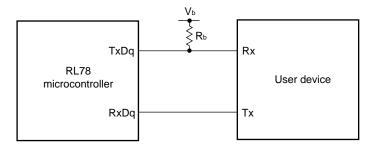
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vpd tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For Vih and Vil, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Notes 6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

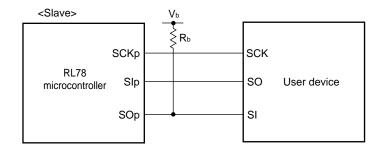
Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3} [bps]$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


UART mode connection diagram (during communication at different potential)

- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
 - 2. Condition in HS (high-speed main) mode
 - 3. Use it with $V_{DD} \ge V_b$.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

(1) I²C standard mode (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	` `	h-speed Mode	LS (low main)	•	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	2.7 V ≤ V _{DD} ≤ 5.5 V	250		250		250		ns
(reception)		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	250		250		250		ns
		1.6 V ≤ V _{DD} ≤ 5.5 V	-	_	_	_	250		ns
Data hold time	thd:dat	2.7 V ≤ V _{DD} ≤ 5.5 V	0	3.45	0	3.45	0	3.45	μs
(transmission)Note 2		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		1.6 V ≤ V _{DD} ≤ 5.5 V	-	_	_	_	0	3.45	μs
Setup time of stop	tsu:sto	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	4.0		4.0		4.0		μs
condition		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 5.5 V	1	_	_	_	4.0		μs
Bus-free time	t BUF	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V } (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤ 5.5 V	1	_	_	_	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. Condition in HS (high-speed main) mode

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}
ANIO, ANI1	_	See 2.6.1 (2).	See 2.6.1 (3) .
ANI16 to ANI25	See 2.6.1 (1) .		
Internal reference voltage Temperature sensor output	See 2.6.1 (1) .		_
voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	C	conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V		1.2	±5.0	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs		
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±3.5	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±6.0	LSB
Differential linearity errorNote 1	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 5.5 V			±2.0	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V^{\text{Note 4}}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, I	V _{BGR} Note 5			V	
		Temperature sensor of (2.4 V \leq V _{DD} \leq 5.5 V,	V _{TMPS25} Note 5			V	

(Notes are listed on the next page.)

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}Note 3, Reference voltage (-) = AV_{REFM}Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
Integral linearity errorNote 1	ILE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
- 4. When reference voltage (–) = V_{SS} , the MAX. values are as follows. Zero-scale error: Add $\pm 0.35\%$ FSR to the AV_{REFM} MAX. value. Integral linearity error: Add ± 0.5 LSB to the AV_{REFM} MAX. value. Differential linearity error: Add ± 0.2 LSB to the AV_{REFM} MAX. value.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	ADS register = 80H, T _A = +25°C		1.05		٧
Internal reference output voltage	V _{BGR}	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

2.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} – 0.10	2 V _{L1}	2 VL1	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} – 0.15	3 VL1	3 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between V_{L4} and GND
- C1 = C2 = C3 = C4 = 0.47 μ F \pm 30 %
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to +105°C

R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WMFGFB, R5F10WMGGFB

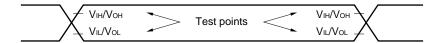
- Cautions 1. The RL78/L13 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.
 - Consult Renesas salesperson and distributor for derating when the product is used at T_A = +85°C to +105°C. Note that derating means "systematically lowering the load from the rated value to improve reliability".
- <R> Remark When RL78/L13 is used in the range of TA = -40 to +85°C, see CHAPTER 2 ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C).

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Condition	าร		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	$V_1 = V_{DD}$				1	μΑ
	I _{LIH2}	P20 and P21, RESET	VI = VDD				1	μΑ
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	V _I = V _{DD}	In input port mode and when external clock is input			1	μΑ
				Resonator connected			10	μΑ
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	V _I = V _{SS}				-1	μΑ
	I _{LIL2}	P20 and P21, RESET	Vı = Vss				-1	μΑ
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port mode and when external clock is input			-1	μΑ
				Resonator connected			-10	μΑ
On-chip pull-up resistance	Ru1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P45 to P47, P50 to P57, P70 to P77, P125 to P127, P130	V _I = V _{SS}		10	20	100	kΩ
	Ru2	P40 to P44	Vı = Vss		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)


(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	I _{DD2} Note 2	HALT	HS (high-	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	2.55	mA	
current Note 1	current Note 1	mode	speed main) mode ^{Note 7}	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	2.55	mA	
				fHOCO = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.95	mA	
			f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.95	mA		
				fHOCO = 16 MHzNote 4,	V _{DD} = 5.0 V		0.43	1.50	mA	
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.50	mA	
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.76	mA	
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.92	mA	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.76	mA	
				V _{DD} = 3.0 V	Resonator connection		0.48	1.92	mA	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.96	mA	
				V _{DD} = 5.0 V	Resonator connection		0.28	1.07	mA	
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.96	mA		
			V _{DD} = 3.0 V	Resonator connection		0.28	1.07	mA		
				'	f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μΑ
		clock $T_A = -40^{\circ}C$ operation	T _A = -40°C	Resonator connection		0.51	0.80	μΑ		
			operation	f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μΑ	
					T _A = +25°C	Resonator connection		0.57	0.80	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μΑ	
				T _A = +50°C	Resonator connection		0.67	2.49	μΑ	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μΑ	
				T _A = +70°C	Resonator connection		0.91	4.22	μΑ	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μΑ	
				T _A = +85°C	Resonator connection		1.31	8.23	μΑ	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		3.05	27.00	μΑ	
_				T _A = +105°C	Resonator connection		3.24	27.00	μΑ	
	I _{DD3} Note 6	STOP	T _A = -40°C				0.18	0.52	μΑ	
	mode ^{Note}	mode ^{Note 8}	T _A = +25°C				0.24	0.52	μΑ	
			T _A = +50°C	T _A = +50°C				2.21	μΑ	
			T _A = +70°C				0.53	3.94	μΑ	
			T _A = +85°C				0.93	7.95	μΑ	
			T _A = +105°C				2.91	25.00	μΑ	

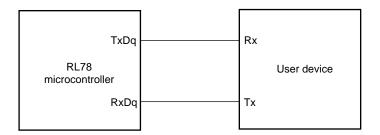
(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

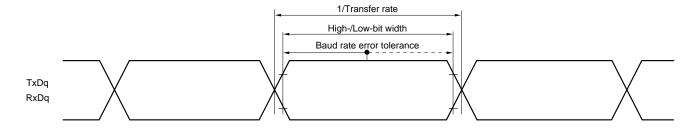
AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
Transfer rate ^{Note}				f мск/12	bps
		Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk		2.0	Mbps


Note Transfer rate in the SNOOZE mode is 4800 bps only.

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

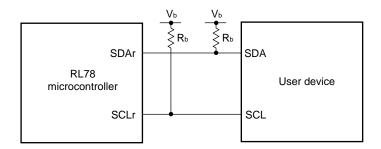
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	litions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time ^{Note 5}	tkcy2	$4.0~V \le V_{DD} \le 5.5~V$	fmck > 20 MHz	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \le V_{DD} \le 5.5~V$	fмck ≤ 16 MHz			ns
						ns
		$2.4~V \le V_{DD} \le 5.5~V$				ns
SCKp high-/low-level width	t кн2, t кL2	$4.0~V \leq V_{DD} \leq 5.5~V$	4.0 V ≤ V _{DD} ≤ 5.5 V			ns
		$2.7~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-16		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tkcy2/2-36		ns
SIp setup time	tsık2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑)Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$	2.4 V ≤ V _{DD} ≤ 5.5 V			ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+62		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск+66	ns
SOp output ^{Note 3}			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск+113	ns

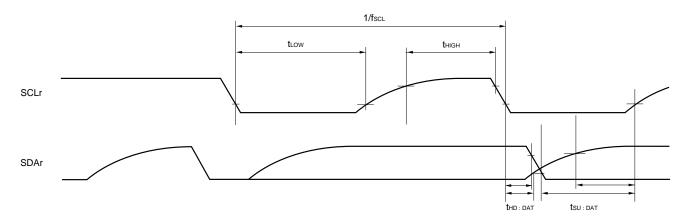
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	HS (high-spec	ed main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	20 MHz < fmck	24/fмск		ns
		$2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	8 MHz < f _{MCK} ≤ 20 MHz	20/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK}	32/fмск		ns
		$2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	16 MHz < f _{MCK} ≤ 20 MHz	28/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск		ns
			4 MHz < f _{MCK} ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
	$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	20 MHz < f _{MCK}	72/fмск		ns
		$1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	16 MHz < f _{MCK} ≤ 20 MHz	64/fмск		ns
			8 MHz < f _{MCK} ≤ 16 MHz	52/fмск		ns
		4 MHz < f _{MCK} ≤ 8 MHz	32/fмск		ns	
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkH2, tkL2	$4.0 \ V \le V_{DD} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V$ $2.7 \ V \le V_{DD} < 4.0 \ V, \ 2.3 \ V \le V_b \le 2.7 \ V$		tkcy2/2 - 24		ns
				tkcy2/2 - 36		ns
		2.4 V ≤ V _{DD} < 3.3 V	, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	tkcy2/2 - 100		ns
SIp setup time	tsık2	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$, $2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}_{SD}$, $2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	1/fмcк + 40		ns
		2.4 V ≤ V _{DD} < 3.3 V	, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	1/fmck + 60		ns
SIp hold time	tksi2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$, $2.7 \text{ V} \le V_b \le 4.0 \text{ V}$	1/fmck + 62		ns
(from SCKp↑) ^{Note 3}		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{ V}_{\text{S}}$, $2.3 \text{ V} \le V_b \le 2.7 \text{ V}$	1/fmck + 62		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.3 \text{ V}$, $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	1/fmck + 62		ns
Delay time from SCKp↓ to SOp outputNote 4	t KSO2	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{DD}$ $C_b = 30 \text{ pF}, R_b = 1.4$, $2.7~V \leq V_b \leq 4.0~V,$ 4 $k\Omega$		2/fмск + 240	ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega$			2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 5.5$, 1.6 V \leq Vb \leq 2.0 V, 5 k Ω		2/fмск + 1146	ns


(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. $R_b[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AV _{REFP} Reference voltage (-) = AV _{REFM}	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (–) = AV _{REFM}
ANIO, ANI1	-	See 3.6.1 (2) .	See 3.6.1 (3).
ANI16 to ANI25	See 3.6.1 (1) .		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1) .		_

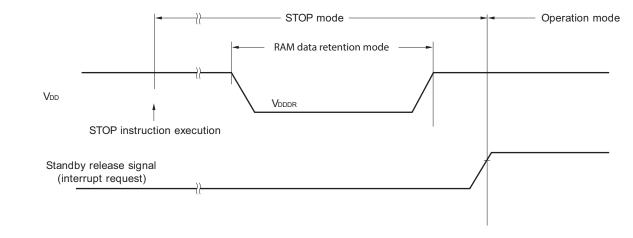
(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI16 to ANI25	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
	sensor output voltage	voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le V_{DD} \le 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	2.4 V ≤ V _{DD} ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI25		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode))		V _{BGR} Note 4			V
		Temperature sensor output vo (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-	· ·	V _{TMPS25} Note 4			V

(Notes are listed on the next page.)

3.8 RAM Data Retention Characteristics


<R>

<R>

$(T_A = -40 \text{ to } +105^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	٧

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	2.4 V ≤ VDD ≤ 5.5 V	1		24	MHz
Number of code flash rewrites ^{Note 1, 2, 3}	Cerwr	Retained for 20 years TA = 85°C Note 4	1,000			Times
Number of data flash rewrites ^{Note 1, 2, 3}		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C Note 4	100,000			
		Retained for 20 years TA = 85°C Note 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.
 - **4.** This temperature is the average value at which data are retained.

Remark When updating data multiple times, use the flash memory as one for updating data.

3.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

