

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlcafa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/L13		
			64 pins	80 pins	
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG	
96 KB	4 KB	6 KB	R5F10WLF	R5F10WMF	
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME	
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD	
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC	
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA	

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/L13 User's Manual.)

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	VL1	V _{L1} voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V∟₄ +0.3	V
	VL2	VL2 voltage ^{Note 1}		-0.3 to V _{L4} +0.3 ^{Note 2}	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	Vout COM0 to COM7 SEG0 to SEG50	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V	
		SEG0 to SEG50	Capacitor split method	-0.3 to V_DD +0.3 $^{\rm Note\ 2}$	V
		output voltage	Internal voltage boosting method	–0.3 to VL4 +0.3 $^{\rm Note\ 2}$	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped.
 When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. However, not including the current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - **6.** Not including the current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V@1 MHz to 24 MHz
 - 2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Cor	nditions	HS (high-speed LS (low main) Mode main)		HS (high-speed LS (low-speed LV (low-voltage main) Mode main) Mode main) Mode		/-speed LV (low- Mode main)		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle	tkCY2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	5 V fмск > 20 MHz	8/f мск		-		-		ns	
time ^{Note 5}			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns	
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V fмск > 16 MHz	8/f мск		-		-		ns	
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns	
		$2.4 \text{ V} \leq V_{\text{DD}} \leq 5.5$	5 V	6/fмск and 500		6/f мск		6/fмск		ns	
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$	_		6/fмск		6/f мск		ns		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	-		_		6/fмск		ns		
SCKp high-/low- t_{KH2} , $4.0 V \le V_{DD} \le 5$.		$.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			tксү2/2-7		tксү2/2-7		ns		
level width	tĸ∟2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	tксү2/2-8		tксү2/2-8		tксү2/2-8		ns	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$	5 V	tксү2/2–18		tксү2/2–18		tксү2/2–18		ns	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$	-		tксү2/2–18		tксү2/2–18		ns		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$	5 V	-		-		tксү2/2–66		ns	
SIp setup time	tsik2	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5$	5 V	1/fмск+20		1/fмск+30		1/fмск+30		ns	
(to SCKp↑) ^{Note 1}		$2.4~V \le V_{\text{DD}} \le 5.8$	5 V	1/fмск+30		1/fмск+30		1/fмск+30		ns	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$	5 V	-		1/fмск+30		1/fмск+30		ns	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$	5 V	_		-		1/fмск+40		ns	
SIp hold time	tksi2	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$	5 V	1/fмск+31		1/fмск+31		1/fмск+31		ns	
(from		$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.8$	5 V	-		1/fмск+31		1/fмск+31		ns	
SCKPT)		$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5$	5 V	_		-		1/fмск+250		ns	
Delay time from	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+44		2/fмск+110		2/fмск+110	ns	
SCKp↓ to SOp			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск+75		2/fмск+110		2/fмск+110	ns	
output			$1.8~V \le V_{\text{DD}} \le 5.5~V$		-		2/fмск+110		2/fмск+110	ns	
			$1.6~V \le V_{\text{DD}} \le 5.5~V$		-		-		2/fмск+220	ns	

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +85°C, 1.6 V ≤ V_{DD} ≤ 5.5 V, V_{SS} = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)

<R>

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
						MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps	
			$\begin{array}{c} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps	
	1. V, 1.		$\begin{array}{c} 1.8 \ V \ (2.4 \ V^{Note \ 4}) \leq V_{DD} < 3.3 \\ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/6 Note s1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps	

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

 $\textbf{2. Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq V _{DD} \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

- 4. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксүı	tксү1 ≥ 2 /fc∟к		200		1150		1150		ns
			$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, = 2.7 kΩ	tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 — 50		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1			58		479		479		ns
				121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1			10		10		10		ns
1		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		10		10		10		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array} \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V ≤ V₅ ≤ 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = \end{array}$	5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b =	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5. \\ C_{\text{b}} = 20 \ p\text{F}, \ R_{\text{b}} = \end{array} \end{array}$	5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

(1) I²C standard mode (2/2)

(T _A = −40 to +85°C,	$1.6 V \le V_{DD} \le 5.5$	V, Vss = 0 V)
---------------------------------	----------------------------	---------------

Parameter	Symbol	Conditions	HS (hig main)	HS (high-speed LS (main) Mode ma		LS (low-speed main) Mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250		250		250		ns
(reception)		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	-	-	-	-	250		ns
Data hold time thd:dat (transmission) ^{Note 2}	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \le V_{DD} \le 5.5~V$	Ι	-	-	_	0	3.45	μs
Setup time of stop	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.0		4.0		4.0		μs
condition		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.6~V \le V_{DD} \le 5.5~V$	Ι	-	-	_	4.0		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	-	_	_	-	4.7		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- 3. Condition in HS (high-speed main) mode
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	V _{L1}	V∟1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3Note 2	V
	VL4	V _{L4} voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to VL4 +0.3Note 2	V
	Vout COM0 to COM7 SEG0 to SEG50	External resistance division method	-0.3 to V_DD +0.3 Note 2	V	
		SEG0 to SEG50	Capacitor split method	-0.3 to V_DD +0.3 $^{\rm Note\ 2}$	V
		output voltage	Internal voltage boosting method	-0.3 to V _{L4} +0.3 ^{Note 2}	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, LVD circuit, comparator, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the realtime clock 2 is included. The current flowing into the clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 6. The current flowing into the real-time clock 2, clock output/buzzer output, 12-bit interval timer, and watchdog timer is not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 24 MHz

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
 - 3. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
 - **4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsub for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- **13.** Not including the current flowing into the external division resistor when using the external resistance division method.
- $\label{eq:result} \textbf{Remarks 1.} \hspace{0.1 in fill:} \hspace{0.1 in Low-speed on-chip oscillator clock frequency}$
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. The temperature condition for the TYP. value is $T_A = 25^{\circ}C$.

TI/TO Timing

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SCKp cycle time	tkCY1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334 ^{Note 1}		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500 ^{Note 1}		ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 24		ns
	t ĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 — 36		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 2}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	113		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi1		38		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso1	C = 30 pF ^{Note 5}		50	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. The value must also be equal to or more than 4/fcLK.

- **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0), n: Channel number (n = 0, 2), g: PIM and POM numbers (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

Notes 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate = $\frac{1}{(0 \times 10 \times 10)}$ [bps]

$$\{-C_b \times R_b \times \ln (1 - \frac{10}{V_b})\} \times 3$$

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)

3.5.2 Serial interface IICA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode			Unit	
			Standar	d Mode	Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fclк≥ 3.5 MHz	_		0	400	kHz
		Normal mode: fc∟κ≥ 1 MHz	0	100	-	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	t hd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	t HIGH		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0 ^{Note 3}	3.45	0 ^{Note 3}	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ R}_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

RL78/L13 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

3.6.3 Comparator

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Input voltage range	lvref					Vdd – 1.4	V
	lvcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V_{DD} = 3.0 V Input slew rate > 50 mV/ μ s	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode, window mode	0.66Vdd	0.76Vdd	0.86Vdd	V	
Low-electric-potential reference voltage	VTW–	Comparator high-speed mode, window mode	,	0.14Vdd	0.24V _{DD}	0.34Vdd	V
Operation stabilization wait time	tсмр		100			μs	
Internal reference output voltage ^{Note}	VBGR	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ HS}$ (high-s	1.38	1.45	1.50	V	

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Note Cannot be used in subsystem clock operation and STOP mode.

3.6.4 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	When power supply rises		1.51	1.57	V
	VPDR	When power supply falls	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	TPW		300			μs

Note This is the time required for the POR circuit to execute a reset operation when V_{DD} falls below V_{PDR}. When the microcontroller enters STOP mode and when the main system clock (f_{MAIN}) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC), this is the time required for the POR circuit to execute a reset operation between when V_{DD} falls below 0.7 V and when V_{DD} rises to V_{POR} or higher.

3.7 LCD Characteristics

3.7.1 External resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		VDD	V

(3) 1/3 bias method

(T_A = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3.7.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1} = 0.47 µF ^{Note 2}	VLCD = 04H	0.90	1.00	1.08	V	
			VLCD = 05H	0.95	1.05	1.13	V	
			VLCD = 06H	1.00	1.10	1.18	V	
			VLCD = 07H	1.05	1.15	1.23	V	
			VLCD = 08H	1.10	1.20	1.28	V	
			VLCD = 09H	1.15	1.25	1.33	V	
			VLCD = 0AH	1.20	1.30	1.38	V	
			VLCD = 0BH	1.25	1.35	1.43	V	
			VLCD = 0CH	1.30	1.40	1.48	V	
			VLCD = 0DH	1.35	1.45	1.53	V	
				VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V	
			VLCD = 10H	1.50	1.60	1.68	V	
			-	VLCD = 11H	1.55	1.65	1.73	V
				VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V	
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 μ F		2 V _{L1} -0.10	2 VL1	2 VL1	V	
Tripler output voltage	Vl4 tvwait1	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1 - 0.15	3 VL1	3 VL1	V	
Reference voltage setup time ^{Note 2}				5			ms	
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} = 0.47 μF		500			ms	

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30%

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB, R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB, R5F10WLAGFB, R5F10WLCGFB, R5F10

