

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010112	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlcafa-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Outline of Functions

	Item	64-pin	80-pin
		R5F10WLx (x = A, C-G)	R5F10WMx (x = A, C-G)
Code flash m	emory (KB)	16 to 128	16 to 128
Data flash me	emory (KB)	4	4
RAM (KB)		1 to 8 ^{Note 1}	1 to 8 ^{Note 1}
Address space	ce	1 MB	
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main s HS (High-speed main) mode: 1 to 20 MHz (V_{DD} HS (High-speed main) mode: 1 to 16 MHz (V_{DD} LS (Low-speed main) mode: 1 to 8 MHz (V_{DD} = LV (Low-voltage main) mode: 1 to 4 MHz (V_{DD} =	= 2.7 to 5.5 V), = 2.4 to 5.5 V), 1.8 to 5.5 V),
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 to 24 MHz (Vot HS (High-speed main) mode: 1 to 16 MHz (Vot LS (Low-speed main) mode: 1 to 8 MHz (Vot LV (Low-voltage main) mode: 1 to 4 MHz (Vot	= 2.4 to 5.5 V), = 1.8 to 5.5 V),
Clock for 16-	bit timer KB20	48 MHz (TYP.): V _{DD} = 2.7 to 5.5 V	
Subsystem c	lock	XT1 (crystal) oscillation, external subsystem clo 32.768 kHz (TYP.): V _{DD} = 1.6 to 5.5 V	ock input (EXCLKS)
Low-speed o	n-chip oscillator	15 kHz (TYP.)	
General-purp	ose register	(8-bit register \times 8) \times 4 banks	
Minimum inst	truction execution time	0.04167 μ s (High-speed on-chip oscillator: f _{IH} =	24 MHz operation)
		0.05 μ s (High-speed system clock: f _{MX} = 20 MH	z operation)
		30.5 μ s (Subsystem clock: f _{SUB} = 32.768 kHz op	peration)
Instruction se	et	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 line) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set 	
I/O port	Total	49	65
	CMOS I/O	42 (N-ch O.D. I/O [V _{DD} withstand voltage]: 12)	58 (N-ch O.D. I/O [V _{DD} withstand voltage]:
	CMOS input	5	5
	CMOS output	-	-
	N-ch O.D I/O (withstand voltage: 6 V)	2	2
Timer	16-bit timer TAU	8 chai	nnels
	16-bit timer KB20	1 cha	nnel
	Watchdog timer	1 cha	nnel
	12-bit interval timer (IT)	1 cha	nnel
	Real-time clock 2	1 cha	nnel
	RTC2 output	1 • 1 Hz (subsystem clock: fsue = 32.768 kHz)	
	Timer output	8 channels (PWM outputs: 7 ^{Note 2}) (TAU used) 1 channel (timer KB20 used)	
	Remote control output	1 (TAU used)	

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function and data flash function are used.

2. The number of outputs varies depending on the setting of the channels in use and the number of master channels (see 6.9.3 Operation as multiple PWM output function in the RL78/L13 User's Manual.).

<

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, I high ^{Note 1}		Іон1	Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-10.0 ^{Note 2}	mA
<r></r>	R>	P22	Total of P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130 (When duty = 70% ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-90.0	mA
				$2.7~V \leq V_{\text{DD}} < 4.0~V$			-15.0	mA
				$1.8~V \leq V_{\text{DD}} < 2.7~V$			-7.0	mA
				$1.6~V \leq V_{\text{DD}} < 1.8~V$			-3.0	mA
		IOH2 Per pin for P20 and P21	Per pin for P20 and P21	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
			Total of all pins (When duty = 70% ^{Note 3})	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin
 - 2. Do not exceed the total current value.
 - **3.** Output current value under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -90.0 mA

Total output current of pins = $(-90.0 \times 0.7)/(80 \times 0.01) \approx -78.75$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
 - Setting 20 pins as the segment function and blinking all
 - Selecting fsuB for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
 - Setting four time slices and 1/3 bias
- **13.** Not including the current flowing into the external division resistor when using the external resistance division method.

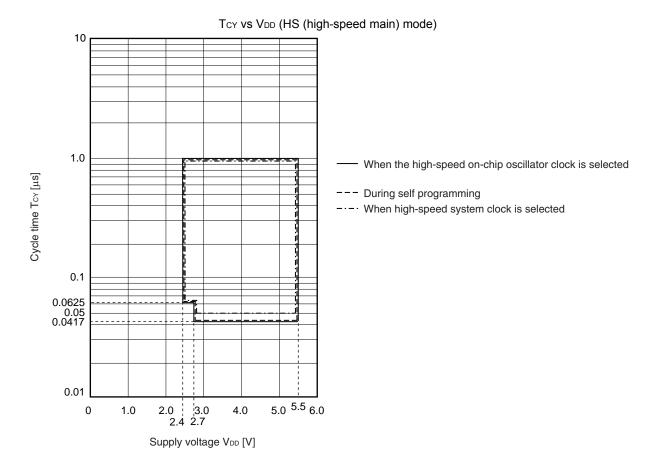
Remarks 1. fiL: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fcLK: CPU/peripheral hardware clock frequency
- **4.** The temperature condition for the TYP. value is $T_A = 25^{\circ}C$.

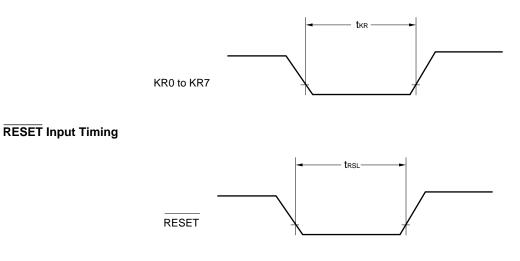
2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

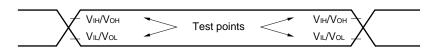
Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
instruction execution time)		clock (fmain)	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		operation	LS (low-speed main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.125		1	μs
			LV (low-voltage main) mode	$1.6~V \le V_{\text{DD}} \le 5.5~V$	0.25		1	μs
		Subsystem clo operation ^{Note}	ock (fsuв)	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self	HS (high-speed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
		programming mode	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 2.7 V	0.0625		1	μs
		mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq V_{\text{DD}} <$	2.7 V		1.0		16.0	MHz
		$1.8 V \le V_{DD} <$	2.4 V	1.0		8.0	MHz	
		$1.6 V \le V_{DD} <$	1.8 V		1.0		4.0	MHz
	fexs			32		35	kHz	
External system clock input	t _{EXH} ,	$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	24			ns	
high-level width, low-level width	texL	$2.4 V \le V_{DD} <$	2.7 V		30			ns
		$1.8 V \le V_{DD} <$	2.4 V		60			ns
		$1.6 V \le V_{DD} <$	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск+10			ns
TO00 to TO07, TKBO00,	fто	HS (high-speed main) mode					12	MHz
TKBO01-0 to TKBO01-2							8	MHz
output frequency			2.4 V ≤ V _{DD}				4	MHz
		LV (low-voltag	ge main) mode	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			2	MHz
		LS (low-speed	d main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spee	ed main) mode	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
frequency			,	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$			8	MHz
				$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 2.7 V			4	MHz
		LV (low-voltag	ge main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$			4	MHz
				$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed	d main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTE	77	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	1			μs
Key interrupt input high-level	tkrh, tkrl	KR0 to KR7		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
width, low-level width				$1.6~V \leq V_{\text{DD}} < 1.8~V$	1			μs
IH-PWM output restart input high-level width	t ihr	INTP0 to INTE	77		2			fськ
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTF	2		2			fськ
RESET low-level width	trsl				10			μs


(Note and Remark are listed on the next page.)

Note Operation is not possible if 1.6 V ≤ V_{DD} < 1.8 V in LV (low-voltage main) mode while the system is operating on the subsystem clock.


Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn) m: Unit number (m = 0), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation


Key Interrupt Input Timing

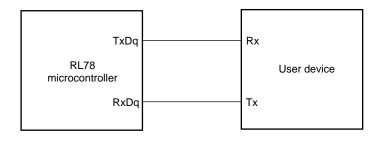
2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (T_A = -40 to +85°C, 1.6 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

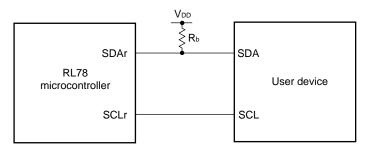
Parameter	Symbol	Conditions		h-speed Mode	`	v-speed Mode	`	/-voltage) Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note}		$2.4 \ V \le V_{\text{DD}} \le 5.5 \ V$		fмск/6		fмск/6		fмск/6	bps
1		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6	Mbps
		$1.8~V \le V_{DD} \le 5.5~V$		-		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		_		1.3		0.6	Mbps
	1	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-		-		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		_		_		0.6	Mbps

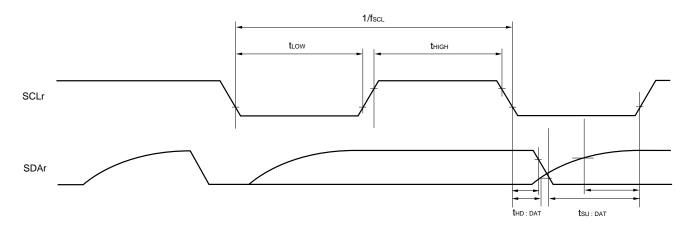

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq V _{DD} \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq V _{DD} \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

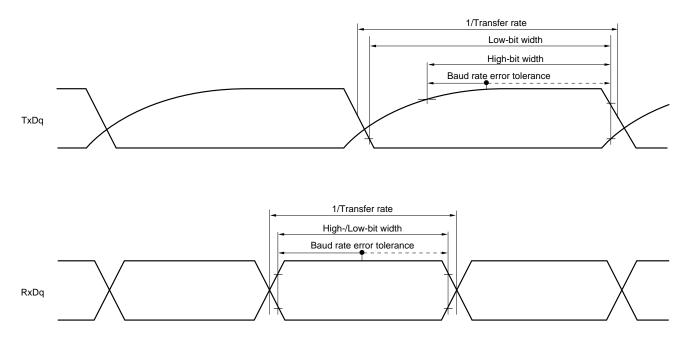

UART mode connection diagram (during communication at same potential)



- Notes 1. The value must also be equal to or less than $f_{MCK}/4$.
 - 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
 - 3. Condition in the HS (high-speed main) mode
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)



- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)

<R>

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0),
 n: Channel number (n = 0-3), mn = 00-03, 10-13)

UART mode bit width (during communication at different potential) (reference)

- Remarks 1.
 R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

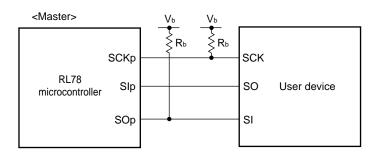
(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (higl main)	•	LS (low main)	/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 2/fc∟к		200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	t кн1	$ \begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ \\ C_{b} = 20 \; pF, \; R_{b} = 1.4 \; k\Omega \end{array} $		tксү1/2 — 50		tксү1/2 – 50		tксү1/2 – 50		ns
	$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		tксү1/2 — 120		tксү1/2 — 120		tксү1/2 — 120		ns	
SCKp low-level width	t ĸ∟1	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \\ C_{\text{b}} = 20 \; pF, \; R_{\text{b}} = 1.4 \; k\Omega \end{array}$		tксү1/2 — 7		tксү1/2 — 50		tксү1/2 — 50		ns
		$2.7 V \le V_{DD} < 4$ $C_b = 20 \text{ pF}, R_b$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 — 10		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time t _{SIK1} (to SCKp↑) ^{Note 1}		$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		58		479		479		ns
		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note}	tks⊨	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
1		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to	t KSO1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ		60		60		60	ns
SOp output ^{Note 1}		$2.7 V \le V_{DD} < 4.$ $C_b = 20 \text{ pF}, R_b = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	23		110		110		ns
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tks⊨1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	10		10		10		ns
2		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ C_b = 20 \ pF, \ R_b \end{array}$.5 V, 2.7 V \le V _b \le 4.0 V, = 1.4 kΩ		10		10		10	ns
SOp output ^{Note 2}		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF, R _b	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10		10	ns

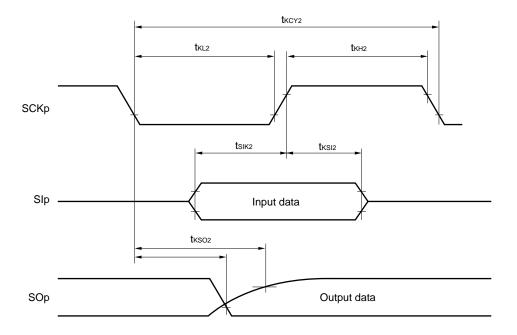
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution and Remarks are listed on the next page.)

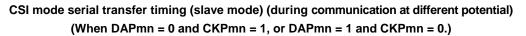
Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 4}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	44		110		110		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	19		19		19		ns
4		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	19		19		19		ns
Delay time from SCKp↑ to	tkso1			25		25		25	ns
SOp output ^{Note 4}		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{split} & 1.8 \ V \ (2.4 \ V^{\text{Note 1}}) \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \\ & C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$		25		25		25	ns

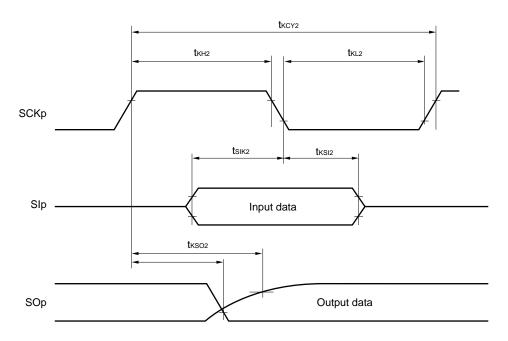

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

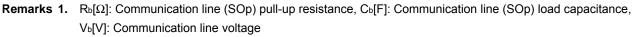
Notes 1. Condition in HS (high-speed main) mode


2. Use it with $V_{DD} \ge V_b$.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **4.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)





CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn)
 m: Unit number, n: Channel number (mn = 00, 02))

2.5.2 Serial interface IICA

(1) I²C standard mode (1/2)

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fsc∟	Normal	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V \\ \hline 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq \\ V_{\text{DD}} \leq 5.5 \ V \end{array}$	0	100	0	100	0	100	kHz
frequency		mode: fc∟κ ≥ 1 MHz		0	100	0	100	0	100	kHz
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	_	_	_	_	0	100	kHz
Setup time of	tsu:sta	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
restart condition		1.8 V (2.4 V ^I	$1.8~\text{V}~(2.4~\text{V}^{\text{Note 3}}) \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			4.7		4.7		μs
		$1.6 V \le V_{DD}$	≤5.5 V	-	-	_	_	4.7		μs
Hold time ^{Note 1}	t hd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.0		4.0		4.0		μs
		$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.6~V \le V_{\text{DD}} \le 5.5~V$		_	_	_	-	4.0		μs
Hold time when	t LOW	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V (2.4 V	$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			4.7		4.7		μs
		$1.6 V \le V_{DD}$	≤ 5.5 V	_	_	_	-	4.7		μs
Hold time when	t HIGH	$2.7 V \leq V_{DD}$	≤ 5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V (2.4 V	Note 3) \leq Vdd \leq 5.5 V	4.0		4.0		4.0		μs
		$1.6 V \le V_{DD}$	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		_	_	_	4.0		μs

(Notes, Caution and Remark are listed on the next page.)

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND
- C5: A capacitor connected between $V_{\mbox{\tiny L4}}$ and GND
- C1 = C2 = C3 = C4 = C5 = 0.47 μ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.7.3 Capacitor split method

(1) 1/3 bias method

```
(T_A = -40 \text{ to } +85^{\circ}C, 2.2 \text{ V} \le V_D \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})
```

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 VL4 -	2/3 VL4	2/3 V _{L4} +	V
			0.1		0.1	
V _{L1} voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 VL4 -	1/3 VL4	1/3 V _{L4} +	V
			0.1		0.1	
Capacitor split wait time ^{Note 1}	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between V_{L1} and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between V_{L4} and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30%

3.3.2 Supply current characteristics

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	DD1 ^{Note 1}	Operating mode	HS (high- speed main) mode ^{Note 5}	$f_{HOCO} = 48 \text{ MHz}^{Note}$ Basic 3, operati $f_{H} = 24 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		2.0		mA
					operation	V _{DD} = 3.0 V		2.0		mA
			mode	IIH = 24 IVI⊓2	Normal	V _{DD} = 5.0 V		3.8	7.0	mA
					operation	V _{DD} = 3.0 V		3.8	7.0	mA
				f _{HOCO} = 24 MHz ^{Note}	Basic	V _{DD} = 5.0 V		1.7		mA
				³ , f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
				™ = 24 MHZ ¹⁰⁰⁰	Normal	V _{DD} = 5.0 V		3.6	6.5	mA
					operation	V _{DD} = 3.0 V		3.6	6.5	mA
				f _{HOCO} = 16 MHz ^{Note}	Normal	V _{DD} = 5.0 V		2.7	5.0	mA
				³ , f⊮ = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	5.0	mA
			HS (high-	f_{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.4	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.6	mA
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		2.9	5.4	mA
					operation	Resonator connection		3.2	5.6	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 5.0 \text{ V}$	Normal	Square wave input		1.9	3.2	mA
					operation	Resonator connection		1.9	3.2	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.9	3.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	3.2	mA
			Subsystem		Normal	Square wave input		4.0	5.4	μA
			clock operation		operation	Resonator connection		4.3	5.4	μA
				fsuв =	Normal	Square wave input		4.0	5.4	μA
				32.768 kHz ^{Note 4} , T _A = +25°C	operation	Resonator connection		4.3	5.4	μA
				f _{SUB} =	Normal	Square wave input		4.1	7.1	μA
			32.768 kHz ^{Note 4} , T _A = +50°C	$\begin{array}{ll} 32.768 \text{ kHz}^{\text{Note 4}}, & \text{operation} \\ T_{\text{A}} = +50^{\circ}\text{C} \end{array}$	Resonator connection		4.4	7.1	μA	
			fsuв =	Normal	Square wave input		4.3	8.7	μA	
				32.768 kHz ^{Note 4} , T _A = +70°C	operation	Resonator connection		4.7	8.7	μA
				f _{SUB} =	Normal	Square wave input		4.7	12.0	μA
				32.768 kHz ^{Note 4} , T _A = +85°C	operation	Resonator connection		5.2	12.0	μA
				f _{SUB} =	Normal	Square wave input		6.4	35.0	μA
				32.768 kHz ^{Note 4} , T _A = +105°C	operation	Resonator connection		6.6	35.0	μA

(Notes and Remarks are listed on the next page.)

3.4 AC Characteristics

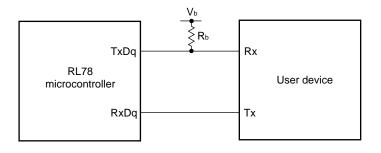
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit		
Instruction cycle (minimum	Тсч		HS (high-speed main) mode	n-speed	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs
instruction execution time)				$2.4~\text{V} \le \text{V}_{\text{DD}} < 2.7~\text{V}$	0.0625		1	μs	
		$\begin{array}{llllllllllllllllllllllllllllllllllll$			28.5	30.5	31.3	μs	
		In the self programming mode	HS (high-speed main) mode	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.0417		1	μs	
				$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μs	
External system clock	fex	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$			1.0		20.0	MHz	
frequency		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			1.0		16.0	MHz	
	fexs					32		35	kHz
External system clock input	texн, texL	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			24			ns	
high-level width, low-level		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$				30			ns
width	texhs, texls					13.7			μs
TI00 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟			1/fмск+ 10			ns		
TO00 to TO07, TKBO00 ^{Note} ,	fтo	HS (high-speed main) mode		4.0 V ≤	$V_{\text{DD}} \leq 5.5 \text{ V}$			12	MHz
TKBO01-0 to TKBO01-2 ^{Note}				2.7 V ≤	V _{DD} < 4.0 V			8	MHz
output frequency				2.4 V ≤	V _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f₽CL	HS (high-speed main) mode		4.0 V ≤	$V_{\text{DD}} \leq 5.5 \text{ V}$			16	MHz
frequency				2.7 V ≤	V _{DD} < 4.0 V			8	MHz
				2.4 V ≤	V _{DD} < 2.7 V			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP	7	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		1			μs
Key interrupt input high-level width, low-level width	tkrh, tkrl	KR0 to KR7 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		250			ns		
IH-PWM output restart input high-level width	tihr	INTP0 to INTP7		2			fсıк		
TMKB2 forced output stop input high-level width	tihr	INTP0 to INTP	2			2			fськ
RESET low-level width	t _{RSL}					10			μs

(Note and Remark are listed on the next page.)

Notes 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate = $\frac{1}{(0 \times D \times \ln 1)}$ [bps]

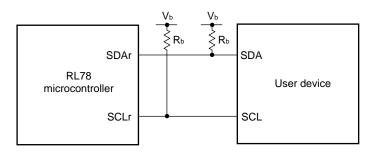
$$\{-C_b \times R_b \times \ln (1 - \frac{10}{V_b})\} \times 3$$

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$

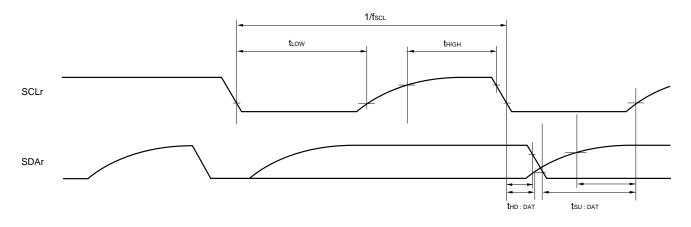
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(8)	Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode) (1/2)
-----	---

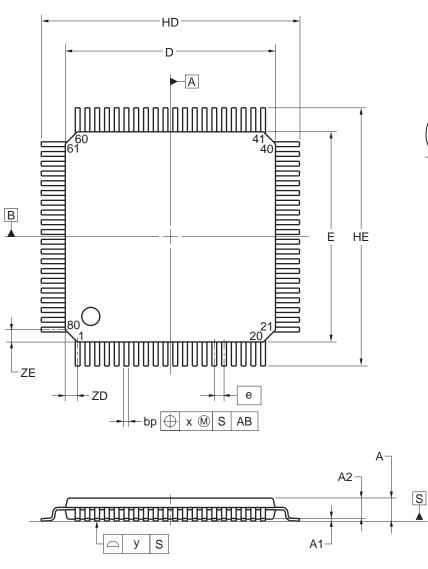

(T _A = -40 to +105°C,	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	V. Vss = 0 V)
(1A - 10.0010000)		•,••• • • •

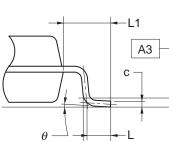
Parameter	Symbol	Conditions	HS (high-spe	Unit	
			MIN.	MAX.	
SCLr clock frequency	fscl			400 ^{Note 1}	kHz
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 ^{Note 1}	kHz
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	= "L" tLow	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1200		ns
			4600		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:VDD} \begin{split} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	SCLr = "H" thigh	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	620		ns
		$\label{eq:VDD} \begin{split} 2.7 \; V &\leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} < 2.7 \; V, \\ C_{\text{b}} &= 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{split}$	500		ns
			2700		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns
		$\label{eq:VDD} \begin{split} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1830		ns


(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)


- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02)



4.2 80-pin Products

R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA, R5F10WMEAFA, R5F10WMFAFA, R5F10WMGAFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69	

detail of lead end

Referance	Dimension in Millimeters					
Symbol	Min	Nom	Max			
D	13.80	14.00	14.20			
Е	13.80	14.00	14.20			
HD	17.00	17.20	17.40			
HE	17.00	17.20	17.40			
А			1.70			
A1	0.05	0.125	0.20			
A2	1.35	1.40	1.45			
A3		0.25				
bp	0.26	0.32	0.38			
С	0.10	0.145	0.20			
L		0.80				
Lp	0.736	0.886	1.036			
L1	1.40	1.60	1.80			
	0°	3°	8°			
е		0.65				
х			0.13			
У			0.10			
ZD		0.825				
ZE		0.825				

Lp