

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

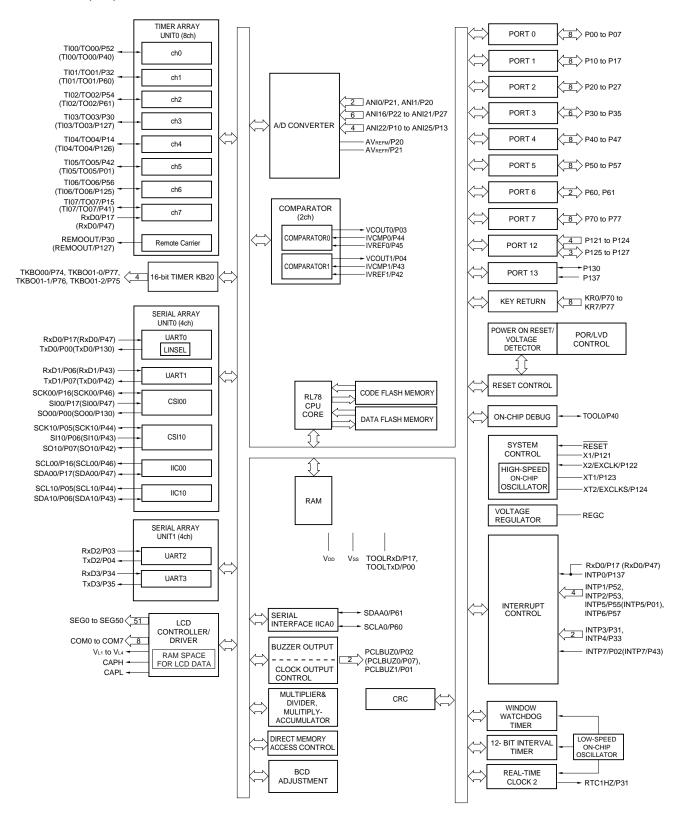
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlcafb-30

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANIO, ANI1,		PCLBUZ0, PCLBUZ1:	Programmable Clock Output/
ANI16 to ANI25:	Analog Input		Buzzer Output
AVREFM:	Analog Reference Voltage	REGC:	Regulator Capacitance
	Minus	REMOOUT:	Remote control Output
AVREFP:	Analog Reference Voltage	RESET:	Reset
	Plus	RTC1HZ:	Real-time Clock 2 Correction Clock
CAPH, CAPL:	Capacitor for LCD		(1 Hz) Output
COM0 to COM7:	LCD Common Output	RxD0 to RxD3:	Receive Data
EXCLK:	External Clock Input	SCK00, SCK10, SCLA0:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL10:	Serial Clock Output
EXCLKS:	External Clock Input	SDAA0, SDA00, SDA10:	Serial Data Input/Output
	(Subsystem Clock)	SEG0 to SEG50:	LCD Segment Output
INTP0 to INTP7:	External Interrupt Input	SI00, SI10:	Serial Data Input
IVCMP0, IVCMP1:	Comparator Input	SO00, SO10:	Serial Data Output
IVREF0, IVREF1:	Comparator Reference Input	TI00 to TI07:	Timer Input
KR0 to KR7:	Key Return	TO00 to TO07,	
P00 to P07:	Port 0	TKBO00, TKBO01-0,	
P10 to P17:	Port 1	TKBO01-1, TKBO01-2:	Timer Output
P20 to P27:	Port 2	TOOL0:	Data Input/Output for Tool
P30 to P35:	Port 3	TOOLRxD, TOOLTxD:	Data Input/Output for External Device
P40 to P47:	Port 4	TxD0 to TxD3:	Transmit Data
P50 to P57:	Port 5	VCOUT0, VCOUT1:	Comparator Output
P60, P61:	Port 6	Vdd:	Power Supply
P70 to P77:	Port 7	VL1 to VL4:	LCD Power Supply
P121 to P127:	Port 12	Vss:	Ground
P130, P137:	Port 13	X1, X2:	Crystal Oscillator (Main System Clock)
		XT1, XT2:	Crystal Oscillator (Subsystem Clock)

1.5.2 80-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/L13 User's Manual.

Parameter	Symbol		Conditions	Ratings	Unit
LCD voltage	VL1	V∟1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V _{L4} +0.3	V
	VL2	VL2 voltage ^{Note 1}		–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	VL3	VL3 voltage ^{Note 1}		–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	VL4	VL4 voltage ^{Note 1}		–0.3 to +6.5	V
	VLCAP	CAPL, CAPH volt	age ^{Note 1}	–0.3 to $V_{\rm L4}$ +0.3 $^{\rm Note\ 2}$	V
	Vout	COM0 to COM7	External resistance division method	–0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
		SEG0 to SEG50	Capacitor split method	–0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
		output voltage	Internal voltage boosting method	-0.3 to VL4 +0.3 ^{Note 2}	V

Absolute Maximum Ratings (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to V_{SS} via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array} \end{array} \label{eq:VDD}$	Vdd - 1.5			V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -3.0 mA	$V_{\text{DD}}-0.7$			V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -2.0 mA	$V_{\text{DD}} - 0.6$			V
			1.8 V \leq V _{DD} \leq 5.5 V, Іон1 = -1.5 mA	V _{DD} - 0.5			V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh1 = -1.0 mA	$V_{\text{DD}} - 0.5$			V
	V _{OH2}	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH2 = -100 μ A	V _{DD} - 0.5			V
Output voltage, Now	Vol1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL1}} = 20 \ \text{mA} \end{array}$			1.3	V
		P70 to P77, P125 to P127, P130	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20 and P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu\text{A}$			0.4	V
	Vol3	P60 and P61	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol3 = 5.0 mA			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V},$ Iol3 = 1.0 mA			0.4	V

Caution P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

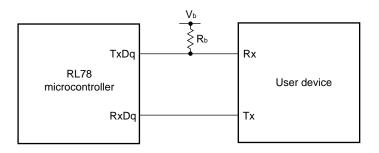
(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 ^{Note 2}	HALT	HS (high-speed	V _{DD} = 5.0 V		0.71	1.95	mA	
current ^{Note 1}		mode	main) mode ^{Note} 7	fi⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95	
				fносо = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	mA
				f⊪ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64	
				fносо = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.11	mA
				f⊪ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11	
			LS (low-speed	fносо = 8 MHz ^{Note 4} ,	V _{DD} = 3.0 V		280	770	μA
			main) mode ^{Note} 7	f _{IH} = 8 MHz ^{Note 4}	V _{DD} = 2.0 V		280	770	
		LV (low-voltage	f _{HOCO} = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	μA	
			main) mode ^{Note 7}	$f_{\text{IH}} = 4 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 2.0 V$		430	700	<i>p</i>
		HS (high-speed	f _{MX} = 20 MHz ^{Note 3} .	Square wave input		0.31	1.42	mA	
		main) mode ^{Note}	$V_{DD} = 5.0 V$	Resonator connection		0.48	1.42		
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	m
				V _{DD} = 5.0 V	Resonator connection		0.45	1.15	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.25	0.86	m
				V _{DD} = 3.0 V	Resonator connection		0.44	1.15	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	m
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.63	m
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	
			LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μ
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	560	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μŀ
				V _{DD} = 2.0 V	Resonator connection		160	560	
			Subsystem	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μŀ
			clock operation	$T_A = -40^{\circ}C$	Resonator connection		0.51	0.80	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μŀ
				T _A = +25°C	Resonator connection		0.57	0.80	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μ
				T _A = +50°C	Resonator connection		0.67	2.49	
				f _{SUB} = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μŀ
				T _A = +70°C	Resonator connection		0.91	4.22	
				fsuв = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μŀ
				T _A = +85°C	Resonator connection		1.31	8.23	
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.52	μŀ
		mode ^{Note 8}	T _A = +25°C				0.24	0.52	
			T _A = +50°C				0.33	2.21	
			T _A = +70°C				0.53	3.94	
			T _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

- RL78/L13
- **Notes 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.


Expression for calculating the transfer rate when 1.8 V (2.4 V^{Note 8}) \leq V_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

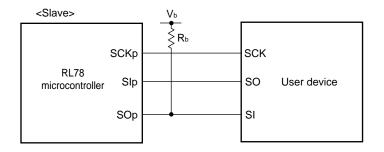
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


Parameter	Symbol	Cor	nditions	HS (hig main)	h-speed Mode		/-speed Mode	LV (low main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск	12/fмск		_		_		ns
time ^{Note 1}		$\begin{array}{l} 2.7 \ V \leq V_b \leq \\ 4.0 \ V \end{array}$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$	20 MHz < fмск	16/fмск		-		-		ns
		$2.3~V \leq V_b \leq$	16 MHz < fмск ≤ 20 MHz	14/fмск		_		_		ns
		2.7 V	8 MHz < fмск ≤ 16 MHz	12/fмск		_		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		1.8 V (2.4 V ^{Note 2}) ≤	20 MHz < fмск	36/f мск		_		_		ns
		$V_{DD} < 3.3 V,$	16 MHz < fмск ≤ 20 MHz	32/fмск		_		_		ns
		1.6 V ≤ V _b ≤ 2.0 V ^{Note 3}	8 MHz < fмск ≤ 16 MHz	26/fмск		_		_		ns
		2.0 V	4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
1 0	tкн2, tкL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V$				tксү2/2 - 50		tксү2/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 3$	$2.3~V \leq V_b \leq 2.7~V$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		````	$\begin{split} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) &\leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 3}} \end{split}$			tксү2/2 – 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 4}	tsık2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns	
<b>、 、 、 、</b>		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2$	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$ \begin{split} & 1.8 \; V \; (2.4 \; V^{\text{Note 2}}) \leq V_{\text{DD}} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 3}} \end{split} $		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from	tĸsı2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
SCKp↑) ^{Note 5}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 200 \text{ V}$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
		$\begin{array}{l} 1.8 \ V \ (2.4 \ V^{\text{Note 2}}) \leq V \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}} \end{array}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \end{array}$			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
SOp output ^{Note 6}		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \; V \; (2.4 \; V^{Note 2}) \leq V \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{Note} \\ C_b = 30 \; pF, \; R_b = 5.5 \end{array}$	e 3 ,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)



- Notes 1. Transfer rate in SNOOZE mode: MAX. 1 Mbps
  - 2. Condition in HS (high-speed main) mode
  - 3. Use it with  $V_{DD} \ge V_b$ .
  - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **6.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)





# 2.5.2 Serial interface IICA

## (1) I²C standard mode (1/2)

## (TA = -40 to +85°C, 1.6 V $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fsc∟	Normal	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V \\ \hline 1.8 \ V \ (2.4 \ V^{\text{Note 3}}) \leq \\ V_{\text{DD}} \leq 5.5 \ V \end{array}$	0	100	0	100	0	100	kHz
frequency		mode: fc∟κ ≥ 1 MHz		0	100	0	100	0	100	kHz
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	_	_	_	_	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		4.7		4.7		4.7		μs
		$1.8~\text{V}~(2.4~\text{V}^{\text{Note 3}}) \leq V_{\text{DD}} \leq 5.5~\text{V}$		4.7		4.7		4.7		μs
		$1.6 V \le V_{DD}$	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$		-	_	_	4.7		μs
Hold time ^{Note 1}	<b>t</b> hd:sta	$2.7 \text{ V} \leq V_{\text{DD}}$	4.0		4.0		4.0		μs	
		1.8 V (2.4 V	4.0		4.0		4.0		μs	
		$1.6~V \le V_{\text{DD}} \le 5.5~V$		_	_	_	-	4.0		μs
Hold time when	<b>t</b> LOW	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	≤5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V (2.4 V	$1.8 \text{ V} (2.4 \text{ V}^{\text{Note 3}}) \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			4.7		4.7		μs
		$1.6 V \le V_{DD}$	≤ 5.5 V	_	_	_	-	4.7		μs
Hold time when	<b>t</b> HIGH	$2.7 V \leq V_{DD}$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			4.0		4.0		μs
SCLA0 = "H"		1.8 V (2.4 V	Note 3) $\leq$ Vdd $\leq$ 5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤	≤ 5.5 V	_	_	_	_	4.0		μs

(Notes, Caution and Remark are listed on the next page.)



## 2.7 LCD Characteristics

## 2.7.1 External resistance division method

### (1) Static display mode

### (TA = -40 to +85°C, VL4 (MIN.) $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

### (2) 1/2 bias method, 1/4 bias method

#### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

## (3) 1/3 bias method

#### (TA = -40 to +85°C, VL4 (MIN.) $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V



#### (2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ 

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 $\mu$ F ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time ^{Note 2}	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

- C2: A capacitor connected between  $V_{\mbox{\tiny L1}}$  and GND
- C3: A capacitor connected between  $V_{L2}$  and GND
- C4: A capacitor connected between  $V_{\mbox{\tiny L3}}$  and GND
- C5: A capacitor connected between  $V_{\mbox{\tiny L4}}$  and GND
- C1 = C2 = C3 = C4 = C5 = 0.47  $\mu$ F ± 30%
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

### 2.7.3 Capacitor split method

#### (1) 1/3 bias method

```
(T_A = -40 \text{ to } +85^{\circ}C, 2.2 \text{ V} \le V_D \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})
```

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 $\mu$ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 $\mu$ F ^{Note 2}	2/3 VL4 -	2/3 VL4	2/3 VL4 +	V
			0.1		0.1	
V _{L1} voltage	VL1	C1 to C4 = 0.47 $\mu$ F ^{Note 2}	1/3 VL4 –	1/3 VL4	1/3 V _{L4} +	V
			0.1		0.1	
Capacitor split wait time ^{Note 1}	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between  $V_{\text{L1}}$  and GND

C3: A capacitor connected between  $V_{\mbox{\tiny L2}}$  and GND

C4: A capacitor connected between  $V_{L4}$  and GND

C1 = C2 = C3 = C4 = 0.47  $\mu$ F ± 30%



Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}		Per pin for P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130				8.5 ^{Note 2}	mA
		Per pin for P60 and P61				15.0 ^{Note 2}	mA
		(When duty = 70% ^{Note 3} ) Total of P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$2.4~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
			$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
		(When duty = $70\%^{\text{Note 3}}$ )	$2.4~V \leq V_{\text{DD}} < 2.7~V$			20.0	mA
	Total of all pins (When duty = 70% ^{Note 3} )				100.0	mA	
	IOL2	2 Per pin for P20 and P21				0.4 ^{Note 2}	mA
		Total of all pins (When duty = 70% ^{Note 3} )	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$ 

- Notes 1. Value of the current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin
  - 2. Do not exceed the total current value.
  - 3. Output current value under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins =  $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 40.0 mA

Total output current of pins =  $(40.0 \times 0.7)/(80 \times 0.01) = 35.0 \text{ mA}$ 

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8V _{DD}		Vdd	V
	$ \begin{array}{ c c c c c c c } \hline V_{\text{IH2}} & P03, P05, P06, P16, P17, P34, P43, \\ P44, P46, P47, P53, P55 & TTL input buffer \\ & 4.0 \ V \leq V_{DD} \leq 5.5 \ V \\ \hline TTL input buffer \\ & 3.3 \ V \leq V_{DD} < 4.0 \ V \\ \hline TTL input buffer \\ & 2.4 \ V \leq V_{DD} < 3.3 \ V \\ \hline V_{\text{IH3}} & P20, P21 \\ \hline V_{\text{IH4}} & P60, P61 \\ \hline V_{\text{IH5}} & P121 \ to P124, P137, EXCLK, EXCLKS, \overline{\text{RESET}} \\ \hline \end{array} $		2.2		Vdd	۷	
		2.0		Vdd	V		
			•	1.5		V _{DD}	V
	VIH3	P20, P21		0.7VDD		Vdd	V
	VIH4	P60, P61		0.7V _{DD}		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0.8VDD		VDD	V
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0		VDD       VDD       VDD       VDD       VDD       VDD       0.2VDD       0.3VDD       0.3VDD       0.3VDD	V
	VIL2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V $\leq$ V _{DD} $\leq$ 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V $\leq$ V_DD $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21	0		0.3VDD	V	
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$ 

- Caution The maximum value of V_I of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

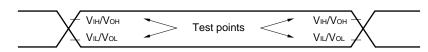


## $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditio	ons		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	I _{FIL} Note 1						0.20		μA
RTC2 operating current	IRTC ^{Notes 1, 2, 3}	fsuв = 32.768 kHz					0.02		μA
12-bit interval timer operating current	I _{TMKA} Notes 1, 2, 4						0.04		μA
Watchdog timer operating current	WDT ^{Notes 1, 2, 5}	fı∟ = 15 kHz					0.22		μA
A/D converter operating current	ADC ^{Notes 1, 6}	When conversion at maximum speed	-	e, AV _{REFP} = Vi mode, AV _{REFF}	DD = 5.0 V $P = V_{DD} = 3.0 V$		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF ^{Note 1}					75.0		μA	
Temperature sensor operating current	I _{TMPS} Note 1						75.0		μA
LVD operating current	ILVD ^{Notes 1, 7}						0.08		μA
Comparator ICMP ^{Notes 1, 11} operating current	ICMP ^{Notes 1, 11}	V _{DD} = 5.0 V,	Window mod	le			12.5		μA
		Regulator output voltage = 2.1 V $V_{DD} = 5.0 V,$	Comparator high-speed mode		node		6.5		μA
			Comparator low-speed mode			1.7		μA	
			Window mode				8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode				4.0		μA
		Voltage - 1.6 V	Comparator	low-speed mo	ode		1.3		μA
Self- programming operating current	FSP ^{Notes 1, 9}						2.00	12.20	mA
BGO operating current	BGO ^{Notes 1, 8}						2.00	12.20	mA
SNOOZE	ISNOZ ^{Note 1}	ADC operation	While the mo	ode is shifting	Note 10		0.50	0.60	mA
operating current		During A/D conversion, in low voltage mode, AV _{REFP} = V _{DD} = 3.0 V					1.20	1.44	mA
		CSI/UART operation					0.70	0.84	mA
current 13	_{LCD1} Notes 1, 12, 13	External resistance division method	f _{LCD} = fsuв LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 5.0 V, V _{L4} = 5.0 V		0.04	0.20.	μA
	LCD2 ^{Note 1, 12}	Internal voltage boosting method	flcd = fsub LCD clock = 128 Hz	1/3 bias, four time slices	$V_{DD} = 3.0 V,$ $V_{L4} = 3.0 V$ $(V_{LCD} = 04H)$		0.85	2.20	μA
					V _{DD} = 5.0 V, V _{L4} = 5.1 V (V _{LCD} = 12H)		1.55	3.70	μA
	I _{LCD3} Note 1, 12	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias, four time slices	V _{DD} = 3.0 V, V _{L4} = 3.0 V		0.20	0.50	μA

(Notes and Remarks are listed on the next page.)




#### **Notes 1.** Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of real-time clock 2.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The value of the current for the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 21.3.3 SNOOZE mode in the RL78/L13 User's Manual.
- **11.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates.
- 12. Current flowing only to the LCD controller/driver. The value of the current for the RL78 microcontrollers is the sum of the supply current (IDD1 or IDD2) and LCD operating current (ILCD1, ILCD2, or ILCD3), when the LCD controller/driver operates in operation mode or HALT mode. However, not including the current flowing into the LCD panel. Conditions of the TYP. value and MAX. value are as follows.
  - Setting 20 pins as the segment function and blinking all
  - Selecting fsub for system clock when LCD clock = 128 Hz (LCDC0 = 07H)
  - Setting four time slices and 1/3 bias
- **13.** Not including the current flowing into the external division resistor when using the external resistance division method.
- $\label{eq:result} \textbf{Remarks 1.} \hspace{0.1 in} f \hspace{-0.1 in} \texttt{IL:} \hspace{0.1 in} Low-speed \hspace{0.1 in} on-chip \hspace{0.1 in} oscillator \hspace{0.1 in} clock \hspace{0.1 in} frequency$ 
  - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
  - 3. fclk: CPU/peripheral hardware clock frequency
  - 4. The temperature condition for the TYP. value is  $T_A = 25^{\circ}C$ .

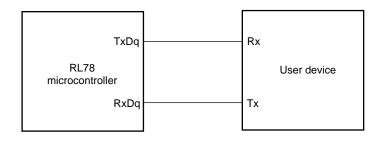


## 3.5 Peripheral Functions Characteristics

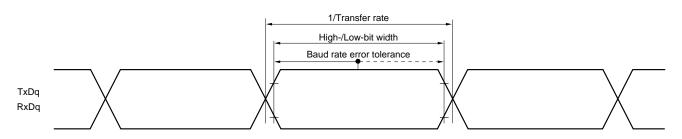
#### **AC Timing Test Points**



## 3.5.1 Serial array unit


#### (1) During communication at same potential (UART mode) ( $T_A = -40$ to $\pm 105^{\circ}$ C, 2.4 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

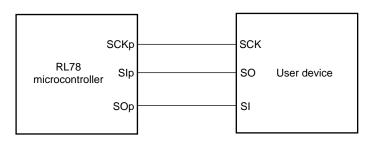
Parameter	Symbol	Conditions HS (high-speed main) Mode		ed main) Mode	Unit
			MIN.	MAX.	
Transfer rate ^{Note}				fмск/12	bps
		Theoretical value of the maximum transfer rate $f_{CLK}$ = 24 MHz, $f_{MCK}$ = $f_{CLK}$		2.0	Mbps


**Note** Transfer rate in the SNOOZE mode is 4800 bps only.

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

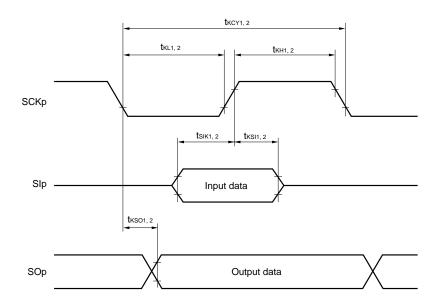
#### UART mode connection diagram (during communication at same potential)



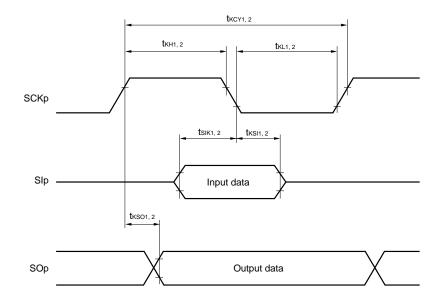

#### UART mode bit width (during communication at same potential) (reference)

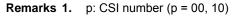


**Remarks 1.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)


fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n: Channel number (mn = 00 to 03, 10 to 13))







CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



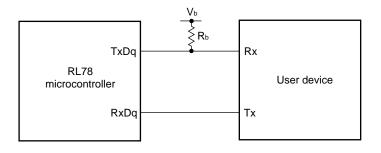


**2.** m: Unit number, n: Channel number (mn = 00, 02)



**Notes 5.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V  $\leq$  V_DD < 3.3 V and 1.6 V  $\leq$  V_b  $\leq$  2.0 V


Maximum transfer rate =  $\frac{1}{(0 \times D \times \ln 1)}$  [bps]

$$\{-C_b \times R_b \times \ln (1 - \frac{10}{V_b})\} \times 3$$

Baud rate error (theoretical value) =  $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$ 

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

#### UART mode connection diagram (during communication at different potential)





# (3) When reference voltage (+) = internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

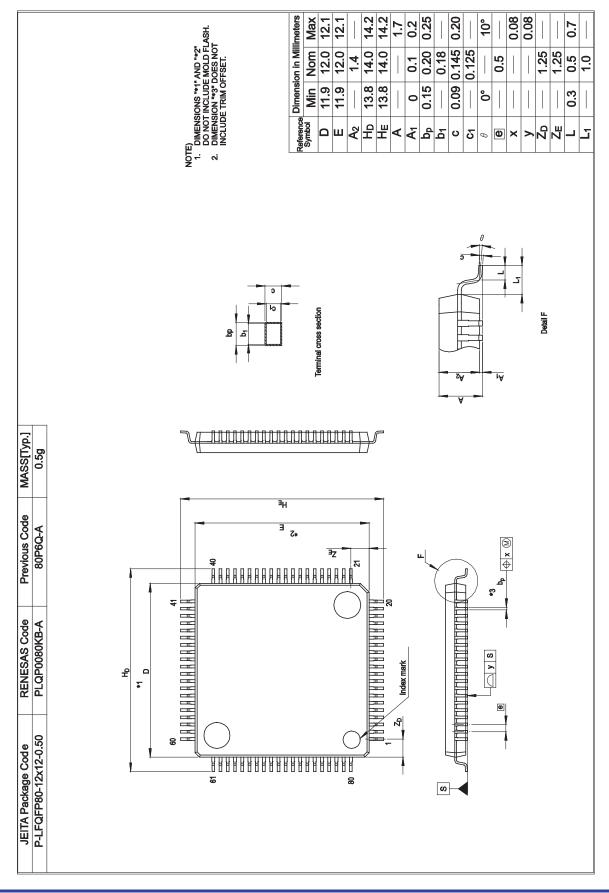
# (T_A = -40 to +105°C, 2.4 V $\leq$ V_{DD} $\leq$ 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error ^{Note 1}	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}^{\text{Note 3}}$	V

#### Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

#### 3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.


## 3.6.2 Temperature sensor/internal reference voltage characteristics

#### (TA = -40 to +105°C, 2.4 V $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs







R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB, R5F10WMEAFB, R5F10WMFAFB, R5F10WMGAFB, R5F10WMCGFB, R5F10WMCGAFB, R5W10WCGAFB, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10WCGAFA, R5W10W

