

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	42
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10wlcafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78	3/L13		
			64 pins	80 pins		
128 KB	4 KB	8 KB ^{Note}	R5F10WLG	R5F10WMG		
96 KB	96 KB 4 KB		R5F10WLF	R5F10WMF		
64 KB	4 KB	4 KB	R5F10WLE	R5F10WME		
48 KB	4 KB	2 KB	R5F10WLD	R5F10WMD		
32 KB	4 KB	1.5 KB	R5F10WLC	R5F10WMC		
16 KB	4 KB	1 KB	R5F10WLA	R5F10WMA		

Note This is about 7 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/L13 User's Manual.)

2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

Target productsA: Consumer applications; TA = -40 to +85°CR5F10WLAAFA, R5F10WLCAFA, R5F10WLDAFA,R5F10WLEAFA, R5F10WLFAFA, R5F10WLGAFA,R5F10WLAAFB, R5F10WLCAFB, R5F10WLDAFB,R5F10WLEAFB, R5F10WLFAFB, R5F10WLGAFB,R5F10WMAAFA, R5F10WMCAFA, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFA, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFA,R5F10WMEAFA, R5F10WMCAFB, R5F10WMGAFA,R5F10WMAAFB, R5F10WMCAFB, R5F10WMDAFB,R5F10WMEAFB, R5F10WMCAFB, R5F10WMDAFB,

G: Industrial applications; when using T_A = -40 to +105°C specification products at T_A = -40 to +85°C R5F10WLAGFB, R5F10WLCGFB, R5F10WLDGFB, R5F10WLEGFB, R5F10WLFGFB, R5F10WLGGFB R5F10WMAGFB, R5F10WMCGFB, R5F10WMDGFB, R5F10WMEGFB, R5F10WEGFB, R5F10WEGFB,

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L13 User's Manual.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0.8Vdd		Vdd	V
	VIH2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	2.2		Vdd	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		Vdd	V
			TTL input buffer $1.6 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	1.5		V_{DD}	V
	Vінз	P20, P21		0.7V _{DD}		Vdd	V
	VIH4	P60, P61		0.7Vdd		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0.8VDD		Vdd	V
Input voltage, low	VIL1	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P70 to P77, P125 to P127, P130, P137	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P03, P05, P06, P16, P17, P34, P43, P44, P46, P47, P53, P55	TTL input buffer 4.0 V \leq V _{DD} \leq 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V \leq V _{DD} < 3.3 V	0		0.32	V
	V _{IL3} P20, P21			0		0.3VDD	V
	VIL4	P60, P61		0		0.3Vdd	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2VDD	V

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Caution The maximum value of V_I of pins P00, P04 to P07, P16, P17, P35, P42 to P44, P46, P47, P53 to P56, and P130 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	fHOCO = 48 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		2.0		mA
current ^{Note}		mode	speed main)	f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.0		mA
			mode		Normal	V _{DD} = 5.0 V		3.8	6.5	mA
					operation	V _{DD} = 3.0 V		3.8	6.5	mA
				f _{HOCO} = 24 MHz ^{Note 3} ,	Basic	V _{DD} = 5.0 V		1.7		mA
				f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
					Normal	V _{DD} = 5.0 V		3.6	6.1	mA
					operation	V _{DD} = 3.0 V		3.6	6.1	mA
				fносо = 16 MHz ^{Note 3} ,	Normal	V _{DD} = 5.0 V		2.7	4.7	mA
				f⊪ = 16 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.7	4.7	mA
			LS (low-	fHOCO = 8 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	2.1	mA
			speed main) mode ^{Note 5}	f⊮ = 8 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	2.1	mA
			LV (low- voltage main) mode ^{Note 5}	fHOCO = 4 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
				f⊪ = 4 MHz ^{Note 3}	operation	V _{DD} = 2.0 V		1.2	1.8	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	5.1	mA
			speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.2	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.9	5.1	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.2	mA
				$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 5.0 \text{ V}$	Normal operation	Square wave input		2.5	4.4	mA
						Resonator connection		2.7	4.5	mA
				$f_{MX} = 16 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.5	4.4	mA
				$V_{DD} = 3.0 V$	Normal operation Normal	Resonator connection		2.7	4.5	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	3.0	mA
				$V_{DD} = 5.0 V$ $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Resonator connection		1.9	3.0	mA
						Square wave input		1.9	3.0	mA
				VDD = 3.0 V	operation	Resonator connection		1.9	3.0	mA
			LS (low-	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.1	2.0	mA
			mode ^{Note 5}		operation	Resonator connection		1.1	2.0	mA
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 2.0 \text{ V}$	Normal	Square wave input		1.1	2.0	mA
			<u>.</u>			Resonator connection		1.1	2.0	mA
			Subsystem	tsub = 32.768 KHZ	Normal operation	Square wave input		4.0	5.4	μΑ
			operation	$T_A = -40^{\circ}C$		Resonator connection		4.3	5.4	μΑ
				fsub = 32.768 kHz ^{Note} 4	Normal	Square wave input		4.0	5.4	μΑ
				, T _A = +25°C	operation	Resonator connection		4.3	5.4	μA
				fsub = 32.768 kHz ^{Note} 4	Normal	Square wave input		4.1	7.1	μA
				, T _A = +50°C	operation	Resonator connection		4.4	7.1	μA
				fsue = 32.768 kHz ^{Note}	Normal	Square wave input		4.3	8.7	μA
				, T _A = +70°C	operation	Resonator connection		4.7	8.7	μA
				fsue = 32.768 kHz ^{Note}	Normal	Square wave input		4.7	12.0	μA
				, T _A = +85°C	operation	Resonator connection		5.2	12.0	μA

(Notes and Remarks are listed on the next page.)

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2Note 2	HALT	HS (high-speed	fHOCO = 48 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.71	1.95	mA
current ^{Note 1}		mode	main) mode ^{note} 7	fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.71	1.95	
				fносо = 24 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.49	1.64	mA
				fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	1.64	
				fносо = 16 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.43	1.11	mA
				fı⊢ = 16 MHz ^{Note 4}	V _{DD} = 3.0 V		0.43	1.11	
			LS (low-speed	fносо = 8 MHz ^{Note 4} ,	V _{DD} = 3.0 V		280	770	μA
			main) mode ^{note} 7	fiH = 8 MHz Note 4	V _{DD} = 2.0 V		280	770	
			LV (low-voltage	f _{HOCO} = 4 MHz ^{Note 4} ,	V _{DD} = 3.0 V		430	700	μA
			main) mode ^{Note 7}	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 2.0 V		430	700	
			HS (high-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.42	mA
			main) mode ^{Note} 7	V _{DD} = 5.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.29	1.42	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.42	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.26	0.86	mA
				V _{DD} = 5.0 V	Resonator connection		0.45	1.15	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.25	0.86	mA
				V _{DD} = 3.0 V	Resonator connection		0.44	1.15	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.63	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.19	0.63	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	
			LS (low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
			main) mode ^{Note 7}	V _{DD} = 3.0 V	Resonator connection		160	560	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	560	μA
				V _{DD} = 2.0 V	Resonator connection		160	560	
			Subsystem	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.62	μA
			clock operation	T _A = -40°C	Resonator connection		0.51	0.80	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.62	μA
				T _A = +25°C	Resonator connection		0.57	0.80	
				fsuв = 32.768 kHz ^{Note 5} ,	Square wave input		0.46	2.30	μA
				T _A = +50°C	Resonator connection		0.67	2.49	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.65	4.03	μA
				TA = +70°C	Resonator connection		0.91	4.22	
				fsub = 32.768 kHz ^{Note 5} ,	Square wave input		1.00	8.04	μA
				TA - +03 C	Resonator connection		1.31	8.23	
	$I_{DD3}^{Note 6} STOP T_A = -40^{\circ}C$		T _A = -40°C				0.18	0.52	μA
		mode	T _A = +25°C				0.24	0.52	
			$T_A = +50^{\circ}C$				0.33	2.21	
			$I_A = +70^{\circ}C$				0.53	3.94	
			I _A = +85°C				0.93	7.95	

(Notes and Remarks are listed on the next page.)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit	
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	4.0 2.7	$V \leq V_{DD} \leq 5.5 V$, $V \leq V_b \leq 4.0 V$		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			2.7 2.3	$V \le V_{DD} < 4.0 V$, $V \le V_b \le 2.7 V$		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1		fмск/6 ^{Note} 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			1.8 V, 1.6	1.8 V (2.4 V ^{Note 4}) \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V		fмск/6 Note s1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in SNOOZE mode is 4800 bps only.

 $\textbf{2. Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode:	24 MHz (2.7 V \leq V _{DD} \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

- 4. Condition in the HS (high-speed main) mode
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

UART mode bit width (during communication at different potential) (reference)

- Remarks 1.
 R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 10), m: Unit number , n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02), g: PIM and POM number (g = 0, 1)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn)
 m: Unit number, n: Channel number (mn = 00, 02))

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
 - fmcκ: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- When AV_{REFP} < V_{DD}, the MAX. values are as follows.
 Overall error: Add ±4 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 Zero-scale error/Full-scale error: Add ±0.2%FSR to the MAX. value when AV_{REFP} = V_{DD}.
 Integral linearity error/ Differential linearity error: Add ±2 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pins: ANI0, ANI1, ANI16 to ANI25, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$		1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target pin:	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.1875		39	μs
		ANIU, ANI1, ANI16 to ANI25 ^{Note 3}	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	3.5625		39	μs
	reference voltage, and temperature sensor output voltage (HS (high-speed main)		$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Fzs	10-bit resolution	18V <vpp<55v< td=""><td></td><td></td><td>+0.60</td><td>%ESR</td></vpp<55v<>			+0.60	%ESR
	-20		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±6.5	LSB
Differential linearity error Note	DLE	10-bit resolution	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
1			$1.6~V \leq V_{\text{DD}} \leq 5.5~V^{\text{Note 3}}$			±2.5	LSB
Analog input voltage	VAIN	ANIO, ANI1, ANI16 to A	NI25	0		Vdd	V
		Internal reference voltation (2.4 V \leq V _{DD} \leq 5.5 V, HS		VBGR ^{Note 4}		V	
		Temperature sensor ou (2.4 V \leq V _{DD} \leq 5.5 V, HS	tput voltage S (high-speed main) mode))	Ň	V		

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

(3) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pins: ANI0, ANI16 to ANI25

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3},$ Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		bit	
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGRNote 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor /internal reference voltage characteristics

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

Parameter	Parameter Symbol Conditions					Unit
Temperature sensor output voltage	VTMPS25	ADS register = 80H, T _A = +25°C		1.05		V
Internal reference output voltage	VBGR	ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp				5	μs

<R> 2.8 RAM Data Retention Characteristics

(T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<R> Caution Data in RAM are not retained if the CPU operates outside the specified operating voltage range. Therefore, place the CPU in STOP mode before the operating voltage drops below the specified range.

2.9 Flash Memory Programming Characteristics

1	T∧	= -40	to	+85°	c ·	18	V <	Vnn	< 5 5	v	Vss =	0 V)
١			10	TUJ	υ,	1.0	v _2	V DD	- 0.0	۰,	v 33 -	•••

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclĸ	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ 1		24	MHz	
Number of code flash rewrites ^{Notes 1, 2, 3}	Cerwr	Retained for 20 years $T_A = 85^{\circ}C$	1,000			Times
Number of data flash rewrites ^{Notes 1, 2, 3}		Retained for 1 year $T_A = 25^{\circ}C$		1,000,000		
		Retained for 5 years T _A = 85°C	100,000			
		Retained for 20 years $T_{A} = 85^{\circ}C$	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 02)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]: Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - **2.** r: IIC number (r = 00, 10), g: PIM and POM number (g = 0, 1)
- <R>
- 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0-3), mn = 00-03, 10-13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 4/fc∟к		600		ns
			$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\label{eq:VDD} \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 1.8 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	2300		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	tĸcy1/2 – 150		ns
		$\begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V, \\ C_{\text{b}} = 30 \; \text{pF}, R_{\text{b}} = 2.7 \; \text{k}\Omega \end{array}$		tkcy1/2 – 340		ns
		$2.4 V \le V_{DD} < C_b = 30 pF, F$	3.3 V, 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tkcy1/2 – 916		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 V, 2.7 V \le V_b \le 4.0 V, $ R _b = 1.4 kΩ	tkcy1/2 - 24		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} <$ C _b = 30 pF, F	: 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V, R_b = 2.7 kΩ	tксү1/2 — 36		ns
		$2.4 V \le V_{DD} < C_b = 30 \text{ pF}, \text{ F}$	3.3 V , 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tксү1/2 — 100		ns
SIp setup time tsiĸ1 (to SCKp↑) ^{Note 1}		$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	162		ns
		$2.7 V \le V_{DD} < C_b = 30 pF, F$: 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Rb = 2.7 k\Omega	354		ns
		$2.4 V \le V_{DD} < C_b = 30 pF, F$: 3.3 V, 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	958		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}, $ R _b = 1.4 kΩ	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		38		ns
		$2.4 V \le V_{DD} < C_b = 30 pF, F$	$ = 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \\ C_b = 30 \ pF, \ F \end{array}$	$ 5.5 V, 2.7 V \le V_b \le 4.0 V, $ R _b = 1.4 kΩ		200	ns
		$2.7 V \le V_{DD} < C_b = 30 pF, F$: 4.0 V, 2.3 V ≤ V _b ≤ 2.7 V, R _b = 2.7 kΩ		390	ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} <$ C_{b} = 30 pF, F	$ 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}, $ R _b = 5.5 kΩ		966	ns

(Note, Caution and Remark are listed on the next page.)

Parameter	Symbol	Conditions	HS (high-spe	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸı	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	88		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1		38		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tĸso1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \hline $2.4~V \le V_{DD}$ < $3.3~V$, $1.6~V \le V_{b}$ \le $2.0~V$,} \\ C_{b}$ = $30~pF$, R_{b} = $5.5~k\Omega$ }$		50	ns

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

CSI mode connection diagram (during communication at different potential)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 10), m: Unit number, n: Channel number (mn = 00, 02),
 g: PIM and POM number (g = 0, 1)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))

3.6.5 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Detection Supply voltage level		When power supply rises	3.90	4.06	4.22	V
voltage			When power supply falls	3.83	3.98	4.13	V
		VLVD1	When power supply rises	3.60	3.75	3.90	V
			When power supply falls	3.53	3.67	3.81	V
		VLVD2	When power supply rises	3.01	3.13	3.25	V
			When power supply falls	2.94	3.06	3.18	V
		VLVD3	When power supply rises	2.90	3.02	3.14	V
			When power supply falls	2.85	2.96	3.07	V
		Vlvd4	When power supply rises	2.81	2.92	3.03	V
			When power supply falls	2.75	2.86	2.97	V
		VLVD5	When power supply rises	2.71	2.81	2.92	V
			When power supply falls	2.64	2.75	2.86	V
		VLVD6	When power supply rises	2.61	2.71	2.81	V
		When power supply falls	2.55	2.65	2.75	V	
	VLVD7	When power supply rises	2.51	2.61	2.71	V	
			When power supply falls	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μs
Detection delay time						300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conc	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD5	Vpoc2,	VPOC1, VPOC0 = 0, 1, 1,	2.64	2.75	2.86	V	
mode	node V _{LVD4}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVD3		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
VLVD0 LVIS		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V	
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.6 Supply voltage rise time

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

